21. Mrs Jones made a rhubarb crumble pie. While she is away doing heart bypass surgery on the King of Tonga, her son William (graduate student in Stat-Finance) comes home and eats a random fraction X of the pie. Subsequently her daughter Wilhelmina (PhD student in Stat-Bio) returns and eats a random fraction Y of the remainder. When she comes home, she notices that more than half of the pie is gone. If one person eats more than a half of a rhubard-crumble pie, the results are a digestive catastrophe. What is the probability of such a catastrophe if X and Y are independent uniform on $[0,1]$?
Suppose that the fraction eaten by William is X and the fraction eaten by Wilhelmina of the remainder is Y. Then a catastrophe occurs if either $X>1 / 2$ or if $(1-X) Y>1 / 2$. Therefore we wish to compute

$$
P\left[X>\frac{1}{2} \text { or } X \leq \frac{1}{2} \text { and } Y(1-X)>\frac{1}{2} \left\lvert\, X+Y(1-X)>\frac{1}{2}\right.\right]
$$

where both X and Y are independent uniform $[0,1]$. Therefore

$$
\begin{aligned}
P[X & \left.>\frac{1}{2} \left\lvert\, X+Y(1-X)>\frac{1}{2}\right.\right]+P\left[X \leq \frac{1}{2}, Y(1-X)>\frac{1}{2} \left\lvert\, X+Y(1-X)>\frac{1}{2}\right.\right] \\
& =\frac{\frac{1}{2}+\int_{0}^{1 / 2} \int_{1 /(2(1-x))}^{1} d y d x}{\frac{1}{2}+\int_{0}^{1 / 2} \int_{(1 / 2-x) /(1-x)}^{1} d y d x} \\
& =\frac{\frac{1}{2}+\int_{0}^{1 / 2}\left(1-\frac{1}{2(1-x)}\right) d y}{\frac{1}{2}+\int_{0}^{1 / 2} \frac{1}{2(1-x)} d x} \\
& =\frac{2-\ln 2}{1+\ln 2}
\end{aligned}
$$

or about 0.77185 .

