
Chapter 4

Integration

4.1 Great Expections
An indicator random variable IA takes two values, the value 1 with probability
P (A) and the value 0 otherwise. Its expected value, or average over many trials
would therefore be 0(1 − P (A)) + 1P (A) = P (A). This is the simplest case
of an integral or expectation. It is also the basic building block from which
expected value in general (or the Lebesgue integral) is constructed. We begin,
however, with an example illustrating the problems associated with the Rieman
integral, usually defined by approximating the integral with inner and outer
sums of rectangles.

Example 59 So what’s so wrong with the Riemann integral anyway? Let
f(x) = 1 for x irrational and in the interval [0, 1] , otherwise f(x) = 0.
What is the Riemann integral

R 1
0
f(x)dx? What should this integral be?

Recall that a simple random variable takes only finitely many possible values,
say c1, ....cn on sets A1, ..., An in a partition of the probability space. The defi-
nition of the integral or expected value for indicator random variables together
with the additive properties expected of integrals leads to only one possible
definition of integral for simple random variables:

Definition 60 (Expectation of simple random Variables) A simple random vari-
able can be written in the form X =

Pn
i=1 ciIAi . In this case, we define

E(X) =
Pn

i=1 ciP (Ai) . Note: we must show that this is well-defined; i.e. that
if there are two such representations of the same random variable X then both
lead to the same value of E(X).

4.1.1 Properties of the Expected Value for Simple Ran-
dom Variables

Theorem 61 For simple random variables X, Y ,
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1. X(ω) ≤ Y (ω) for all ω implies E(X) ≤ E(Y ).
2. For real numbers α, β, E(αX + βY ) = αE(X) + βE(Y ).

Proof. Suppose X =
P
i ciIAi ≤

P
j djIBj where Ai forms a disjoint

partition of the space Ω (i.e. are disjoint sets with ∪i Ai = Ω) and Bj also
forms a disjoint partition of the space. Then ci ≤ dj whenever AiBj 6= φ.
Therefore

E(X) =
X
i

ciP (Ai) =
X
i

ci
X
j

P (AiBj)

≤
X
i

X
j

djP (AiBj) =
X
j

djP (Bj) = E(Y )

For the second part, note that αX + βY is also a simple random variable
that can be written in the form

P
i

P
j(αci+βdj)IAiBj where the sets AiBj

form a disjoint partition of the sample space Ω. Now take expectation to verify
that this equals α

P
i ciP (Ai) + β

P
j djP (Bj).

4.1.2 Expectation of non-negative measurable random vari-
ables.

Suppose X is a non-negative random variable so that X(ω) ≥ 0 for all ω ∈ Ω.
Then we define

E(X) = sup{E(Y ); Y is simple and Y ≤ X}.
The supremum is well-defined, although it might be infinite. There should be
some concern, of course, as to whether this definition will differ for simple ran-
dom variables from the one listed previously, but this is resolved in property
1 below.

4.1.3 Some Properties of Expectation.

Assume X, Y are non-negative random variables. Then ;

1. If X =
P
i ciIAi simple, then E(X) =

P
i ciP (Ai).

2. If X(ω) ≤ Y (ω) for all ω, then E(X) ≤ E(Y ).
3. If the sequence of non-negative random variables Xn is increasing to a
random variable X pointwise, then E(Xn) increases to E(X) (this is
usually called the Monotone Convergence Theorem).

4. For non-negative numbers α, and β,

E(αX + βY ) = αE(X) + βE(Y ).
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Proof. Proof of Properties.

1. If Z ≤ X and Z is a simple function, then E(Z) ≤ E(X). It follows that
since X is a simple function and we take the supremum over all simple
functions Z , that this supremum is E(X).

2. Suppose Z is a simple function and Z ≤ X. Then Z ≤ Y . It follows
that the set of Z satisfying Z ≤ X is a subset of the set satisfying
Z ≤ Y and therefore sup{E(Z);Z is simple,Z ≤ X} ≤ sup{E(Z);Z is
simple,Z ≤ Y }.

3. Since Xn ≤ X if follows from property (2) that E(Xn) ≤ E(X). Similarly
E(Xn) is monotonically non-decreasing and it therefore converges. Thus
it converges to a limit satisfying

limE(Xn) ≤ E(X).
We will now show that lim E(Xn) ≥ E(X) and then conclude equality
holds above. Suppose ² > 0 is arbitrary and Y =

P
i ciIAi where Y ≤ X

is a simple random variable. Define Bn = {ω;Xn(ω) ≥ (1 − ²)Y (ω)}
Note that as n→∞ , this sequence of sets increases to a set containing
{ω;X(ω) ≥ (1 − ²/2)Y (ω)} and since X ≥ Y the latter is the whole
space Ω. Therefore,

E(Xn) ≥ E(XnIBn) ≥ (1− ²)E(Y IBn).

But
E(Y IBn) =

X
i

ciP (AiBn)→
X
i

ciP (Ai)

as n→∞. Therefore
limE(Xn) ≥ (1− ²)E(Y )

whenever Y is a simple function satisfying Y ≤ X. Note that the
supremum of the right hand side over all such Y is (1 − ²)E(X). We
have now shown that for any ² > 0 , limE(Xn) ≥ (1 − ²)E(X) and it
follows that this is true also as ²→ 0.

4. Take two sequences of simple random variables Xn increasing to X
and Yn increasing to Y . Assume α and β are non-negative. Then by
Property 2. of 4.1.1,

E(αXn + βYn) = αE(Xn) + βE(Yn)

By monotone convergence, the left side increases to the limit E(αX+βY )
while the right side increases to the limit αE(X) + βE(Y ). We leave the
more general case of a proof to later.
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Definition 62 (General Definition of Expected Value) For an arbitrary random
variable X , define X+ = max(X, 0), and X− = max(0,−X). Note that
X = X+−X−. Then we define E(X) = E(X+)−E(X−). This is well defined
even if one of E(X+) or E(X−) are equal to ∞ as long as both or not infinite
since the form ∞−∞ is meaningless.

Definition 63 (integrable) If both E(X+) <∞ and E(X−) <∞ then we say
X is integrable.

Notation;

E(X) =
R
X(ω)dPR

A
X(ω)dP = E(XIA) for A ∈ F .

4.1.4 Further Properties of Expectation.

In the general case, expectation satisfies 1-4 of 4.1.3. above plus the the addi-
tional property:

5. If P (A) = 0,
R
A
X(ω)dP = 0.

Proof. (property 5)
Suppose the non-negative random variable Z =

Pn
i=1 ciIBi is simple and

Z ≤ XIA. Then for any i, ciIBi ≤ XIA which implies either ci = 0 or Bi ⊂ A.
In the latter case, P (Bi) ≤ P (A) = 0. Therefore E(Z) =

Pn
i=1 ciP (Bi) = 0.

Since this holds for every simple random variable Z ≤ XIA it holds for the
supremum

E(XIA) = sup{E(Z);Z is simple, Z ≤ XIA} = 0.

Theorem 64 ( An integral is a measure) If X is non-negative r.v. and we
define µ(A) =

R
A
X(ω)dP , then µ is a (countably additive) measure on F.

Proof. Note that by property 5 above, µ(ϕ) = 0 and since XIA ≥ 0,
E(XIA) ≥ 0 by property 2 of the integal. Note also that the set function µ is
finitely additive. In particular if A1 and A2 are disjoint events,

µ(A1 ∪A2) = E(XIA1∪A2) = E(X(IA1 + IA2)) = µ(A1) + µ(A2).

This shows that the set function is additive. By induction we can easily prove
that it is finitely additive; that for disjoint sets Ai, i = 1, 2, ...

µ(∪ni=1Ai) =
nX
i=1

µ(Ai).
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To show that the set function is countably additive, define Bn = ∪ni=1Ai. Notice
that the random variables XIBn form a non-decreasing sequence converging to
XIB where B = limn→∞Bn (recall that the limit of a nested sequence of sets
is well-defined and in this case equals the union). Therefore by the monotone
convergence theorem (property 3 above),

nX
i=1

µ(Ai) = E(XIBn)→ E(XIB) = µ(∪∞i=1Ai).

Therefore, the set function is countably additive, i.e.

µ(∪∞i=1Ai) =
∞X
i=1

µ(Ai).

Consequently the set function satisfies the conditions of a measure. If E(X) <
∞ then this measure is finite. Otherwise, if we define events Cn = [X ≤ n], then
notice that µ(Cn) ≤ n. Moreover, Ω = ∪nCn. This shows that the measure is
sigma-finite (i.e. it is the countable union of sets Cn each having finite measure).

Lemma 65 (Fatou’s lemma: limits of integrals) If Xn is a sequence of non-
negative r.v., Z

[lim infXn]dP ≤ lim inf
Z
XndP

Proof. Define Yn(ω) = inf{m;m≥n}Xm(ω) . Note that Yn is a non-
decreasing sequence of random variables and limYn = lim inf Xn = X, say.
Therefore by monotone convergence, E(Yn)→ E(X). Since Yn ≤ Xn for all
n ,

E(X) = limE(Yn) ≤ lim inf E(Xn).

Example 66 (convergence a.s. implies convergence in expectation?) It is pos-
sible for Xn(ω) → X(ω) for all ω but E(Xn) does not converge to E(X) .
Let Ω = (0, 1) and the probability measure be Lebesgue measure on the inter-
val. Define X(ω) = n if 0 < ω < 1/n and otherwise X(ω) = 0 . Then
Xn(ω)→ 0 for all ω but E(Xn) = 1 does not converge to the expected value
of the limit.

Theorem 67 (Lebesgue dominated convergence Theorem) If Xn(ω)→ X(ω)
for each ω, and there exists integrable Y with |Xn(ω)| ≤ Y (ω) for all n, ω,
then X is integrable and E(Xn)→ E(X).

(Note for future reference: the Lebesgue Dominated Convergence Theorem
can be proven under the more general condition that Xn converges in distrib-
ution to X )
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Proof. Since Y ≥ |Xn| the random variables Y +Xn are non-negative.
Therefore by Fatou’s lemma,

E[lim inf(Y +Xn)] ≤ lim inf E(Y +Xn)
or E(Y )+E(X) ≤ E(Y )+lim inf E(Xn) or E(X) ≤ lim inf E(Xn) . Similarly,
applying the same argument to the random variables Y −Xn results in

E[lim inf(Y −Xn)] ≤ lim inf E(Y −Xn)
or E(Y )−E(X) ≤ E(Y )− lim supE(Xn) or

E(X) ≥ lim supE(Xn).
It follows that E(X) = limE(Xn).

4.2 The Lebesgue-Stieltjes Integral
Suppose g(x) is a Borel measurable function < → <. By this we mean that
{x; g(x) ∈ B} is a Borel set for each Borel set B ⊂ <. Suppose F (x) is a
Borel measurable function satisfying two of the conditions of 3.2.2, namely

1. F (x) is non-decreasing. i.e. F (x) ≥ F (y) whenever x ≥ y.
2. F (x) is right continuous. i.e. F (x) = limF (x+h) as h decreases to 0.

Notice that we can use F to define a measure µ on the real line; for example
the measure of the interval (a, b] we can take to be µ((a, b]) = F (b)−F (a). The
measure is extended from these intervals to all Borel sets in the usual way, by
first defining the measure on the algebra of finite unions of intervals, and then
extending this measure to the Borel sigma algebra generated by this algebra.
We will define

R
g(x)dF (x) or

R
g(x)dµ exactly as we did expected values in

section 4.1 but with the probability measure P replaced by µ and X(ω)
replaced by g(x) . In particular, for a simple function g(x) =

P
i ciIAi(x), we

define
R
g(x)dF =

P
i ciµ(Ai) .

4.2.1 Integration of Borel measurable functions.

Definition 68 Suppose g(x) is a non-negative Borel measurable function so
that g(x) ≥ 0 for all x ∈ <. Then we defineZ

g(x)dµ = sup{
Z
h(x)dµ; h simple, h ≤ g}.

Definition 69 (General Definition: integral) As in Definitions 62 and 63, for
a general function f(x) we write f(x) = f+(x)− f−(x) where both f+ and
f− are non-negative functions. We then define

R
fdµ =

R
f+dµ − R f−dµ

provided that this makes sense (i.e. is not of the form ∞−∞). Finally we say
that f is integrable if both f+ and f− have finite integrals, or equivalently, ifR |f(x)|dµ <∞.
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4.2.2 Properties of integral

For arbitrary Borel measurable functions f(x), g(x),

1. f(x) ≤ g(x) for all x implies
R
f(x)dµ ≤ R g(x)dµ.

2. For real numbers α, β,
R
(αf + βg)dµ = α

R
fdµ+ β

R
gdµ.

3. If fn increasing to f , then
R
fndµ increases to

R
fdµ ( called the

Monotone Convergence Theorem).

The monotone convergence theorem holds even if the limiting function f is
not integrable, i.e. if

R
fdµ = ∞. In this case it says that R fndµ → ∞ as

n→∞.
Example 70 Consider a discrete function defined for non-negative constants
pj , j = 1, 2, ... and real numbers xj , j = 1, 2, ... by

F (x) =
X

{j;xj≤x}
pj

Then Z ∞
−∞

g(x)dF =
X
j

g(xj)pj .

If the constants pj are probabilities, i.e. if
P
pj = 1, then this equals E[g(X)]

where X is a random variable having c.d.f. F .

Example 71 (completion of Borel sigma algebra) The Lebesgue measure λ is
generated by the function F (x) = x. Thus we define λ((a, b]) = b − a for all
a, b, and then extend this measure to a measure on all of the Borel sets. A
sigma-algebra L is complete with respect to Lebesgue measure λ if whenever
A ∈ L and λ(A) = 0 then every subset of A is also in L. The completion of
the Borel sigma algebra with respect to Lebesgue measure is called the Lebesgue
sigma algebra. The extension of the measure λ above to all of the sets in L is
called Lebesgue measure.

Definition 72 (absolutely continuous) A measure µ on < is absolutely con-
tinuous with respect to Lebesgue measure λ ( denoted µ << λ) if there is an
integrable function f(x) such that µ(B) =

R
B
f(x)dλ for all Borel sets B.

The function f is called the density of the measure µ with respect to λ.

Intuitively, two measures µ,λ on the same measurable space (Ω,F) (not
necessarily the real line) satisfy µ << λ if the support of the measure λ in-
cludes the support of the measure µ. For a discrete space, the measure µ simply
reweights those points with non-zero probabilities under λ. For example if λ
represents the discrete uniform distribution on the set Ω = {1, 2, 3, ..., N} (so
that λ(B) is N−1×the number of integers in B ∩ {1, 2, 3, ..., N}) and f(x) = x,
then if µ(B) =

R
B
f(x)dλ,we have µ(B) =

P
x∈B∩{1,2,3,...,N} x. Note that the

measure µ assigns weights 1
N ,

2
N , ...1 to the points {1, 2, 3, ..., N} respectively.
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4.2.3 Notes on absolute continuity

The so-called continuous distributions such as the normal, gamma, exponential,
beta, chi-squared, student’s t, etc. studied in elementary statistics should have
been called absolutely continuous with respect to Lebesgue measure.

Theorem 73 (The Radon-Nykodym Theorem); For arbitrary measures µ and
λ defined on the same measure space, the two conditions below are equivalent:

1. µ is absolutely continuous with respect to λ so that there exists a function
f(x) such that

µ(B) =

Z
B

f(x)dλ

2. For all B, λ(B) = 0 implies µ(B) = 0.

The first condition above asserts the existence of a “density function” as
it is usually called in statistics but it is the second condition above that is
usually referred to as absolute continuity. The function f(x) is called the
Radon Nikodym derivative of µ w.r.t. λ. We sometimes write f = dµ

dλ but f is
not in general unique. Indeed there are many f(x) corresponding to a single µ,
i.e. many functions f satisfying µ(B) =

R
B
f(x)dλ for all Borel B. However,

for any two such functions f1, f2, λ{x; f1(x) 6= f2(x)} = 0. This means that
f1 and f2 are equal almost everywhere (λ).
The so-called discrete distributions in statistics such as the binomial distri-

bution, the negative binomial, the geometric, the hypergeometric, the Poisson
or indeed any distribution concentrated on the integers is absolutely continuous
with respect to the counting measure λ(A) =number of integers in A.
If the measure induced by a c.d.f. F (x) is absolutely continuous with respect

to Lebsegue measure, then F (x) is a continuous function. However it is possible
that F (x) be a continuous function without the corresponding measure being
absolutely continuous with respect to Lebesgue measure.

Example 74 Consider F (x) to be the cumulative distribution of a random vari-
able uniformly distributed on the Cantor set. In other words, if Xi are indepen-
dent Bernoulli (1/2) random variables, define

X =
∞X
i=1

2Xi
3i

and F (x) = P [X ≤ x]. Then it is not hard to see that the measure corre-
sponding to this cumulative distribution function is continuous but not absolutely
continuous with respect to Lebesgue measure. In fact if C is the Cantor set,
µ(C) = P (X ∈ C) = 1 but λ(C) = 0 so condition 2 of the Theorem above fails.
On the other hand the cumulative distribution function is a continuous function
because for any real number x ∈ [0, 1] we have

P [X = x] = 0.



4.2. THE LEBESGUE-STIELTJES INTEGRAL 31

The measure µ(B) = P (X ∈ B) is an example of one that is singular with
respect to Lebesgue measure. This means in effect that the support of the two
measures µ and λ is non-overlapping.

Definition 75 Measures µ and λ defined on the same measurable space are
mutually singular if they have disjoint supports; i.e. if there are disjoint sets A
and Ac such that µ(A) = 0 and λ(Ac) = 0.

Proof. (Radon-Nykodym Theorem.) The fact that condition 1. implies
condition 2. is the result of 4.1.4 property 5. so we need only prove the reverse.
Assume both measures are defined on the measure space (Ω,F) and that for
all B ∈ F, λ(B) = 0 imples µ(B) = 0. Also assume for simplicity that both
measures are finite and so λ(Ω) <∞, µ(Ω) <∞. Define a class of measurable
functions C by

C = {g; g(x) ≥ 0,
Z
E

gdλ ≤ µ(E) for all E ∈ F}.

We wish to show that there is a function f ∈ C that is maximal in the sense
that Z

Ω

fdλ = sup{
Z
Ω

gdλ; g ∈ C} =α, say.

and that this function has the properties we need. First, note that if two
functions g1, g2 ∈ C, then max(g1, g2) ∈ C. This is because we can writeZ

E

min(g1, g2)dλ =

Z
EA

g1dλ+

Z
EAc

g2dλ where A = {ω; g1(ω) > g2(ω)}
≤ µ(EA) + µ(EAc)
≤ µ(E)

Similarly the maximum of a finite number of elements of C is also in C.Suppose,
for each n, we choose gn such that

R
Ω
gndλ ≥ α− 1

n . Then the sequence

fn = max(g1, ..., gn)

is an increasing sequence and by monotone convergence it converges to a function
f ∈ C for which

R
Ω
fdλ = α. If we can show that α = µ(Ω) then the rest of

the proof is easy. Define a new measure by µs(E) = µ(E) −
R
E
fdλ. Suppose

that there is a set A such that λ(A) > 0 and assume for the moment that the
measures µs,λ are not mutually singular. Then by problem 25 there exists
ε > 0 and a set A with λ(A) > 0 such that

ελ(E) ≤ µs(E)
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for all measurable sets E ⊂ A.Consequently for all E,Z
E

(f + εIA)dλ =

Z
E

fdλ+ ελ(A ∩E)

≤
Z
E

fdλ+ µs(A ∩E)

≤
Z
E

fdλ+ µ(AE)−
Z
AE

fdλ

≤
Z
E\A

fdλ+ µ(AE)

≤ µ(E\A) + µ(AE) = µ(E).
In other words, f + εIA ∈ C. This contradicts the fact that f is maximal, sinceR
Ω
(f + εIA)dλ = α + ελ(A) > α. Therefore, by contradiction, the measures

µsand λ must be mutually singular. This implies that there is a set B such
that µs(B) = 0 and λ(Bc) = 0. But since µ << λ, µ(Bc) = 0 and µs(Bc) ≤
µ(Bc) = 0 which shows that the measure µs is identically 0. This now shows
that

µ(E) =

Z
E

fdλ for all E, as was required.

Definition 76 Two measures µ and λ defined on the same measure space are
said to be equivalent if both µ << λ and λ << µ.

Two measures µ,λ on the same measurable space are equivalent if µ(A) = 0
if and only if λ(A) = 0 for all A.Intuitively this means that the two measures
share exactly the same support or that the measures are either both positive on
a given event or they are both zero an that event.

4.2.4 Distribution Types.

There are three different types of probability distributions, when expressed in
terms of the cumulative distribution function.

1. Discrete: For countable xn, pn, F (x) =
P

{n;xn≤x} pn. The correspond-
ing measure has countably many atoms.

2. Continuous singular. F (x) is a continuous function but for some Borel
set B having Lebesgue measure zero, λ(B) = 0, we have P (X ∈ B) =R
B
dF (x) = 1. ( For example, the uniform distribution on the Cantor set).

3. Absolutely continuous (with respect to Lebesgue measure).

F (x) =

Z x

−∞
f(x)dλ

for some function f called the probability density function.
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There is a general result called the Lebesgue decomposition which asserts
that any any cumulative distribution function can be expressed as a mixture of
those of the above three types. In terms of measures, any sigma-finite measure
µ on the real line can be written

µ = µd + µac + µs,

the sum of a discrete measure µd, a measure µac absolutely continuous with
respect to Lebesgue measure and a measure µs that is continuous singular. For
a variety of reasons of dubious validity, statisticians concentrate on absolutely
continuous and discrete distributions, excluding, as a general rule, those that
are singular.

4.3 Moments and theMoment Generating Func-
tion

Many of the properties of a random variableX are determined from its moments.
The k0th moment of X is E(Xk). If the first moment µ = E(X), the k0th
central moment is E[(X −µ)k]. For example the variance is the second central
moment var(X) = σ2 = E[(X − µ)2]. We also define the skewness

E[(X − µ)3]
σ3

and the Kurtosis
E[(X − µ)4]

σ4
.

The normal distribution is often taken as the standard against which skewness
and kurtosis is measured and for the normal distribution (or any distribution
symmetric about its mean with third moments), skewness = 0 . Similarly for
the normal distribution kurtosis = 3 . Moments are often most easily obtained
from the moment generating function of a distribution. Thus if X has a given
c.d.f. F (x), the moment generating function is defined as

mX(t) = E[exp{Xt}] =
Z ∞
−∞

extdF, t ∈ <.

Since this is the expected value of a non-negative quantity it is well-defined but
might, for some t, take the value ∞. The domain of the moment generating
function, the set of t for which this integral is finite, is often a proper subset of
the real numbers. For example consider the moment generating function of an
exponential random variable with probability density function

f(x) =
1

4
exp(−x

4
), for x > 0.
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The moments are easily extracted from the moment generating function since

mX(t) =
∞X
j=0

tjE(Xj)

j!

provided that this series converges absolutely in an open neighbourhood of t = 0.
Differentating n times and then setting t = 0 recovers the moment, viz.

E(Xn) = m
(n)
X (0).

The moment generating function of the normal (µ,σ) distribution is m(t) =
exp{µt+ σ2t2

2 }.

Definition 77 (convex function) A function g(x) on an interval of the real
line is said to be convex if for every pair of points x, y in the interval, and
every point 0 < p < 1,

g(px+ (1− p)y) ≤ pg(x) + (1− p)g(y).

This can be restated as “ the graph of the function always lies below any chord”
or alternatively “ the function of a weighted average is less than the weighted
average of the function”. In view of the last statement, since expected value is
a form of weighted average, the following theorem is a natural one.

Theorem 78 (Jensen’s Inequality) If g(x) is a convex function and both X
and g(X) are integrable, then

g(EX) ≤ E[g(X)]

Proof. Let us denote the point (EX, g(EX)) by p0 = (x0, g0). Since g is
convex, it is not difficult to show that there exists a line l(x) through the point
p0 such that the graph of g lies on or above this line. In particular, with

l(x) = g0 + k(x− x0)

we have g(x) ≥ l(x) for all x. Therefore

E(g(X)) ≥ E(l(X)) = g0 + k(EX −EX) = g(E(X)),

thus proving Jensen’s inequality.
For example the functions g1(x) = x2 and g2(x) = etX , t > 0 are both

convex functions and so [E(X)]2 ≤ E[X2] and etEX ≤ E[etX ].

4.4 Problems
1. Prove that a c.d.f F (x) can have at most a countable number of discon-
tinuities (i.e. points x such that F (x) > F (x−)).
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2. A stock either increases or decreases by 5 % each day with probability p ,
each day’s movement independent of the preceding days. Find p so that
the expected rate of return matches that of a risk free bond whose return
is a constant r units per day. Give an expression for the probability
that the stock will more than double in price in 50 days. Use the normal
approximation to the Binomial distribution to estimate this probability
when r = .01%.

3. One of the fundamental principals of finance is the no-arbitrage principle,
which roughly states that all financial products should be priced in such
a way that it is impossible to earn a positive return with probability one.
To take a simple example, suppose a market allows you to purchase or
borrow any amount of a stock and an interest free bond, both initially
worth $1. It is known that at the end of the next time interval the stock
will either double or halve its value to either $2.00 or $0.50. Suppose you
own an option which pays you exactly $1.00 if the stock goes up, zero oth-
erwise. Construct a portfolio of stocks and bonds which is identical to this
option and thereby determine the value of the option. Note that its value
was determined without knowing the probabilities with which the stock
increased or decreased. Repeat this calculation if the bond pays interest r
per unit time. Note that the no-arbitrage principle generates probabilities
for the branches. Although these may not be the true probabilities with
which movements up or down occur, they should nevertheless be used in
valuing a derivative.

4. Suppose a stock moves in increments of ± 1 and Sn is the stock price
on day n so that Sn+1 = Sn ± 1. If we graph the possible values of Sn
as n = 0, 1, 2, . . . N we obtain a binomial tree. Assume on day n the
interest rate is rn so that 1 dollar invested on day n returns (1 + rn)
on day n + 1. Use the above no-arbitrage principle to determine the
probabilities of up and down movements throughout the binomial tree.
Use these probabilities in the case N = 6 to determine the initial value
of derivative that will pay SN − 14 if this is positive, and otherwise pay
0 asssuming Sn = 10. Assume constant interest rate rn = .01.

5. (A constructive definition of the integral) For a given non-negative random
variable X , define a simple random variable Xn =

Pn2n

i=1 ciIAi where

ci = (i− 1)/2n, Ai = [(i− 1)/2n ≤ X < i/2n], i < n2n,

and
An2n = [(n2

n − 1)/2n ≤ X].
Prove that Xn is an increasing function and that E(X) = lim E(Xn).
This is sometimes used as the definition of the integral.

6. Show that if X is integrable, then |E(X)| ≤ E(|X|). Similarly, show
|E(X)| ≤pE(|X|2) .
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7. Suppose Xn is a sequence of random variables such that for some event
A with P (A) = 1 and for all ω ∈ A , Xn(ω) increases to X(ω) . Prove
that E(Xn) increases to E(X).

8. Show that if X, Y are two integrable random variables for which P [X 6=
Y ] = 0, then

R
A
XdP =

R
A
Y dP for all A ∈ F .

9. Show that if X ≥ 0 is integrable and X ≥ |Y | then Y is integrable.

10. Prove property 5, page 37: if P (A) = 0,
R
A
X(ω)dP = 0.

11. IfX is non-negative r.v., µ(A) =
R
A
X(ω)dP defines a (countably additive)

measure on F . (proved as Theorem 22)

12. Restate the theorems in section 4.1 for the Lebesgue-Stieltjes integral of
functions. Give simple conditions on the functions gn under which

lim

Z
gn(x)dλ =

Z
lim gn(x)dλ

13. Suppose X is a random variable with c.d.f. F (x) . Show that E(X)
as defined in section 4.1 is the same as

R
xdF as defined in section 4.2.

14. Suppose X is a non-negative random variable. Show that E(X) =R∞
0
(1 − F (x))dx. Why not use this as the definition of the (Lebesgue)

integral, since 1− F (x) is Riemann integrable?
15. Chebyshev’s inequality. Suppose that Xp is integrable for p ≥ 1. Then

show that for any constant a ,

P [|X − a| ≥ ²] ≤ E|X − a|
p

²p

16. Is Chebyschev’s inequality sharp? That is can we find a random variable
X so that we have equality above, i.e. so that

P [|X − a| ≥ ²] = E|X − a|p
²p

17. Show that if C is the class of all random variables defined on some proba-
bility space (say the unit interval with the Borel sigma algebra),

(a) if ² > 0, inf{P (|X| > ²);X ∈ C, E(X) = 0, var(X) = 1} = 0 and
(b) if y ≥ 1, inf{P (|X| > y);X ∈ C, E(X) = 1, var(X) = 1} = 0

18. A random variable Z has the Standard normal distribution if its density
with respect to Lebesgue measure is given by

φ(x) =
1√
2π
e−x

2/2.
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Then the price of a very simple non-dividend paying stock at time T is
taken to be a random variable of the form

ST = S0exp{µT +
√
TσZ}

where µ = r − 1
2σ

2, r is the risk-free interest rate, σ the volatility or
standard deviation per unit time, and Z is a random variable having the
standard normal distribution.

(a) Find E(ST ). Explain your answer.

(b) Find e−rTE((ST − K)+) for a constant K. This is the price of a
European call option having strike price K. (Hint: Check that for
for any choice of numbers a, b,σ,

E(eσZ − eσa)+ = eσ2/2H(a− σ)− eσaH(a)

where H(x) is P [Z > x]. )

19. Show that for any value of t > 0 and a random variable X with moment
generating function mX ,

P [X > c] ≤ e−tcmX(t)

20. A coin is tossed 5 times. Describe an appropriate probability space (Ω,F ,P).
Define random variables X =number of heads in first 3 tosses and Y =
min(5, number of tails before first head). Describe σ(X) and σ(X,Y ) and
show that σ(X) ⊂ σ(X,Y ). Determine the expected value and variance
of Y −X.

21. Suppose you hold 1 option on a stock whose price at time T (the expiry
date) is ST with distribution given by

ST = S0exp{µT +
√
TσZ}

as in Question 18. We assume that the value of this option e−rTE(ST −
K)+ = V (S0, T ) is a function of the time to expiry and the current value
of the stock. You wish also to hold −∆ units of the stock (∆ may be
positive or negative). Find the value of ∆ which minimizes the variance
of the change in the portfolio; i.e. minimizing

var[δV −∆δS].

where δV is the change in the value of the option V (ST , 0) − V (S0, T )
and δS is the change in the value of the stock ST − S0.
Approximate δV by two terms of a Taylor series expansion δV =
∂
∂S0
V (S0, T )δS − ∂

∂T V (S0, T )T and find an approximate value for the
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optimal choice of ∆. Suppose the linear approximation to δV is inade-
quate and we wish to use a quadratic approximation of the form

δV ≈ aT + bT (ST −EST ) + cT (S2T −ES2T )

Then show that the optimal value of ∆ is

∆ = bT + cT
p
V ar(ST ) Skewness(ST ).

22. Bernstein polynomials. If g(p) is a continuous function on [0, 1] , then we
may define Bn(p) = E[g(Xnp/n)] where Xnp ∼ Bin(n, p) . Show that
Bn(p)→ g(p) uniformly as p→∞. Note that the function Bn(p) is a
polynomial of degree n in p. This shows that any continuous function on
a finite interval can be approximated uniformly by a polynomial. (Hint: a
continuous function on a compact interval [0, 1] is uniformly continuous).

23. In 1948 in a fundamental paper, C.E. Shannon defines the notion of en-
tropy of a distribution as follows: Let X be a random variable with prob-
ability function or continuous probability density function f(x). Suppose
that the expectation H(f) = E{− log(f(X))} exists and is finite.

(a) Prove that if g is the probability function of some function h(X) of
a discrete random variable X, then H(g) ≤ H(f).

(b) Prove that H(f) ≥ 0.

24. Let µ be the measure on < induced by the Poisson distribution with pa-
rameter 2. In other words if pn = P [X = n] where X has this Poisson
distribution, define µ(A) =

P{pn;n ∈ A} for every Borel set A ⊂ <. Let
λ be a similarly defined measure but with Poisson parameter 1. Show that
µ << λ and find a function f(x) such that

µ(B) =

Z
B

f(x)dλ (4.1)

for all Borel sets B. Is this function unique as a function on R? How
may it be modified while leaving property (4.1) unchanged?

25. Suppose two finite measures µ,λ defined on the same measurable space
are not mutually singular. Prove that there exists ε > 0 and a set A with
λ(A) > 0 such that

ελ(E) ≤ µ(E)
for all measurable sets E ⊂ A.Hint : Solve this in the following steps:

(a) Consider the signed measure µ− n−1λ for each value of n = 1, 2, ....
You may assume that you can decompose the probability space into
disjoint sets A−n andA+n such that µ(B)−n−1λ(B) ≤ 0 or≥ 0 asB ⊂
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A−n or B ⊂ A+n respectively (this is called the Hahn decomposition).
Define

M = ∪A+n
Mc = ∩A−n .

Show that µ(Mc) = 0.

(b) Show λ(M) > 0 and this implies λ(A+n ) > 0 for some n.

(c) Finally conclude that 1
nλ(E) ≤ µ(E) for all E ⊂ A+n .

26. (a) Find the moment generating function of a Binomial distribution.

(b) Show that if the moment generating function has sufficiently many
derivatives in a neighbourhood of the origin, we can use it to obtain the
moments of X as follows:

E(Xp) = m
(p)
X (0), p = 1, 2, . . .

Show that the moments of the standard normal distribution are given by

E(Z) = 0, E(Z2) = 1, E(Z3) = 0, E(Z4) = 3, E(Z2n) =
(2n)!

n!2n
.

What is E(Z2k)?

27. Prove using only the definition of the expected value for simple random
variables that if X

ciIAi =
X

djIBj

then X
ciP (Ai) =

X
djP (Bj)

28. Find an example of a random variable such that the k0th moment exists
i.e.

E(|X|k) <∞
but any higher moment does not, i.e.

E(|X|k+²) =∞ for all ² > 0.

29. A city was designed entirely by probabilists so that traffic lights stay green
for random periods of time (say Xn, n = 1, 2, ...) and then red for random
periods (say Yn, n = 1, 2, ...). There is no amber. Both X and Y have an
exponential distribution with mean 1 minute and are independent. What
is your expected delay if you arrive at the light at a random point of time?

30. Suppose that a random variable X has a moment generating function
mX(t) which is finite on an interval t ∈ [−ε, ε] for ε > 0. Prove rigorously
that

E(X) = m0
X(0)

by interchanging a limit and an expected value.
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31. A fair coin is tossed repeatedly. For each occurence of heads (say on
the k0th toss) you win 2

3k
, whereas for each occurrence of tails, you win

nothing. Let

X = total gain after infinitely many tosses.

(a) What is the distribution of X. Is it discrete, absolutely continuous,
or a mixture of the two?

(b) Find E(X).


