
Chapter 1

Mathematical Prerequisites

1.1 Sets and sequences of Real Numbers
The real numbers < form a field. This is a set together with operations of
addition and multiplication and their inverse operations (subtraction and in-
verse). They are totally ordered in the sense that any two real numbers can be
compared; i.e. for any a, b ∈ <, either a < b, a = b, or a > b. The set of real
numbers, unlike the set of rational numbers, is uncountable. A set is countable
if it can be put in one-one correspondence with the positive integers. It is is
at most countable if it can be put in one-one correspondence with a subset of
the positive integers (i.e. finite or countable). The set of rational numbers is
countable, for example, but it is easy to show that the set of all real numbers is
not. We will usually require the concept of ”at most countable” in this course
and often not distinguish between these two terminologies, i.e. refer to the set
as countable. If we wish to emphasize that a set is infinite we may describe it
as countably infinite.
A brief diversion: why do we need the machinery of measure theory? Con-

sider the simple problem of identifying a uniform distribution on all subsets of
the unit iterval [0, 1] so that this extends the notion of length. Specifically can
we define a “measure” or distribution P so that

1. P (([a, b)) = b− a for all 0 ≤ a ≤ b ≤ 1
2. P (A1 ∪ A2 ∪ ...) = P (A1) + P (A2) + ... for any disjoint sequence of sets
An ⊂ [0, 1], n = 1, 2, ...

3. P (A ⊕ r) = P (A) for any r ∈ [0, 1] where for A ⊂ [0, 1],we define the
shift of a set

A⊕ r = {x ∈ [0, 1];x− r ∈ A or x− r + 1 ∈ A}.

Theorem 1 There is no function P defined on all the subsets of the unit in-
terval which satisfies properties 1-3 above.
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The consequence of this theorem is that in order to define even simple con-
tinuous distributions we are unable to deal with all subsets of the unit interval
or the real numbers but must restrict attention to a subclass of sets or events
in what we call a “sigma-algebra”.
The set of all integers is not a field because the operation of subtraction

(inverse of addition) preserves the set, but the operation of division (inverse of
multiplication) does not. However, the set of rational numbers, numbers of the
form p/q for integer p and q, forms a field with a countable number of elements.
Consider A ⊂ <. Then A has an upper bound b if b ≥ a for all a ∈ A. If b0
is the smallest number with this property, we define b0 to be the least upper
bound. Similarly lower bounds and greatest lower bounds.
The real numbers is endowed with a concept of distance. More generally,

a set X with such a concept defined on it is called a metric space if there is
a function d(x, y) defined for all x, y ∈ X (called the distance between points x
and y) satisfying the properties

1. d(x, y) > 0 for all x 6= y and d(x, x) = 0 for all x.

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Obviously the real line is a metric space with distance d(x, y) = |x− y| but
so is any subset of the real line. Indeed any subset of Euclidean space <n is a
metric space. A metric space allows us to define the notion of neighbourhoods
and open sets. In particular, a neighbourhood of a point x is a set of the form
{y; d(x, y) < r} for some radius r > 0. A subset B of a metric space is open if
every point x in B has a neighbourhood entirely contained in B.Formally B is
open if, for every x ∈ B, there exists r > 0 such that {y; d(x, y) < r} ⊂ B. Note
that the whole metric space X is open, and trivially the empty set ϕ is open.
We say that a set E in a metric space has an open cover consisting of

(possibly infinitely many) open sets {Gs, s ∈ S} if E ⊂ ∪s∈SGs,or in other
words if every point in E is in at least one of the open sets Gs. The set E
is compact if every open cover has a finite subcover— i.e. if for any open cover
there are finitely many sets, say Gsi , i = 1, ..., n such that E ⊂ ∪iGsi . Compact
sets in Euclidean space are easily identified- they are closed and bounded. In
a general metric space, a compact set is always closed.
Now consider a sequence of elements of a metric space {xn, n = 1, 2, . . .}.

We say this sequence converges to a point x if, for all ² > 0 there exists an
N < ∞ such that d(xn, x) < ² for all n > N . The property that a sequence
converges and the value of the limit is a property only of the tail of the sequence-
i.e. the values for n arbitrarily large. If the sequence consists of real numbers
and if we define lN = sup{xn;n ≥ N} to be the least upper bound of the set
{xn;n ≥ N}, then we know the limit x, provided it exists, is less than or equal
to each lN . Indeed since the sequence lN is a decreasing sequence, bounded
below, it must converge to some limit l, and we know that any limit is less
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than or equal to l as well. The limit l = limN→∞lN we denote commonly by
l = lim supn→∞xn.
It is easy to identify l = lim sup of a sequence of numbers xn by comparing

it to an arbitrary real number a. In general, l > a if and only if xn > a infinitely
many times or infinitely often (i.e. for infinitely many subscripts n). Similarly
l ≤ a if and only if xn > a+ ² at most finitely many times or finitely often for
each ² > 0.
We will deal throughout Stat 901 with subsets of the real numbers. For

example, consider the set O of all open intervals (a, b) = {x; a < x < b}
and include (a, a) = φ the empty set. If we take the union of two (overlap-
ping or non-overlapping) sets in O is the result in O? What if we take the
union of finitely many? Infinitely many? Repeat with intersections. These basic
properties of open intervals are often used to describe more general topologies
since they hold for more complicated spaces such as finite dimensional Euclid-
ean spaces. Denote a closed interval [a, b] = {x; a ≤ x ≤ b}. Which of the
above properties hold for closed intervals? Note that we can construct closed
intervals from open ones provided we are permitted countably many operations
of intersections for example:

[a, b] = ∩∞n=1(a− 1/n, b+ 1/n).
We shall normally use the following notation throughout this course. Ω is a

fundamental measure (or probability, or sample) space. It is a set consisting of
all points possible as the outcome to an experiment. For example what is the
probability space if the experiment consists of choosing a random number from
the interval [0, 1]? What if the experiment consists of tossing a coin repeatedly
until we obtain exactly one head? We do not always assume that the space
Ω has a topology (such as that induced by a metric) but in many cases it
is convenient if the probability space does possess a metric topology. This is
certainly the case if we are interested in the value of n random variables and so
our space is <n.
We denote by Ω a typical point in Ω. We wish to discuss events or classes

of sets of possible outcomes.

Definition 2 (Event) An Event A is a subset of Ω. The empty event φ
and the whole space Ω are also considered events. However, the calculus of
probability does not allow us in the most general case to accommodate the set of
all possible subsets of Ω in general, and we need to restrict this class further.

Definition 3 (Topological Space) A topological Space (Ω,O) is a space Ω
together with a class O of subsets of Ω. The members of the set O are called
open sets. O has the property that unions of any number of the sets in O
(finite or infinite, countable or uncountable) remain in O, and intersections of
finite numbers of sets in O also remain in O. The closed sets are those whose
complements are in O.
Definition 4 ( Some Notation)
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1. Union of sets A ∪B
2. Intersection of sets A ∩B
3. Complement : Ac = Ω \A
4. Set differences : A \B = A ∩Bc.
5. Empty set : φ = Ωc

Theorem 5 (De Morgan’s rules) (∪iAi)c = ∩iAci and (∩iAi)c = ∪iAci

Definition 6 (Boolean Algebra) A Boolean Algebra (or algebra for short) is a
family F0 of subsets of Ω such that

1. A,B ∈ F0 implies A ∪B ∈ F0.
2. A ∈ F0 implies Ac ∈ F0.
3. φ ∈ F0.

While Boolean algebras have satisfying mathematical properties, they are
not sufficiently general to cover most probability spaces of interest. In particular,
they may be used to model experiments with at most a finite number of possible
outcomes. In the next chapter, we will deal with extending Boolean algebras to
cover more general probability spaces.

1.2 Problems

1. Suppose we consider the space Ω of positive integers and define a measure
by P (A) = 0 of the number of integers in A is finite, P (A) = 1 if the
number is infinite. Does this measure satisfy the property of countable
additivity:

P (A1 ∪A2 ∪ ...) = P (A1) + P (A2) + ...
for any disjoint sequence of sets An ⊂ Ω, n = 1, 2, ...?

2. Prove that the equation p2 = 2 is not satisfied by any rational number
p.(Let p = m/n where not both integers m,n are even).

3. The extended real number system consists of the usual real numbers
{x;−∞ < x < ∞} together with the symbols ∞ and −∞. Which of
the following have a meaning in the extended real number system and
what is the meaning? Assume x is real (−∞ < x <∞).

(a) x+∞
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(b) x−∞
(c) x(+∞)
(d) x/∞
(e) x

−∞
(f) ∞−∞
(g) ∞/∞

4. Prove: the set of rational numbers, numbers of the form p/q for integer
p and q, has a countable number of elements.

5. Prove that the set of all real numbers is not countable.

6. Let the sets En, n = 1, 2, ... each be countable. Prove that ∪∞n=1En is
countable.

7. In a metric space, prove that for fixed x and r > 0, the set {y; d(x, y) < r}
is an open set.

8. In a metric space, prove that the union of any number of open sets is open,
the intersection of a finite number of open sets is open, but the intersection
of an infinite number of open sets might be closed.

9. Give an example of an open cover of the interval (0, 1) which has no finite
subcover.

10. Consider A to be the set of rational numbers a ∈ Q such that a2 < 2. Is
there least upper bound, and a greatest lower bound, and are they in Q?

11. Show that any non-decreasing sequence of numbers that is bounded above
converges.

12. Show that if x ≤ lN for each N <∞ and if lN converges to some number
l, then x ≤ l.

13. Find an example of a double sequence {aij , i = 1, 2, . . . , j = 1, 2, . . .}
such that ∞X

i=1

∞X
j=1

aij 6=
∞X
j=1

∞X
i=1

aij

14. Define the set O of open intervals (a, b) = {x;−a < x < b}, ∞ ≥ a ≥ 0,
∞ ≥ b ≥ 0.

(a) Verify that the union or intersection of finitely many sets in O is in
O.

(b) Verify that the union of a countably infinite number of sets in O is
in O



2 CHAPTER 1. MATHEMATICAL PREREQUISITES

(c) Show that the intersection of a countably infinite number of sets in
O may not be in O.

15. Prove the triangle inequality:

|a+ b| ≤ |a|+ |b|

whenever a, b ∈ <n.
16. Define the metric d(X,Y ) =

p
E(X − Y )2 on a space of random variables

with finite variance. Prove the triangle inequality

d(X,Z) ≤ d(X,Y ) + d(Y,Z)

for arbitrary choice of random variablesX,Y,Z.(Hint: recall that cov(W1,W2) ≤p
var(W1)

p
var(W2))

17. Verify that
[a, b) = ∩∞n=1(a− 1/n, b).

(a, b) = ∪∞n=1(a+ 1/n, b− 1/n).
[a, b) = ∪∞n=1[a, b− 1/n).

18. Let an be a sequence or real numbers converging to a. Prove that |an|
converges to |a|. Prove that for any function f(x) continuous at the point
a then f(an)→ f(a).

19. Give an example of a convergent series
P
pn = 1 with all pn ≥ 0 such that

the expectation of the distribution does not converge; i.e.
P

n npn =∞.
20. Define Ω to be the interval (0,1] and F0 to be the class of all sets of the

form (a0, a1]∪ (a2, a3]∪ ...∪ (an−1, an] where 0 ≤ a0 ≤ ... ≤ an ≤ 1. Then
is F0 a Boolean algebra? Verify.

21. Prove that any open subset of < is the union of countable many intervals
of the form (a, b) where a < b.

22. Suppose the probability space Ω = {1, 2, 3} and P (ϕ) = 0, P (Ω) = 1.
What conditions are necessary for the values x = P ({1, 2}), y = P ({2, 3}), z =
P ({1, 3}) for the measure P to be countably additive?

23. Suppose a measure satisfies the property of countable additivity:

P (A1 ∪A2 ∪ ...) = P (A1) + P (A2) + ...
for any disjoint sequence of sets An ⊂ Ω, n = 1, 2, ...?

Prove that for an arbitrary sequence of sets Bj ,

P (B1 ∪B2 ∪ ...) ≤ P (B1) + P (B2) + ...
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24. Prove for any probability measure and for an arbitrary setsBj , j = 1, 2, ..., n

P (B1 ∪B2 ∪ ...Bn) =
nX
j=1

P (Bj)−
X
i<j

P (BiBj) +
X
i<j<k

P (BiBjBk)....

25. Find two Boolean Algebras F0 and F1 both defined on the space Ω =
{1, 2, 3} such that the union F0 ∪F1 is NOT a Boolean Algebra.

26. For an arbitrary space Ω, is it true that

F0 = {A ⊂ Ω;A is a finite set}

is a Boolean algebra?

27. For two Boolean Algebras F0 and F1 both defined on the space Ω is it
true that the intersection F0 ∩ F1 is a Boolean Algebra?

28. The smallest non-empty events belonging to a Boolean algebra are called
the atoms. Find the atoms of

F0 = {ϕ,Ω, {1}, {2, 3}, {4}, {1, 2, 3}, {1, 4}, {2, 3, 4}}

where Ω = {1, 2, 3, 4}.
29. The smallest non-empty events belonging to a Boolean algebra are called

the atoms. Show that in general different atoms must be disjoint. If a
Boolean algebra F0 has a total of n atoms how many elements are there
in F0?
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