
Chapter 2

Measure Spaces

2.1 Families of Sets

Definition 7 ( π − systems) A family of subsets F of Ω is a π−system if,
Ak ∈ F for k = 1, 2 implies A1 ∩A2 ∈ F .

A π−system is closed under finitely many intersections but not necessarily
under unions. The simplest example of a π−system is the family of rectangles
in Euclidean space. Clearly a Boolean algebra is a π-system but there are
π−systems that are not Boolean algebras (see the problems).

Definition 8 (Sigma-Algebra) F is sigma algebra if,

(i) Ak ∈ F for all k implies ∪∞k=1Ak ∈ F
(ii) A ∈ F implies Ac ∈ F.
(iii) φ ∈ F .

Note that only the first property of a Boolean algebra has been changed-it
is slightly strengthened. Any sigma algebra is automatically a Boolean algebra.

Theorem 9 (Properties of a Sigma-Algebra) If F is a sigma algebra, then

(iv) Ω ∈ F .
(v) Ak ∈ F for all k implies ∩∞k=1Ak ∈ F

Proof. Note that Ω = ϕc ∈ F by properties (ii) and (iii). This verifies (iv).
Also ∩∞k=1Ak = (∪∞k=1Ack)c ∈ F by properties (i) and (ii).

Theorem 10 (Intersection of sigma algebras) Let Fλ be sigma algebras for
each λ ∈ Λ. The index set Λ may be finite or infinite, countable or uncountable.
Then ∩λ Fλ is a sigma-algebra.
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Proof. Clearly if F = ∩λFλ then ϕ ∈ F since ϕ ∈ Fλ for every λ. Similarly
if A ∈ F then A ∈ Fλ for every λ and so is Ac. Consequently Ac ∈ F . Finally
if An ∈ F for all n = 1, 2, ...then An ∈ Fλ for every n,λ and ∪∞n=1An ∈ Fλ for
every λ. This implies ∪∞n=1An ∈ F .

Definition 11 ( sigma algebra generated by family of sets) If C is a family of
sets, then the sigma algebra generated by C , denoted σ(C), is the intersection of
all sigma-algebras containing C. It is the smallest sigma algebra which contains
all of the sets in C.

Example 12 Consider Ω = [0, 1] and C ={[0, .3], [.5, 1]} = {A1, A2}, say. Then
σ(C) = {ϕ, A1, A2, A3, A1∪A2, A1∪A3, A2∪A3,Ω} where we define A3 = (.3, .5).
(There are 8 sets in σ(C)).

Example 13 Define Ω to be the interval (0,1] and F0 to be the class of all
sets of the form (a0, a1] ∪ (a2, a3] ∪ ... ∪ (an−1, an] where 0 ≤ a0 ≤ ... ≤ an ≤ 1.
Then F0 is a Boolean algebra but not a sigma algebra.

Example 14 (all subsets) Define F0 to be the class of all subsets of any given
set Ω. Is this a Boolean algebra? Sigma Algebra? How many distinct sets are
there in F0 if Ω has a finite number, N points?

Example 15 A and B play a game until one wins once (and is declared winner
of the match). The probability that A wins each game is 0.3, the probability
that B wins each game is 0.2 and the probability of a draw on each game is 0.5.
What is a suitable probability space, sigma algebra and the probability that A
wins the match?

Example 16 (Borel Sigma Algebra) The Borel Sigma Algebra is defined on a
topological space (Ω,O) and is B = σ(O).

Theorem 17 The Borel sigma algebra on R is σ(C), the sigma algebra gener-
ated by each of the classes of sets C described below;

1. C1 = {(a, b); a ≤ b}
2. C2 = {(a, b]; a ≤ b}
3. C3 = {[a, b); a ≤ b}
4. C4 = {[a, b]; a ≤ b}
5. C5 =the set of all open subsets of R
6. C6 =the set of all closed subsets of R

To prove the equivalence of 1 and 5 above, we need the following theorem
which indicates that any open set can be constructed from a countable number
of open intervals.
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Theorem 18 Any open subset of R is a countable union of open intervals of
the form (a, b).

Proof. Let O be the open set and x ∈ O. Consider the interval Ix =
∪{(a, b); a < x < b, (a, b) ⊂ O}. This is the largest open interval around x that
is entirely contained in O. Note that if x 6= y, then Ix = Iy or Ix ∩ Iy = ϕ.
This is clear because if there is some point z ∈ Ix ∩ Iy, then Ix ∪ Iy is an open
interval containing both x and y and so since they are, by definition, the largest
such open interval, Ix ∪ Iy = Ix = Iy. Then we can clearly write

O = ∪{Ix;x ∈ O}
= ∪{Ix;x ∈ O, x is rational}

since every interval Ix contains at least one rational number.

Definition 19 ( Lim Sup, Lim Inf) For an arbitrary sequence of events Ak

lim
n→∞ supAn = ∩

∞
n=1 ∪∞k=n Ak = [An i.o.]

lim
n→∞ inf An = ∪

∞
n=1 ∩∞k=n Ak = [An a.b.f.o.]

The notation An i.o. refers to An infinitely often and An a.b.f.o. refers to
An “all but finitely often”.
A given point ω is in limn→∞ supAn if and only if it lies in infinitely many

of the individual sets An. The point is in limn→∞ inf An if and only if it is in all
but a finite number of the sets. Which of these two sets is bigger? Compare them
with ∪∞k=nAk and ∩∞k=nAk for any fixed n. Can you think of any circumstances
under which lim sup An = lim inf An? You should be able to prove that

[lim supAn]
c = lim inf Acn.

Theorem 20 Assume F is a sigma-algebra. If each of An ∈ F , n = 1, 2, . . .,
then both ∪∞n=1 ∩∞k=nAk and ∩∞n=1 ∪∞k=nAk are in F .
Definition 21 ( measurable space) A pair (Ω,F) where the former is a set
and the latter a sigma algebra of subsets of Ω is called a measurable space.

Definition 22 (additive set function) Consider a space Ω and a family of
subsets F0 of Ω such that φ ∈ F0. Suppose µ0 is a non-negative set function;
i.e. has the properties that

• µ0 : F0→[0,∞]
• When F,G and F ∪ G ∈ F0 and F ∩ G = φ, then µ0(F ) + µ0(G) =
µ0(F ∪G).

Then we call µ0 an additive set function on (Ω,F0).

Note that it follows that µ0(φ) = 0 (except in the trivial case that µ0(A) =∞
for every subset including the empty set. We rule this out in our definition of a
measure.)
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Definition 23 We call µ0 a countably additive set function on (Ω,F0) if,
whenever all An, n = 1, 2, . . . are members of F0 and ∪∞n=1 An ∈ F0 , and
the sets are disjoint ( Ai ∩Aj = φ, i 6= j) then it follows that

µ0(∪∞n=1An) =
∞X
n=1

µ0(An)

We saw at the beginning of this chapter that the concept of a π−system
provides one basic property of a Boolean algebra, but does not provide for
unions. In order to insure that such a family is a σ−algebra we need the
additional conditions provided by a λ−system (below).

Definition 24 A family of events F is called a λ-system if the following con-
ditions hold:

1. Ω ∈ F

2. A,B ∈ F and B ⊂ A implies A\B ∈ F

3. If An ∈ F for all n = 1, 2, ... and An ⊂ An+1 then ∪∞n=1An ∈ F

A λ−system is closed under set differences if one set is included in the other
and monotonically increasing countable unions. It turns out this this provides
the axioms that are missing in the definition of a π-system to guarantee the
conditions of a sigma-field are satisfied.

Proposition 25 If F is both a π-system and a λ-system then it is a sigma-
algebra.

Proof. By the properties of a λ−system, we have that Ω ∈ F and if A ∈ F
then Ac = Ω \A ∈ F . So we need only show that F is closed under countable
unions. Note that since F is a π−system it is closed under finite intersections.
Therefore if An ∈ F for each n = 1, 2, ... then Bn = ∪ni=1Ai = (∩ni=1Aci )c ∈ F
for each n and since Bn ⊂ Bn+1, ∪∞n=1Bn = ∪∞n=1An ∈ F by the third
property of a λ− system.

Theorem 26 (The π−λ Theorem) Suppose a family of sets F is a π−system
and F ⊂ G where G is a λ-system. Then σ(F) ⊂ G .

This theorem is due to Dynkin and is proved by showing that the smallest
λ−system containing F is a π-system and is therefore, by the theorem above, a
sigma-algebra.
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2.2 Measures

Definition 27 (measure) µ is a (non-negative) measure on the measurable
space (Ω,F) where F is a sigma-algebra of subsets of Ω if it is a countably
additive (non-negative) set function µ();F → [0,∞].

A measure µ satisfies the following conditions

(i) µ(A) ≥ 0 for all A.
(ii) If Ak disjoint, µ(∪∞k=1Ak) =

P∞
k=1 µ(Ak)

(iii) µ(φ) = 0

(iv) (monotone) A ⊂ B implies µ(A) ≤ µ(B).
(v) (subadditive) µ(∪kAk) ≤

P
k µ(Ak)

(vi) ( inclusion-exclusion). For finitely many sets,

µ(∪nk=1Ak) =
X
k

µ(Ak)−
X
i<j

µ(Ai ∩Aj) + ....

(vii) If Ak converges (i.e. is nested increasing or decreasing)

µ(limnAn) = limnµ(An)

where lim
n
An =

½∪nAn if An increasing
∩nAn if An decreasing

Definition 28 (Measure space)The triple (Ω,F ,µ) is called a measure space.

Measures do exist which may take negative values as well but we leave dis-
cussion of these for later. Such measures we will call signed measures. For the
present, however, we assume that every measure takes non-negative values only.

Definition 29 (Probability measure) A Probability measure is a measure P
satisfying P (Ω) = 1.

(Additional property) A probability measure also satisfies

(viii) P (Ac) = 1− P (A)

Definition 30 (Probability space) When the measure P is a probability mea-
sure, the triple (Ω,F ,P) is called a probability space.

Theorem 31 (Conditional Probability) For B ∈ F with P (B) > 0, Q(A) =
P (A|B) = P (A ∩B)/P (B) is a probability measure on the same space (Ω,F).
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2.3 Extending a measure from an algebra
Although measures generally need to be supported by sigma-algebras of sets,
two probability measures are identical if they are identical on an algebra. The
following Theorem is fundamental to this argument, and to the construction of
Lebesgue measure on the real line.

Theorem 32 (Caratheodory Extension) Suppose F0 is a (Boolean) algebra
and µ0 a countably additive set function from F0 into [0,∞]. Then there is
an extension of µ0 to a measure µ defined on all of σ(F0). Furthermore, if
the total measure µ0(Ω) <∞ then the extension is unique.

Proof. We do not provide a complete proof-details can be found in any
measure theory text (e.g. Rosenthal, p.10-14.) Rather we give a short sketch of
the proof. We begin by defining the outer measure of any set E ⊂ Ω (note it
does not have to be in the algebra or sigma-algebra) by the smallest sum of the
measures of sets in the algebra which cover the set E, i.e.

µ∗(E) = inf{
∞X
n=1

µ0(An);E ⊂ ∪∞n=1An, An ∈ F0}.

Notice that the outer measure of a set in the algebra is the measure itself
µ∗(E) = µ0(E) if E ∈ F0. Therefore, this outer measure is countably additive
when restricted to the algebra F0. Generally, however, this outer measure is only
subadditive; the measure of a countable union of disjoint events is less than or
equal to the sum of the measures of the events. If it were additive, then it
would satisfy the property;

µ∗(E) = µ∗(EQ) + µ∗(EQc). (2.1)

However, let us consider the class F of all sets Q for which the above equation
(2.1) does hold. The rest of the work in the proof consists of showing that the
class of sets F forms a sigma algebra and when restricted to this sigma algebra,
the outer measure µ∗ is countably additive, so is a measure.
The last condition in the extension theorem can be replaced by a weaker

condition, that the measure is sigma-finite. In other words it suffices that we
can write the whole space as a countable union of subsets Ai ( i.e. Ω = ∪∞i=1Ai)
each of which has finite measure µ0(Ai) < ∞. Lebesgue measure on the real
line is sigma-finite but not finite.

Example 33 Lebesgue measure Define F0 to be the set of all finite unions of
intervals (open, closed or half and half) such as

A = (a0, a1] ∪ (a2, a3] ∪ ... ∪ (an−1, an]
where −∞ ≤ a0 ≤ ... ≤ an ≤ ∞. For A of the above form, define µ(A) =P
i(a2i+1−a2i). Check that this is well-defined. Then there is a unique extension

of this measure to all B , the Borel subsets of R. This is called the Lebesgue
measure.
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It should be noted that in the proof of Theorem 11, the sigma algebra F
may in fact be a larger sigma algebra than σ(F0) generated by the algebra. For
example in the case of measures on the real line, we may take F0 to be all finite
union of intervals. In this case σ(F0) is the class of all Borel subsets of the
real line but it is easy to check that F is a larger sigma algebra having the
property of completeness, i.e. for any A ∈ F such that µ(A) = 0, all subsets
of A are also in F (and of course also have measure 0).

Example 34 (the Cantor set) This example is useful for dispelling the notions
that closed sets must either countain intervals or consist of a countable selection
of points. Let Ω = [0, 1] with P Lebesgue measure. Define A1 = Ω\{( 13 , 23)}
and A2 = A\{( 19 , 29 )∪ (79 , 89)} etc. In each case, Anis obtained from An−1 by
deleting the open interval in the middle third of each interval in An−1. Define
A = ∩∞n=1An. Then A is a closed, uncountable set such that P (A) = 0 and A
contains no nondegenerate intervals.

2.4 Independence

Definition 35 (Independent Events) A family of events C is (mutually) in-
dependent if

P (Aλ1 ∩Aλ2 ....Aλn) = P (Aλ1)P (Aλ2)....P (Aλn) (*)

for all n, Aλi ∈ C and for distinct λi.

Properties: Independent Events

1. A,B independent implies A,Bc independent.

2. Any Aλ can be replaced by Acλ in equation (*).

Definition 36 Families of sigma-algebras {Fλ; λ ∈ Λ} are independent if for
any Aλ ∈ Fλ , the family of events{Aλ;λ ∈ Λ} are mutually independent.

Example 37 (Pairwise independence does not imply independence) Two fair
coins are tossed. Let A = first coin is heads, B = second coin is heads,
C = we obtain exactly one heads. Then A is independent of B and A is
independent of C but A, B, C are not mutually independent.

2.4.1 The Borel Cantelli Lemmas

Clearly if events are individually too small, then there little or no probability
that their lim sup will occur, i.e. that they will occur infinitely often.

Lemma 38 For an arbitrary sequence of events An ,
P

n P (An) <∞ implies
P [An i.o.] = 0.
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Proof. Notice that

P (∩∞n=1 ∪∞m=n Am) ≤ P (∪∞m=nAm) ≤
∞X
m=n

P (Am) for each n = 1, 2, .....

For any ² > 0, since the series
P∞
m=1 P (Am) converges we can find a value

of n sufficiently large that
P∞
m=n P (Am) < ². Therefore for every positive ²,

P (∩∞n=1 ∪∞m=n Am) ≤ ² and so it must equal 0.
The converse of this theorem is false without some additional conditions.

For example suppose that Ω is the unit interval and the measure is Lebesgue.
Define An = [0,

1
n ], n = 1, 2, ..... Now although

P
P (An) =∞, it is still true

that P (An i.o.) = 0. However if we add the condition that the events are
independent, we do have a converse as in the following.

Lemma 39 For a sequence of independent events An,
P
n P (An) =∞ im-

plies P [An i.o] = 1.

Proof. We need to show that P (Acn a.b.f.o.) = 0. This is

P (∪∞n=1 ∩∞m=n Acm) ≤
∞X
n=1

P (∩∞m=nAcm)

≤
∞X
n=1

NnY
m=n

(1− P (Am)) for any sequence Nn

≤
∞X
n=1

exp{−
NnX
m=n

P (Am)}

where we have used the inequality (1 − P (Am)) ≤ exp(−P (Am)). Now if
the series

P∞
m=1 P (Am) diverges to ∞ then we can choose the sequence Nn

so that
PNn

m=n P (Am) > nln2 − ln² in which case the right hand side above is
less than or equal to ². Since this holds for arbitrary ² > 0, this verifies that
P (∪∞n=1 ∩∞m=n Acm) = 0.
Definition 40 (Almost surely)A statement S about the points in Ω holds
almost surely(a.s.) or with probability one if the set of ω such that the statement
holds has probability one. Thus Lemma 13 above states that An occurs infinitely
often almost surely (a.s.) and Lemma 12 that Acn occurs all but finitely often
(a.s.).

2.4.2 Kolmogorov’s Zero-one law

For independent events An, put

F = ∩∞n=1σ(An, An+1, ...)
(call this the tail sigma-algebra). Events that are determined by the sequence
{A1, A2, ...} but not by a finite number such as {A1, ...AN} are in the tail
sigma-algebra. This includes events such as [lim sup An], [lim inf An], [lim sup
A2n ], etc.
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Theorem 41 (zero-one law) Any event in the tail sigma-algebra F has
probability either 0 or 1.

Proof. Define Fn = σ(A1, A2, ..., An) and suppose B ∈ Fn for fixed n. Then
B is independent of F because it is independent of all sets in the larger sigma
algebra σ(An+1, An+2, ...). This means that every set A ∈ F is independent
of every set in each Fn and therefore A is independent of each member of the
Boolean Algebra of sets ∪∞n=1Fn. Therefore A is independent of σ( ∪∞n=1Fn).
But since

∩∞n=1σ(An,Xn+1, ...) ⊂ σ(∪∞n=1Fn)
A is independent of itself, implying it has probability either 0 or 1 (see problem
18).

2.5 Problems.

1. Give an example of a family of subsets of the set {1, 2, 3, 4} that is a
π−system but NOT a Boolean algebra of sets.

2. Consider the space <2and define the family of all rectangles with sides
parallel to the axes. Show that this family is a π-system.

3. Let Ω be the real line and let Fn be the sigma-algebra generated by the
subsets

[0, 1), [1, 2), ..., [n− 1, n)
Show that the sigma-algebras are nested in the sense that F1⊂ F2. How
do you know if a given set is in Fn? Show that ∪100n=1Fn is a sigma-algebra.

4. As above, let Ω be the real line and let Fn be the sigma-algebra
generated by the subsets

[0, 1), [1, 2), ..., [n− 1, n)

Show that ∪∞n=1 Fn is not a sigma-algebra.

5. How do we characterise the open subsets of the real line <? Show that the
Borel sigma algebra is also generated by all sets of the form (∞, x], x ∈ <.

6. For an arbitrary sequence of events Ak , give a formula for the event
Bk = [ the first of the Aj ’s to occur is Ak].

7. Write in set-theoretic terms the event that exactly two of the events
A1, A2, A3, A4, A5 occur.

8. Prove that if Ak is a nested sequence of sets (increasing or decreas-
ing), then lim supAn = lim inf An and both have probability equal to
limnP (An).
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9. Prove Bayes Rule:

If P (∪nBn) = 1 for a disjoint finite or countable sequence of events
Bn all with positive probability, then

P (Bk|A) = P (A|Bk)P (Bk)P
n P (A|Bn)P (Bn)

10. Prove that if A1, ...., An are independent events, then the same is true with
any number of Ai replaced by their complement Aci . This really implies
therefore that any selection of one set from each of σ(A1),σ(A2), . . .σ(An)
is a set of mutually independent events.

11. Find an example such that A,B are independent and B,C are indepen-
dent but P (A ∪B|C) 6= P (A ∪B) .

12. Prove that for any sequence of events An ,

P (lim inf An) ≤ lim inf P (An)

13. Prove the multiplication rule. That if A1 . . . An are arbitrary events,

P (A1A2 . . . An) = P (A1)P (A2|A1)P (A3|A2A1) . . . P (An|A1A2 . . . An−1)

14. Consider the unit interval with Lebesgue measure defined on the Borel
subsets. For any point x in the interval, let 0.x1x2x3 . . . denote its
decimal expansion (terminating wherever possible) and suppose A is the
set of all points x such that xi 6= 5, i = 1, 2, . . ..
(a) Prove that the set A is Borel measurable and find the measure of the
set A.

(b) Is the set A countable?

15. Give an example of a sequence of sets An, n = 1, 2, ... such that lim sup An =
lim inf An but the sequence is not nested. Prove in this case that
P (lim sup An) = limP (An).

16. In a given probability space, every pair of distinct events are independent
so if B 6= A , then

P (A ∩B) = P (A)P (B)
What values for the probabilities P (A) are possible? Under what circum-
stances is it possible that

P (A ∩B) ≤ P (A)P (B)
for all A 6= B?

17. Prove that a λ−system does not need to be closed under general unions or
finite intersections. For example let F consist of all subsets of {1, 2, 3, 4}
which have either 0 or 2, or 4 elements.
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18. Suppose F0 is a Boolean algebra of sets and A ∈ σ(F0) has the property
that A is independent of every set in F0. Prove that P (A) = 0 or 1.

19. Prove: If F is both a π-system and a λ-system then it is a sigma-field.

20. Is the family consissting of all countable subsets of a space Ω and their
complements a sigma-algebra?

21. Find lim supAn and lim inf An where An = ( 1n ,
2
3 − 1

n), n = 1, 3, 5, ....
and An = (13 − 1

n , 1 +
1
n), n = 2, 4, 6, ....

22. Consider a measure µ0 defined on a Boolean algebra of sets F0 satisfying
the conditions of Theorem 11. For simplicity assume that µ0(Ω) = 1.
Consider the class of sets F defined by

F = {A ⊂ Ω;µ∗(AE) + µ∗(AcE) = µ∗(E) for all E ⊂ Ω}.

Prove that F is a Boolean algebra.

23. Consider F as in Problem 22. Prove that if A1, A2, .... disjoint subsets of F
then µ∗(∪∞i=1Ai) =

P∞
i=1 µ

∗(Ai) so that this outer measure is countably
additive.

24. Consider F as in Problem 22. Prove that F is a sigma-algebra.

25. Consider F as in Problem 22. Prove that if A ∈ F0 then µ∗(A) = µ(A).

26. Prove or disprove: the family consisting of all finite subsets of a space Ω
and their complements is a sigma-algebra.

27. Prove or disprove: the family consisting of all countable subsets of a space
Ω and their complements is a sigma-algebra.

28. Find two sigma-algebras such that their union is not a sigma algebra.

29. Suppose P and Q are two probability measures both defined on the same
sample space Ω and sigma algebra F . Suppose that P (A) = Q(A) for
all events A ∈ F such that P (A) ≤ 1

2 . Prove that P (A) = Q(A) for all
events A. Show by counterexample that this statement is not true if we
replace the condition P (A) ≤ 1

2 by P (A) < 1
2 .


