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This article presents a pseudo-GEE approach to the analysis of longitudinal surveys when the
response variable containsmissing values. A cycle-specificmarginal hot-deck imputationmethod
is proposed tofill in themissing responses andapseudo-GEEmethod is applied to the imputeddata
set. Consistencyof the resulting pseudo-GEEestimators is establishedunder a joint randomization
framework. Linearization variance estimators are also developed for the pseudo-GEE estimators
under the assumption that the finite population sampling fraction is small or negligible. Finite
sample performances of the proposed estimators are investigated through an extensive simulation
study using data from the National Longitudinal Survey of Children and Youth.
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1. Introduction

Longitudinal surveys are an important tool for population studies where the primary

interest is to examine population changes over time at the individual level. The power of

the added dimension over time allows the separation of age and cohort effects (Diggle et al.

2002; Hedeker & Gibbons 2006) or the effect of treatments and population interventions

from other potential confounders. A major theme in the design and analysis of longitudinal

studies is to establish certain association or causation between a response variable and

a group of predictors and to further identify important factors relating to the response

variable. The generalized estimating equation (GEE) method, first proposed by Liang &

Zeger (1986) for nonsurvey data, is a popular statistical inference tool for longitudinal

studies. The approach is semi-parametric, involving assumptions similar to the

generalized linear models but allows the use of working variance-covariance matrix for

repeated measurements within the same subject, which does not necessarily coincide with

the true correlation structure. The method has been widely used by social scientists and

health researchers for analyzing longitudinal data from various population studies.
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In a recent paper Carrillo et al. (2010) presented a pseudo-GEE approach to complex

longitudinal surveys by incorporating the survey weights into the estimating equations.

While the use of survey weights under the estimating equation approach has also been

examined by several other authors, including Godambe and Thompson (1986), Binder and

Patak (1994) and Godambe (1995), Carrillo et al. (2010) were the first to rigorously

establish the consistency of the resulting pseudo-GEE estimator under a joint randomi-

zation framework. Linearization variance estimators were also developed. Rubin-Bleuer

and Schiopu Kratina (2005) discussed the consistency of the pseudo-GEE estimator under

different assumptions.

One of the major problems of longitudinal studies is missing values. This is a common

issue in large scale cross-sectional surveys (see, for example, Groves et al. 2002), and the

problem intensifies for longitudinal surveys. As Song (2007) puts it, “It is more difficult to

deal with missing data in longitudinal studies. This is because missing data patterns appear

much more sophisticated than those in cross-sectional studies.” The usual kinds of missing

values in cross-sectional studies are unit nonresponse and item nonresponse. The latter

includes missingness on the main study variable or covariates. For longitudinal studies, in

addition to unit nonresponse, missing patterns include attrition (i.e., drop-out completely

after a certain cycle), intermittent missingness (i.e., persons do not respond at some cycles

but remain in the study for other cycles), missing values for some variables at any

particular cycle, and combinations of these missing types.

The following example illustrates some of the missing data scenarios described above.

The National Longitudinal Survey of Children and Youth (NLSCY) is designed by Human

Resources Development Canada to measure child development and well-being. Data from

seven biennial cycles of the survey conducted from 1994 to 2007 are now available

through Statistics Canada’s Research Data Centers. One of the main objectives of the

survey is to study the development of children’s behaviour problems as they grow and

examine factors that contribute to changes. A very important variable included in

NLSCY data sets is PAS, Physical Aggression Score, which is derived from six to eight

questions (depending on the age group) included in the survey. Earlier studies (Thomas

2004; Carrillo et al. 2005) found some significant factors contributing to change in

aggressive behaviours as children grow. In a recent study, Carrillo-Garcı́a (2006)

examined the following nine covariates as potentially significant in explaining PAS: Age,

Age2 (the square of Age), Depression Score of the PMK (person most knowledgeable-

about the child), Punitive Parenting Status, Region, Gender, Family Status, Household

Income Status, and Hours in Daycare. See Carrillo-Garcı́a (2006) for further detail.

Table 1 shows the break-down of all respondents at each cycle with respect to the

missingness of the main study variable (PAS) and the nine covariates for the first four

Table 1. Missing frequencies of PAS and 9 covariates in the NLSCY dataset

PAS observed PAS missing

Cycle 1 2 3 4 1 2 3 4

All covariates observed 5,263 4,736 4,182 3,905 68 32 14 31
At least one covariate missing 124 278 416 233 115 40 331 254
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cycles. Children who missed an entire cycle are not included in the table. For instance,

there were 5,570 children surveyed at the initial cycle one, and they were classified into

four groups: (i) 5,263 responded to PAS and all nine covariates; (ii) 124 responded to PAS

but not to some covariates; (iii) 68 responded to all covariates but not to PAS; and (iv) 115

responded to neither PAS nor all covariates. Similarly, there were 4,423 children surveyed

at cycle four, and the break-down numbers into the four groups are 3,905, 233, 31 and 254,

respectively. Due to intermittent missingness, i.e., children missed one or more cycles of

the survey but participated in other cycles, the total number of children who participated

throughout all four cycles is 4,165. However, there are only 3,049 so-called “completers”

who not only participated throughout all four cycles but also provided complete responses

to all questions at each cycle. The naı̈ve or “complete case analysis” approach has often

been used, where only the data from “completers” are used for analysis. This amounts to

deleting all individuals who either missed a cycle or failed to respond to certain questions.

It is apparent that complete case analysis is inefficient and it is valid only if the data are

missing completely at random.

This article extends the pseudo-GEE method presented in Carrillo et al. (2010) for the

analysis of longitudinal surveys to situations where the response variable contains missing

values. In Section 2, we describe a cycle-specific random hot-deck imputation procedure

which makes the pseudo-GEE method a valid inference tool for analyzing longitudinal

surveys under the proposed procedure. Both weighted and unweighted random hot-deck

imputation methods are considered. Consistency of the pseudo-GEE estimator using the

imputed data set is established in Section 3 under a joint randomization framework.

Linearization variance estimators are developed in Section 4. Results from an extensive

simulation study on the finite sample performances of the pseudo-GEE estimator and the

proposed variance estimators are reported in Section 5, using simulation models built on

the basis of the first four cycles of NLSCY data sets. Some concluding remarks are

provided in Section 6. Proofs of major results are given in the Appendix.

2. Cycle-Specific Marginal Hot-deck Imputation

Let U ¼ {1; 2; · · ·;N} be the set of labels for the N subjects in the finite population.

Let ðYij;Xij1; · · ·;XijpÞ
0 be values of the response variable Y and the vector of p covariates

ðX1; · · ·;XpÞ
0 for the ith subject at the time of the jth cycle of the survey, j ¼ 1; · · ·; Ti.

The Ti can be different for different subjects but in many studies Ti ¼ T is common for

all subjects. This is typically the case for large-scale surveys and will be assumed for

the rest of the article. Let s be the set of n subjects selected from the finite population

by a complex sampling design; let wi ¼ 1=Pði [ sÞ be the basic design weights; let

{ðYij;Xij1; · · ·;XijpÞ; j ¼ 1; · · ·; T ; i [ s} be the data set from the longitudinal survey.

We consider cases where values of covariates ðXij1; · · ·;XijpÞ
0 are observed for all i [ s

at all cycles (j ¼ 1; · · ·; T) but the response variable Yij is subject to missingness. This is

motivated by the fact that under longitudinal surveys, values of covariates are less likely to

be missing or can be filled in at a later stage without error. For time-independent covariates

such as gender the likelihood of missing at all cycles is very small. For time-varying

covariates such as age it is usually easy to fill up the gap when the variables are observed

for some cycles but missing for some other cycles. At any particular cycle j, we assume
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that Yij is missing at random, i.e., PðRij ¼ 1jYij;Xij1; · · ·;XijpÞ ¼ PðRij ¼ 1jXij1; · · ·;XijpÞ,

where Rij ¼ 1 if Yij is observed and Rij ¼ 0 if Yij is missing.

It is common practice at large survey organizations such as Statistics Canada to create

and release public use data files with missing values handled by imputation. The imputed

data sets provide a common frame for studies with different objectives and can be

analyzed by standard softwares. For longitudinal surveys, handling missing values by

imputation makes it possible to use a single set of survey weights for different analyses.

This is important since different types of weights are available for longitudinal survey

data, including longitudinal weights up to a certain cycle and cross-sectional weights for

each cycle, and the decision on which set of weights to use for a particular analysis is not

straightforward. Another advantage of using a common imputed data file is that different

analyses can be compared with each other and some internal consistency can be preserved.

The most crucial part of any imputation procedure for longitudinal surveys, however, is to

facilitate related statistical analyses based on the imputed data sets and to obtain valid and

more efficient statistical inferences.

Hot-deck imputation is a procedure in which missing items are replaced by values from

respondents. Ford (1983) and Sande (1983) contain detailed description of hot-deck

imputation procedures. For longitudinal surveys with missing responses, we propose to

use a cycle-specific marginal hot-deck imputation procedure. The method, combined with

the pseudo-GEE approach presented in the next section, provides a satisfactory solution to

the problem of missing values in response.

Our major assumption for the cycle-specific marginal imputation procedure is that all

covariates X1; · · ·;Xp are either categorical or ordinal. We will discuss scenarios when one

or more covariates are continuous in Section 6. Let ck be the number of categories or

possible values taken by Xk; let G ¼ c1 £ · · · £ cp. For a specific cycle j, the proposed hot-

deck imputation procedure is as follows:

i) Divide the overall sample s into G nonoverlapping subsamples such that s ¼ <G
g¼1sjg

according to the cross-classified imputation cells by the p covariates. Let njg be the

size of sjg. Note that n ¼
PG

g¼1njg.

ii) Let sR
jg be the set of subjects from imputation cell g with Rij ¼ 1 (i.e., Yij is observed)

and sM
jg be the set of subjects from imputation cell g with Rij ¼ 0 (i.e., Yij is missing);

let rjg and mjg be the sizes of sR
jg and sM

jg , respectively. Note that sjg ¼ sR
jg < sM

jg and

njg ¼ rjg þ mjg.

iii) If i [ sM
jg (i.e., Yij is missing), we impute Yij by Yw

ij ¼ Ykj where unit k is randomly

selected from sR
jg with probability proportional to tk. For unweighted random

hot-deck imputation, tk ¼ 1; for weighted random hot-deck imputation,

tk ¼ wk ¼ 1=Pðk [ sÞ.

The subjects in sR
jg are called the donors and the subjects in sM

jg are called the recipients.

Under the proposed procedure, the donor-recipient pair is attached to the same cycle.

There are three issues related to the above cycle-specific marginal imputation procedure

which require some further discussion.

The first issue is the choice of covariates X1; · · ·;Xp for forming imputation classes. This

depends on the variables included in the data set and typically requires some preliminary

analysis. All covariates which are significant to the study variable should be included.
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The second issue is the presence of time-varying covariates. In this case the imputation

cells formed under the proposed procedure may vary from cycle to cycle. This is not a

problem in practice but creates some complications for presentations on asymptotic

development in the next section. It is always possible, however, to refine and form

a single set of imputation cells across all cycles. For instance, suppose there are two

cycles, each cycle has two imputation cells, with the first cycle imputation cells formed

based on X1 ¼ 1 or X1 ¼ 0 and the second cycle imputation cells formed based on

X2 ¼ 1 or X2 ¼ 0. Then a common set of four imputation cells can be used for both

cycles, corresponding to ðX1 ¼ 0;X2 ¼ 0Þ, ðX1 ¼ 1;X2 ¼ 0Þ, ðX1 ¼ 0;X2 ¼ 1Þ and

ðX1 ¼ 1;X2 ¼ 1Þ.

The third issue is that some of the respondent sets sR
jg may be empty when the sample

size n is not very large and the number of imputation cells G is not small. This is a common

scenario under hot-deck imputation, which is typically handled by collapsing some

neighboring cells. More specifically, we can drop some covariates which might not be

important or combine adjacent categories of covariates to reduce the total number of cross-

classified cells. For asymptotic theory, this is not an issue as the number of cells, G, is

assumed fixed as the sample size n gets large.

3. A Pseudo-GEE Method Under Hot-deck Imputation

We assume that the conceptual longitudinal observations {ðYij;Xij1; · · ·;XijpÞ; j ¼

1; · · ·; T}; i ¼ 1; · · ·;N at the finite population level form a random sample from the

superpopulation model j as characterized by the following three components:

1. The conditional mean response mij ¼ EðYijjXijÞ is related to the linear predictor

hij ¼ X 0
ijb through a monotone link function gð�Þ: mij ¼ g21ðhijÞ ¼ g21ðX 0

ijbÞ,

where Xij ¼ ð1;Xij1; · · ·;XijpÞ
0 and b ¼ ðb0;b1; · · ·;bpÞ

0.

2. The conditional variance of Yij given Xij is given by VarðYijjXijÞ ¼ fy ðmijÞ, where

y ð�Þ is the variance function with known form and f . 0 is called a dispersion

parameter.

3. The conditional covariance matrix of Yi ¼ ðYi1; · · ·; YiT Þ
0 is given by

CovðYijXiÞ ¼ A
1=2
i RiðaÞA

1=2
i , where Xi ¼ ðX 0

i1· · ·;X 0
iT Þ

0, Ai ¼ diag{fy ðmi1Þ; · · ·;

fy ðmiT Þ} and RiðaÞ is the correlation matrix with a specified structure involving

parameter a.

Note that the assumption that the finite population is a random sample from the

superpopulation also implies that

4. The response vectors Yk and Yl given Xk and Xl are independent for k – l.

For the estimation procedures described below, we use Si ¼ CovðYijXiÞ to denote the true

variance-covariance matrix but use Vi to represent the so-called working variance-

covariance matrix. In other words, Vi ¼ A
1=2
i RiðaÞA

1=2
i when RiðaÞ is a chosen working

correlation matrix which does not necessarily coincide with the true one. If the correlation

structure is unspecified but is assumed to be constant across all subjects, then RiðaÞ ¼

R ¼ ðajkÞ can be estimated using the fitted residuals eij; see Equations (3) and (4) in Carrillo

et al. (2010) on the estimation of aij and the dispersion parameter f with complete data. In

the presence of missing responses, we only use fitted residuals from observed responses.
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Following the generalized estimating equation (GEE) method of Liang and Zeger

(1986) and with the complete longitudinal survey sample without any missing values,

Carrillo et al. (2010) defined the pseudo-GEE estimator b̂n of the regression coefficients b

as the solution to UnðbÞ ¼
P

i[s wið›mi=›bÞ
0V21

i ð yi 2 miÞ ¼ 0, where yi is the observed

value of Yi and mi ¼ ðmi1; · · ·;miT Þ
0.

We now consider the pseudo-GEEmethod when missing values of the response variable

are imputed through the cycle-specific marginal hot-deck imputation method described in

Section 2, using either the unweighted or the weighted procedure. Let Y*
i ¼ ðY*

i1; · · ·; Y*
iT Þ

0,

where Y*
ij ¼ Yij if Yij is observed and Y*

ij ¼ Yw
ij if Yij is missing. Let y*i be the realized

values of Y*
i from the imputed sample dataset. The pseudo-GEE estimator b̂ of b based

on the imputed dataset is defined as the solution to

U*
nðbÞ ¼

i[s

X
wi

›m 0
i

›b
V21

i y*i 2 mi

� �
¼
XG

g¼1 i[sg

X
wi

›m 0
i

›b
V21

i y*i 2 mi

� �
¼ 0: ð1Þ

It can be seen from proofs of major results in the Appendix that all key technical

arguments in dealing with the imputed values come from within each imputation cell and

then sum up over all cells. For notational simplicity and without loss of generality, we will

proceed as if there is only one imputation cell and use sr and sm to denote the set of donors

and the set of nonrespondents, respectively.

We assume that the conditional distribution of Y given the covariates under the model j

is independent of the probability sampling design p and the response mechanism R. Under

such conditions the model j, the design p and the response mechanism R are called

unconfounded (Brick et al. 2004). We also assume that all covariates involved in the

model j are used in forming the imputation classes, and consequently the model j and

the imputation mechanism (I) are also unconfounded. An important observation under

the current setting is that Ej Yw
ij jXij

� �
¼ EjðYijjXijÞ ¼ mij.

To facilitate the development of variance estimation, for each i [ s, we re-arrange the

order of components in y*i such that y*i ¼ yO
i

� �
0; yI

i

� �
0

� �
0, where yO

i corresponds to the

observed Yij’s and yI
i denotes the imputed Yw

ij ’s. We also have mi ¼ mO
i

� �
0; mM

i

� �
0

� �
0

arranged in the same order, where mM
i denotes the mean values for the missing Yij’s. The

rows and columns in the working variance-covariance matrix Vi are rotated accordingly.

The consistency of the pseudo-GEE estimator b̂ is established in Theorem 3.1 below.

For a detailed description of the asymptotic framework and the joint randomization

approach, see Carrillo et al. (2010). We assume that r=n ! q [ ð0; 1� as n !1, where r is

the number of respondents in the sample. Similar to Theorem 3.1 in Carrillo et al. (2010),

the following results are presented in terms of a more general ci Y*
i ;b

� �
than the specific

form ð›m 0
i=›bÞV

21
i y*i 2 mi

� �
used in the definition of b̂. The conditioning on Xi is

dropped from the notation. The joint randomization involves the model (j), the sampling

design (p), the response mechanism (R) and the imputation mechanism (I). The response

mechanism R is also dropped from the notation since all arguments are conditional on

the given set of covariates and the responses are assumed to be missing at random (MAR).

The results stated in Theorem 3.1 and the variance estimators developed in the next section

are not valid for more general scenarios where the MAR assumption is violated.
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Theorem 3.1. Let ciðYi;bÞ be an estimating function from RT £Q to Rp with Q , Rp,

and

snðbÞ ¼
i[s

X
wiciðYi;bÞ; s*nðbÞ ¼

i[s

X
wici Y*

i ;b
� �

be estimating functions for b based on complete and imputed data, respectively.

Denote hiðYiÞ ¼ sup b[QkciðYi;bÞk, where k�k is the usual L1 norm, and

D*
NðbÞ ¼ EjpI N 21s*nðbÞ

� �
. Suppose that

1. sup iEjjhiðYiÞj
2
, 1 and sup iEjkYik , 1;

2. For any c . 0 and sequence {yi} satisfying kyik # c, the sequence of functions

{giðbÞ ¼ cið yi;bÞ} is equicontinuous on any open subset of Q;

3. The design weights wi satisfy N 21
P

i[s wiZi 2 N 21
PN

i¼1Zi ¼ Opðn
21=2Þ for any

variable Z such that N 21
PN

i¼1Z
2
i ¼ Oð1Þ;

4. The function DNðbÞ ¼ Ejp½N
21snðbÞ� satisfies DNðb0Þ ¼ 0 for some b0, and for any

1 . 0, there exists a d1 . 0 such that inf jb2b0j.1jDNðbÞj . d1;

5. There is a pseudo-GEE estimator b̂ ¼ Opð1Þ that solves s*nðbÞ ¼ 0;

then b̂2 b0
p
�!0, where “p” denotes in probability with respect to the model j, the

sampling design p, the response mechanism R and the imputation mechanism I.

Major steps of the proof of the theorem are outlined in the Appendix. Condition 1

is a moment condition on the superpopulation. Condition 2 requires max ikgiðb1Þ2

giðb2Þk! 0 when b1 2 b2 ! 0, as long as yi values are bounded by c. A counter example

to Condition 2 can be cð y;bÞ ¼ b=y 2 1. Condition 3 is on sampling plan and can be

satisfied by most commonly used designs. Condition 4 is an identifiability condition under

which b 0 is uniquely defined.

4. Variance Estimation Under Hot-deck Imputation

In this section we develop linearization variance estimators for the pseudo-GEE estimator

b̂ under the proposed imputation procedure for missing responses. All arguments are

conditional on the response mechanism R, i.e., the given pattern of the missing values,

which amounts to considering sources of errors due to the model j, the sampling design p

and the random imputation procedure I.

We present two versions of linearization variance estimators using different routes of

approximations. From a theoretical point of view we do not have a clear statement on

which variance estimator should be preferred. Results from our simulation studies reported

in the next section seem to indicate that the second version has more stable performance

under all scenarios we considered in the study.

The first variance estimator we develop follows the conventional route of

decomposition of total error into three pieces of errors corresponding to imputation,

sampling and model. This is similar to the approach discussed in Särndal (1992). Note that

b̂ is the estimator of b based on the imputed dataset, b̂n denotes the estimator based on the

complete dataset without missing values, bN represents the census estimator. We have

b̂2 b ¼ ðb̂2 b̂nÞ þ ðb̂n 2 bNÞ þ ðbN 2 bÞ. We consider the practical situation for

most complex longitudinal surveys where the sampling fraction is small or negligible,
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i.e., n=N ¼ oð1Þ. We also assume that the usual
ffiffiffi
n

p
-order applies to b̂, b̂n and bN so

that b̂2 b̂n ¼ Opð1=
ffiffi
r

p
Þ, b̂n 2 bN ¼ Opð1=

ffiffiffi
n

p
Þ and bN 2 b ¼ Opð1=

ffiffiffiffi
N

p
Þ ¼ opð1=

ffiffiffi
n

p
Þ.

Under such scenarios we can ignore all terms involving bN 2 b. This leads to the

following decomposition of the total variance:

VTot ¼ EjpIðb̂2 bÞðb̂2 bÞ0 ¼ V Imp þ VSam þ CImp2Sam þ C 0
Imp2Sam þ oðr21Þ; ð2Þ

where V Imp ¼ EjpVI , VI ¼ EIðb̂2 b̂nÞðb̂2 b̂nÞ
0, VSam ¼ EjVp, Vp ¼ Epðb̂n 2 bNÞ

ðb̂n 2 bNÞ
0, CImp2Sam ¼ EpICj and Cj ¼ Ejðb̂2 b̂nÞðb̂n 2 bNÞ

0. The so-defined total

variance VTot is indeed the mean squared error (MSE) of the estimator b̂. When the bias of

the estimator is negligible, which is the case for the pseudo-GEE estimator in many

practical situations, the distinction between variance and MSE vanishes. Let

HðbÞ ¼
XN

i¼1

›m 0
i

›b
V21

i

›mi

›b
and ĤðbÞ ¼

i[s

X
wi

›m 0
i

›b
V21

i

›mi

›b
;

pi ¼ Pði [ sÞ, Dii ¼ pið12 piÞ, Dij ¼ pij 2 pipj for i – j, where pij ¼ Pði; j [ sÞ. Let

A^2 denote AA0. Note that ti ¼ 1 for unweighted hot-deck imputation and ti ¼ wi for

weighted imputation. Let s2tr ¼
P

i[sr
~tiy

2
ij 2 ð�ytrÞ

2, �ytr ¼
P

i[sr
~tiyij, ~ti ¼ ti=

P
k[sr

tk,

where sr is the set of donors. Also note that s2tr depends on the specific cycle j under the

proposed cycle-specific imputation. The following results are the basis for our first

linearization variance estimator.

Theorem 4.1. Assume that the model j, the sampling design p, the response mechanism

R and the imputation mechanism I are unconfounded, then the three variance-covariance

components can be approximated to order n 21 as follows:

(i) The imputation variance component

VI <
n

Ĥðb̂nÞ
o21

(
i[s

X
w2

i

›m 0
i

›b̂n

V21
i DiV

21
i

›mi

›b̂n

þ

�
i[s

X
wi~zi

	^2
)n

Ĥðb̂nÞ
o21

; ð3Þ

where

Di ¼

0 0

0 diag s2tr

� �0@ 1A
is a T £ T matrix, diag s2tr

� �
is the diagonal matrix of dimension given by the number

of cycles subject i is missing, with diagonal entries given by s2tr, ~zi ¼

ð›m 0
i=›b̂nÞV

21
i yO

i 2 mO
i

� �
0; �ytr 2 mM

i

� �
0

� �
0 and ›mi=›b̂n denotes ›mi=›b at b ¼ b̂n.

(ii) The sampling variance component

Vp < {HðbNÞ}
21{VHTz}{HðbNÞ}

21; ð4Þ

where the term in the middle, VHTz ¼
PN

i¼1

PN
j¼1DijðpipjÞ

21ziz
0
j, is the sampling variance

of the Horvitz-Thompson estimator of the total of zi ¼ ð›m 0
i=›bNÞV

21
i ð yi 2 miÞ.
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(iii) The imputation-sampling covariance component

Cj < {ĤðbÞ}21

i[s

X
j–i

X
wiwj

›m 0
i

›b
V21

i GiV
21
j

›mj

›b

8<:
2

i[s

X
w2

i

›m 0
i

›b
V21

i KiV
21
i

›mi

›b

9=;{ĤðbÞ}21;

ð5Þ

whereGi ¼

0 0

Ej eIi eO
j

� �
0

� �
0

0@ 1A andKi ¼

0 0

Ej eM
i eO

i

� �
0

� �
Ej eM

i eM
i

� �
0

� �0@ 1A
both are T £ T matrix, eO

i ¼ yO
i 2 mO

i and eI
i ¼ yI

i 2 mM
i are the “observed” and

“imputed” parts of the error e*i ¼ y*i 2 mi, respectively, and eM
i ¼ yM

i 2 mM
i is the

“missing” part of the error ei ¼ yi 2 mi.

Results from Theorem 4.1 enable us to construct a linearization variance estimator

through the estimation of the three variance-covariance components (3), (4) and (5). To

estimate those three components, the correlation parameters ajk are required for Vi ¼

A
1=2
i RiðaÞA

1=2
i and can be estimated using the fitted residuals (Carrillo et al. 2010) from

observed responses. The three estimated variance-covariance components are given as

follows:

(i) For VI, we simply replace b̂n by b̂ and mi by m̂i throughout VI to obtain V̂I .

(ii) For Vp, we replace HðbÞ by Ĥðb̂Þ and estimate VHTz by

V̂HTz ¼
i[s

X
j[s

X
DijðpipjpijÞ

21ẑ*i
�
ẑ*j
�
0;

where ẑ*i ¼ ð›m 0
i=›b̂ÞV

21
i y*i 2 m̂i

� �
. It should be noted that z*i ¼ ð›m 0

i=›bNÞ

V21
i y*i 2 mi

� �
is used for theoretical expressions of the variance VHTz but it cannot be

used for the proposed variance estimator because it involves unknown bN and mi.

This estimator involves the second order inclusion probabilities pij. When the finite

population sampling fraction is small, it is common practice for survey practitioners to use

V̂
*

HTz ¼ ðn 2 1Þ21 n
k[s

X
w2

k ẑ
*
k ẑ*k
� �

0

i[s

X
wiẑ

*
i

0@ 1A^2
264

375;
which is the variance estimator under the assumption of sampling with-replacement.

Unfortunately, due to the use of the imputed dataset instead of a fully observed sample,

this quantity has a non-negligible bias as estimator of VHTz. The theoretical expression for
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the bias, derived in the appendix under the assumed model j, is given by

Ej V̂
*

HTz 2 VHTz

� �
<

k[s

X
w2

k

›m 0
k

›b
V21

k

0 0

0 Ej eIk eIk
� �

0
� �

0B@
1CA2

0 Ej eO
k eMk
� �

0
� �

Ej eMk eO
k

� �
0

� �
Ej eMk eMk

� �
0

� �
0B@

1CA
264

375V21
k

›mk

›b

2
1

n 2 1 k[s

X
i–k

X
wkwi

›m 0
k

›b
V21

k

0 Ej eO
k eIk
� �

0
� �

Ej eIk eO
i

� �
0

� �
Ej eIk eIi

� �
0

� �
0B@

1CAV21
i

›mi

›b
;

ð6Þ

where eIk ¼ yIk 2 mM
k , eO

k ¼ yO
k 2 mO

k , e
M
k ¼ yMk 2 mM

k . We need to estimate this bias to

obtain a bias-corrected estimator of Vp.

It is apparent that we only need to obtain estimates for Ej eI
k eI

k

� �
0

� �
, Ej eO

k eI
k

� �
0

� �
,

Ej eO
k eM

k

� �
0

� �
and Ej eM

k eM
k

� �
0

� �
, and replace b by b̂. The first two terms can be estimated

by rI
k rI

k

� �
0 and rO

k rI
k

� �
0, respectively, where rO

k ¼ yO
k 2 m̂O

k and rI
k ¼ yI

k 2 m̂M
k . The last two

terms, which involve eMk ¼ yMk 2 mM
k with the missing yMk , cannot be estimated directly.

Our proposed strategy is to first estimate V ¼ Ejðeiei
0Þ ¼ Ejð yi 2 miÞð yi 2 miÞ

0 by V̂

using complete cases, and then for each k we partition V̂ into V̂
ðOOÞ

k , V̂
ðOMÞ

k and V̂
ðMMÞ

k based

on the dimensions of yO
k and yM

k . We then estimate Ej eO
k eM

k

� �
0

� �
and Ej eM

k eM
k

� �
0

� �
by V̂

ðOMÞ

k

and V̂
ðMMÞ

k , respectively. This strategy is similar to estimating the correlation parameters

ajk using fitted residuals from observed data. The proposed estimators V̂
ðOMÞ

k and V̂
ðMMÞ

k

should perform reasonably well under the missing-at-random assumption.

(iii) For the estimation of the covariance term Cj, the key is to obtain estimates for

Ej eI
k eO

k

� �
0

� �
, Ej eO

k eM
k

� �
0

� �
and Ej eM

k eM
k

� �
0

� �
, which can be handled in the same way

described in (ii).

Our first proposed linearization variance estimator is therefore given by

V̂Tot ¼ V̂I þ V̂
*

p þ Ĉj þ Ĉ 0
j 2

dBiasBias V̂
*

p

� �
; ð7Þ

where V̂
*

p is the estimator of Vp using V̂
*

HTz, and ẑ*i as if it was observed; and
dBiasBias V̂

*

p

� �
is

the estimated bias correction term based on (6).

The second variance estimator we develop is based on the assumption

that the bias of the pseudo-GEE estimator b̂ is negligible. Noting that

VTot ¼ EjpIðb̂2 bÞðb̂2 bÞ0 ¼ Ej{EpIðb̂2 bÞðb̂2 bÞ0} < Ej{VarpIðb̂2 bÞ}, we only

need to develop an estimator for VarpIðb̂2 bÞ. Since U*
nðb̂Þ ¼ 0 and b̂

p
�!b, by using a

Taylor series expansion we have

b̂2 b ¼ 2 EpI

›U*
nðbÞ

›b

� 	
 �21

U*
nðbÞ þ opð1=

ffiffi
r

p
Þ ¼ ½HðbÞ�21U*

nðbÞ þ opð1=
ffiffi
r

p
Þ:

It follows that VarpIðb̂2 bÞ ¼ ½HðbÞ�21VarpI U*
nðbÞ

� �
½HðbÞ�21 þ oð1=rÞ and

VarpI U*
nðbÞ

� �
¼ Varp EI U*

nðbÞ
� �� 


þ Ep VarI U*
nðbÞ

� �� 

. To estimate Varp EI U*

nðbÞ
� �� 


,
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we note that

EI U*
nðbÞ

� �
¼ EI

i[s

X
wi

›m 0
i

›b
V21

i

yO
i 2 mO

i

yIi 2 mM
i

0@ 1A24 35 ¼
i[s

X
wi

›m 0
i

›b
V21

i

yO
i 2 mO

i

�ytr 2 mM
i

0@ 1A
which can be written as EI½U*

nðbÞ� ¼
P

i[s wizti where zti ¼ ð›m 0
i=›bÞ

V21
i yO

i 2 mO
i

� �
0; �ytr 2 mM

i

� �
0

� �
0. Note that �ytr ¼

P
i[sr

~tiyij and ~ti ¼ ti=
P

k[sr
tk.

We could estimate Varp
P

i[s wizti

� �
by, say V̂tz, following the standard variance

estimator of a Horvitz-Thompson estimator if zti were observed values and used

directly in V̂tz. The components in zti corresponding to the missing Yij’s, however, are a

constant, i.e., the mean �ytr of the donor set for that particular imputation cell, and there

does not seem to be an exact expression for Varp
P

i[s wizti

� �
that we could use to

derive an approximately unbiased estimator.

Under simple random sampling with a scalar zti, the problem reduces to variance

estimation for �z* ¼ n21
�P

i[sr
zi þ

P
j[sm

z*j
�
under the mean imputation method, i.e.,

z*j ¼ �zr ¼ r21
P

i[sr
zi, where r is the number of respondents in the donor set, sr. For this

simple case it can be shown that adjusting the naı̈ve variance estimator Vtz by the factor

nðn 2 1Þ=ðrðr 2 1ÞÞ < ðn=rÞ2 is sufficient, i.e., ðn=rÞ2V̂tz is an approximately unbiased

estimator for Varp
P

i[s wizti

� �
. The performance of this adjusted variance estimator

under general situations with complex survey designs is unknown and requires further

exploration.

To estimate VarI U*
nðbÞ

� �
, which is given by

VarI
i[s

X
wi

›m 0
i

›b
V21

i

yO
i 2 mO

i

yIi 2 mM
i

0@ 1A24 35 ¼
i[s

X
w2

i

›m 0
i

›b
V21

i

0 0

0 diag s2tr

� �0@ 1AV21
i

›mi

›b
;

ð8Þ

we only need to replace the model parameter b and perhaps also the association

parameters by sample based estimates. We denote the resulting estimator of VarI U*
nðbÞ

� �
as V̂IU . Our second proposed alternative variance estimator is given by

V̂A ¼ ½Ĥðb̂Þ�21{ðn=rÞ2V̂tz þ V̂IU}½Ĥðb̂Þ�21: ð9Þ

5. Simulation Studies

In this section we present results from an extensive simulation study. We used the same

superpopulation models and generated the same finite populations as those used in Carrillo

et al. (2010), based on a synthetic data file from the first four cycles of NLSCY which was

briefly described in Section 1. For continuous response, the finite populations were

generated from

Yij ¼ b0 þ b1xij1 þ b2x2ij1 þ b3xij2 þ b4xi3 þ 1ij; ð10Þ

where Yij is the PAS (physical aggression score), xij1 is the AGE, and xij2 is the DeprePMK

(depression score of the person most knowledgeable about the child) of subject i

at jth cycle; xi3 is the GENDER of subject i, 1i ¼ ð1i1; 1i2; 1i3; 1i4Þ , ð0;s2RÞ,
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i ¼ 1; · · ·;N ¼ 18; 320, j ¼ 1; 2; 3; 4, and R is the 4 £ 4 correlation matrix. The four

covariates in Models (10) and (11) were chosen because they were found to be (the most)

significant among the ones analyzed in the previous studies mentioned in Section 1.

For binary response, the finite populations were generated on the basis of the following

logistic regression model

logitð pijÞ ¼ b0 þ b1xij1 þ b2x
2
ij1 þ b3xij2 þ b4xi3; ð11Þ

where pij ¼ PðYij ¼ 1jxijÞ and Yij ¼ 1 if PAS is high and Yij ¼ 0 if PAS is low.

Associations among multi-variate binary response variables were measured by odds ratios.

In order to capture the model (j) variability, we regenerated the population response

variables Yij before each simulation sample was selected. For more detailed description of

how the model parameters were set and how finite populations were generated from these

two models, see Carrillo et al. (2010) and Carrillo-Garcı́a (2008).

Imputation cells were formed at the finite population level using the three covariates

included in the model. To reduce the total number of cells, we collapsed the ordinal

variable DeprePMK into three categories. This, together with four categories of age at

each cycle and two categories of gender, resulted in a total of 24 imputation cells. Missing

responses were randomly “created” on the basis of an overall missing probability pm

ranging from pm ¼ 0:05 to pm ¼ 0:25. Within each imputation cell and for each cycle and

for a given overall pm, the missing probability was set to be qm which is randomly selected

from {pm 2 0:02; pm 2 0:01; pm; pm þ 0:01; pm þ 0:02}. In other words, we allowed the

missing probabilities to vary a bit from cell to cell and from cycle to cycle, which is most

likely the case in practice.

We considered three sampling schemes: (i) simple random sampling (SRS) without

replacement; (ii) stratified simple random sampling (STSI); and (iii) cluster sampling with

clusters selected by simple random sampling (SIC). Details of the formulation of

population strata under STSI and the creation of clusters under SIC are given in Carrillo

et al. (2010). The overall sample size used for the simulation under a particular sampling

scheme ranges from n ¼ 120 to n ¼ 1,200, and sampling fractions n/N are in between

0.65% and 6.5%. For cluster sampling, the sample sizes are random; the above numbers

are expected sample sizes. We obtain, on average, samples ranging from about 5 to 50

elements in each imputation cell. Missing responses were filled using the cycle-specific

marginal hot-deck imputation method described in Section 2. Our simulations were

programmed in the R software package, as documented in R Development Core Team

(2008), and run on a UNIX machine with 24 CPUs. All simulation results were based on

1,000 repeated simulation runs.

We first evaluated the finite sample behavior of the pseudo-GEE estimator b̂ under

the unweighted hot-deck imputation procedure as measured by the simulated relative

bias RBðb̂Þ ¼ 1; 00021
P1;000

k¼1 ðb̂ðkÞ 2 bÞ=b, where b̂ðkÞ is the estimate of b from the kth

simulated sample. The simulated results of RB under stratified sampling are presented in

Table 2 for the continuous response and in Table 3 for the binary response. Results

under other sampling designs can be found in Carrillo-Garcı́a (2008). Note that �nc

denotes the average cell sample size and �rc is the average number of respondents per

imputation cell.
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For all three sampling schemes considered and for either continuous or binary response,

the biggest relative bias (in absolute value) is about 5%, which occurs with the sample size

n ¼ 240. In this case there are only around 10 selected subjects per cell. For all other cases

the largest relative bias is about 3%, and for sample size n ¼ 720 (around 30 per cell) and

above, the largest relative bias is bounded by around 2% for all missing fractions

considered. While the relative bias tends to decrease as the sample size increases, it does

not seem to be influenced by the missing percentages. Estimators of the regression

coefficients perform better under stratified sampling for models with continuous responses

than for models with binary responses, perhaps due to the fact that stratification is

generally less effective for binary responses.

We now turn to the evaluation of performances of variance estimators. We first

approximate the true variance-covariance, or more exactly the MSE, matrix of b̂ under a

particular sampling design and a given sample size by V ¼ 1; 00021
P1;000

k¼1 ðb̂ðkÞ 2 bÞ �

ðb̂ðkÞ 2 bÞ0 using 1,000 independently simulated samples. The results, not shown here to

save space, indicate that many off-diagonal entries of V, corresponding to covariances, are

very close to zero. This leads to the following modified definition of relative bias of a

variance estimator. Let V̂ be an estimator of V; let Vlm and V̂lm be the (lm)th entry of V and

V̂, respectively. The relative bias of V̂lm in estimating Vlm based on 1,000 simulated

Table 2. Simulated relative bias of b̂ (in %) for continuous response under STSI

n �nc pm �rc b̂0 b̂1 b̂2 b̂3 b̂4

240 10 0.25 7.5 20.35 20.57 20.56 1.36 1.08
0.20 8.0 0.27 0.40 0.55 0.26 1.15
0.15 8.5 0.40 0.54 0.63 0.57 1.53
0.10 9.0 0.35 0.40 0.45 0.41 2.26
0.05 9.5 0.29 0.28 0.29 0.19 2.32

480 20 0.25 15.0 20.32 20.78 20.97 0.22 2.51
0.20 16.0 0.16 0.21 0.34 20.80 1.68
0.15 17.0 20.01 20.02 0.13 20.55 1.66
0.10 18.0 0.02 20.06 20.01 20.96 1.69
0.05 19.0 0.05 0.03 0.11 20.77 1.31

720 30 0.25 22.5 0.29 0.30 0.29 0.66 2.51
0.20 24.0 0.02 20.12 20.17 0.21 0.10
0.15 25.5 0.02 20.13 20.18 0.51 0.58
0.10 27.0 0.00 20.18 20.23 0.15 0.83
0.05 28.5 20.10 20.33 20.41 0.39 1.34

960 40 0.25 30.0 0.01 0.03 0.04 20.29 20.48
0.20 32.0 0.03 0.04 0.02 0.32 0.80
0.15 34.0 0.03 0.07 0.05 0.42 0.23
0.10 36.0 0.02 20.01 20.07 0.18 0.68
0.05 38.0 20.01 20.07 20.14 20.05 0.50

1,200 50 0.25 37.5 20.06 20.14 20.16 0.09 20.40
0.20 40.0 0.14 0.33 0.47 0.57 0.64
0.15 42.5 0.21 0.40 0.54 0.65 0.80
0.10 45.0 0.07 0.18 0.28 0.52 0.60
0.05 47.5 0.04 0.12 0.21 0.63 0.71
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samples is defined as

RBðV̂lmÞ ¼
1

1; 000

X1;000
k¼1

V̂
ðkÞ

lm 2 Vlm

� �
=ðVllVmmÞ

1=2;

where V̂
ðkÞ

lm is obtained from the kth simulated sample.

For the linearization variance estimator V̂Tot given by (7), we included in the simulation

several different versions of the estimator to test the importance of each of the variance

components and the bias correction term. In one version, we dropped the covariance

component Ĉj þ Ĉ 0
j; in another version we did not include the bias correction termdBiasBias

�
V̂
*

p

�
. The version which emerged as a good alternative to V̂Tot is

~VTot ¼ V̂I þ V̂
*

p þ Ĉj þ Ĉ 0
j 2

gBiasBias
�
V̂
*

p

�
, where gBiasBias

�
V̂
*

p

�
is a partial bias correction

term using only the single summation term in (6) and hence is easier to compute.

Simulation results showed that V̂Tot and ~VTot have very similar performances in almost all

cases considered in the simulation and perform better than other versions of variance

estimators.

Table 4 presents the simulated relative bias of ~VTot under stratified sampling design

for both continuous and binary responses. The three sample sizes, 240, 720 and 1,200,

and the three missing probabilities, 0.05, 0.15 and 0.25, represent three scenarios of

being small, medium and large considered in the simulation. The relative biases are all

Table 3. Simulated relative bias of b̂ (in %) for binary response under STSI

n �nc pm �rc b̂0 b̂1 b̂2 b̂3 b̂4

240 10 0.25 7.5 2.01 1.51 1.53 0.12 3.57
0.20 8.0 1.71 1.43 1.59 0.48 2.96
0.15 8.5 1.41 1.21 1.34 0.71 2.85
0.10 9.0 1.65 1.28 1.37 0.17 3.48
0.05 9.5 1.54 1.20 1.26 0.29 3.61

480 20 0.25 15.0 0.43 0.19 0.10 21.12 20.23
0.20 16.0 20.12 20.40 20.72 0.54 2.65
0.15 17.0 20.37 20.65 21.04 0.58 2.32
0.10 18.0 20.16 20.45 20.77 0.45 2.35
0.05 19.0 20.19 20.40 20.67 0.49 1.43

720 30 0.25 22.5 20.23 20.04 20.06 20.73 22.20
0.20 24.0 20.01 0.03 20.15 20.31 21.48
0.15 25.5 0.09 0.08 20.10 20.59 21.61
0.10 27.0 0.21 0.14 20.03 20.89 20.83
0.05 28.5 0.39 0.31 0.17 20.94 21.23

960 40 0.25 30.0 0.34 0.48 0.55 0.43 21.40
0.20 32.0 20.29 20.21 20.33 0.79 21.20
0.15 34.0 20.43 20.28 20.38 0.72 21.34
0.10 36.0 20.57 20.40 20.54 0.88 21.47
0.05 38.0 20.32 20.19 20.25 0.62 20.99

1,200 50 0.25 37.5 0.28 0.25 0.31 0.38 2.11
0.20 40.0 0.05 0.11 0.12 0.02 1.53
0.15 42.5 20.03 20.02 20.01 20.38 1.32
0.10 45.0 20.07 20.06 20.07 20.15 1.46
0.05 47.5 20.13 20.10 20.11 20.21 1.27
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Table 4. Simulated relative bias (in %) of ~VTot under stratified sampling

Continuous Response Binary Response

n pm b0 b1 b2 b3 b4 b0 b1 b2 b3 b4

240 0.25 212 216

11 213 14 214

211 13 213 213 13 213

9 25 5 219 21 5 24 218

2 2 22 21 211 11 29 9 22 213

0.15 211 27

10 211 6 26

210 12 212 25 5 24

10 27 7 219 1 1 21 29

0 1 22 2 23 21 2 22 24 23

0.05 24 0

3 24 0 21

22 5 25 0 1 21

10 28 8 217 0 4 24 26

22 3 23 4 21 24 5 25 27 22

720 0.25 28 211

7 27 11 211

26 6 26 211 11 210

21 4 24 211 4 24 4 26

1 1 21 26 27 21 4 24 22 213

0.15 21 210

1 23 8 27

23 5 26 26 6 25

1 21 1 0 0 0 1 22

0 3 24 0 24 5 25 4 2 25

0.05 5 27

24 2 5 24

2 0 21 24 3 22

24 3 23 4 0 0 0 1

0 3 23 2 23 5 25 5 21 23

1,200 0.25 27 21

4 24 0 0

24 4 24 1 0 21

5 22 2 27 22 3 24 22

7 24 3 23 28 2 21 1 21 21

0.15 27 3

4 24 25 5

23 3 23 5 24 2

4 21 1 211 23 4 24 0

0 21 1 0 21 5 24 2 0 23

0.05 23 7

0 1 28 8

1 21 0 8 28 6

5 21 1 28 24 4 24 0

3 23 3 24 1 3 23 1 3 21
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within 10% when the missing probability is 5% or 15%. When the missing probability

is 25%, the relative biases can be as large as 18% for n ¼ 240 and binary response,

corresponding to Varðb̂3Þ. This is the case where the actual value of the true variance

is very small. Relative bias is not a reliable performance measure under such

scenarios.

For the second variance estimator V̂A ¼ ½Ĥðb̂Þ�21{ðn=rÞ2V̂tz þ V̂IU}½Ĥðb̂Þ�21, we also

included different versions in the simulation study, especially the one without the

inflation factor ðn=rÞ2. Simulation results showed that none of the other versions perform

nearly as well as the full version V̂A. Table 5 presents the simulated relative bias of V̂A

under stratified sampling design for both continuous and binary responses. The relative

biases are all within 10% for all three missing probabilities and sample sizes considered,

except for one entry involving b3. For a given sample size, the performance of V̂A does

not seem to be influenced by the rates of missing values. In addition, this alternative

variance estimator performs much better than the estimator V̂Tot or ~VTot based on

Theorem 4.1.

6. Concluding Remarks

In this article we have proposed a cycle-specific marginal random hot-deck imputation

procedure for handling missing responses in longitudinal surveys. We have shown that the

pseudo-GEE estimator based on the imputed data set is consistent under certain regularity

conditions and the joint randomization framework involving the model, the sampling

design, the missing mechanism and the imputation procedure. Two types of linearization

variance estimators were developed for the pseudo-GEE estimator of the regression

coefficients. Results from an extensive simulation study showed that the proposed

imputation procedure works well and the proposed estimators have good finite sample

performances.

There are several issues related to the proposed approach. First, the current

theoretical development assumes that all covariates used in the GEE model are either

categorical or ordinal, and are part of the set of covariates for defining the imputation

cells. An obvious problem is that the total number of imputation cells can be very

large. This is a common problem in hot-deck imputation and is typically handled by

collapsing adjacent cells. The collapsing of cells can also be achieved by dropping

some covariates which are not important in terms of modelling the response variables

or using reduced number of categories from some covariates as we did in the

simulation study. The loss of efficiency, however, is generally unknown under such an

ad-hoc procedure. Second, the proposed approach does not extend immediately to the

more commonly encountered scenarios where the set of covariates contains both

continuous and discrete variables. A possible approach is to first form imputation cells

using categorical and ordinal covariates and then carry out the cycle-specific marginal

imputation using the nearest-neighbor procedure, with the distance measure defined by

the set of continuous covariates. Some preliminary simulation results showed that the

pseudo-GEE estimator performs well under this modified approach. Details of the

consistency of the pseudo-GEE estimator as well as issues related to variance

estimation are currently under investigation. Third, the proposed cycle-specific
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Table 5. Simulated relative bias (in %) of V̂A under stratified sampling

Continuous Response Binary Response

n pm b0 b1 b2 b3 b4 b0 b1 b2 b3 b4

240 0.25 6 23
25 5 2 21
4 24 4 22 1 0
4 24 4 1 23 4 23 24
1 2 22 0 24 9 29 8 21 23

0.15 24 22
4 24 1 0

24 5 26 0 0 1
8 27 7 210 0 1 21 22

21 1 22 2 0 21 2 22 25 21
0.05 2 3

22 1 23 2
2 0 21 3 22 3
9 28 7 212 21 4 24 21

23 3 23 5 2 25 5 25 27 2
720 0.25 1 22

22 3 2 22
2 23 4 22 2 21

23 4 24 0 2 23 3 2
21 2 22 26 22 22 4 23 22 27

0.15 3 27
22 1 4 23
0 1 22 23 2 21

21 0 1 5 0 21 1 1
21 3 23 1 22 4 24 4 2 23

0.05 4 26
23 2 4 23
2 0 21 23 2 22

24 3 23 5 0 0 0 2
0 3 24 2 23 5 25 5 21 22

1,200 0.25 2 6
24 5 27 7
5 25 5 7 27 7
2 21 1 2 22 2 22 5
6 24 3 23 24 0 0 0 0 3

0.15 23 5
1 0 27 7

21 0 0 7 26 5
3 21 1 27 24 3 24 4
0 21 1 0 1 4 23 2 0 21

0.05 22 7
21 2 28 9
1 21 0 8 28 6
5 21 1 27 23 4 24 1
3 23 3 24 1 3 23 2 3 21
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marginal imputation procedure ignores the correlation structure among the

longitudinal measurements. This may not be an issue when the rates of missing

data are small, say less than 25%. When the rates are large, more sophisticated

imputation procedures which preserve the correlation structure are clearly desirable.

Fourth, for the estimation of the association parameter a in the GEE model, it is

recommended that only complete cases be used instead of the imputed dataset, due to

the nature of the proposed imputation procedure.

There are several directions in which the current work can be extended. First, for

simulation studies, it would be of interest to compare the imputation approach

proposed here to a probability re-weighting method similar to Robins et al. (1995) but

with survey weights incorporated. Second, it is of both theoretical and practical

interest to extend the method to cases where both the response variables and the

covariates are subject to missingness. Third, it would be of great interest to survey

practitioners and longitudinal survey data users to develop replication weights for

variance estimation which provides valid results for GEE analysis under the proposed

imputation procedure.

Appendix: Proofs

Proof of Theorem 3.1. Proof of consistency of the pseudo-GEE estimator b̂ requires the

following lemma. A proof of the lemma can be found in Carrillo-Garcı́a (2008).

Lemma 3.1. Let Y*
i be the vector Yi with missing values imputed by the hot-deck method

(weighted or unweighted); suppose that Q is a compact subset of Rp and that conditions 1,

2, and 3 in Theorem 3.1 hold, then, as r; n;N !1,

b[Q

sup
1

N
s*nðbÞ2 D*

NðbÞ

���� �������� ���� p
�!0;

where s*nðbÞ ¼
P

i[s wici Y*
i ;b

� �
and D*

NðbÞ ¼ N 21EjpRI

P
i[s wici Y*

i ;b
� �� �

.

Without loss of generality we consider cases where ci Y*
i ;b

� �
is linear in Y*

i , which

implies that, under the proposed imputation procedure, EjI ci Y*
i ;b

� �� �
¼ EjI½ciðYi;bÞ�.

This further implies that, for any b [ Q,

D*
NðbÞ ¼ EpR

1

N i[s

X
wiEjI ci Y*

i ;b
� �� �24 35 ¼ EpR

1

N i[s

X
wiEjI ci Yi;b

� �� �24 35 ¼ DNðbÞ:

The rest of the proof follows the same lines of the proof of Theorem 3.1 in Carrillo et al.

(2010) for the case of complete responses. A

Proof of Theorem 4.1. We begin with VI, the variance component due to imputation.

Noting that b̂ solves U*
nðb̂Þ ¼ 0 and b̂ ¼ b̂n þ opð1Þ, we can apply Taylor series
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expansion to U*
nðb̂Þ around b̂n to obtain

U*
nðb̂Þ ¼U*

nðb̂nÞ þ
›U*

nðb̂nÞ

›b̂n

ðb̂2 b̂nÞ þ opðN=
ffiffi
r

p
Þ

¼U*
nðb̂nÞ þ EI

›U*
nðb̂nÞ

›b̂n

 !
ðb̂2 b̂nÞ

þ
›U*

nðb̂nÞ

›b̂n

2 EI

›U*
nðb̂nÞ

›b̂n

 !" #
ðb̂2 b̂nÞ þ opðN=

ffiffi
r

p
Þ

¼ U*
nðb̂nÞ þ EI

›U*
nðb̂nÞ

›b̂n

 !
ðb̂2 b̂nÞ þ opðN=

ffiffi
r

p
Þ:

Furthermore, we have

›U*
nðbÞ

›b
¼

›

›b i[s

X
wi

›m 0
i

›b
V21

i y*i 2 mi

� �24 35
¼

i[s

X
wi

›

›b

›m 0
i

›b
V21

i

� 	
y*i 2 mi

� �
2

i[s

X
wi

›mi
0

›b
V21

i

›mi

›b

¼ 2
i[s

X
wi

›m 0
i

›b
V21

i

›mi

›b
þ OpðN=

ffiffi
r

p
Þ:

This leads to EI ›U*
nðb̂nÞ=›b̂n

� �
¼ 2Ĥðb̂nÞ þ OpðN=

ffiffi
r

p
Þ. It follows that

b̂2 b̂n ¼ ½Ĥðb̂nÞ�
21U*

nðb̂nÞ þ opð1=
ffiffi
r

p
Þ, and

VI ¼ EIðb̂2 b̂nÞðb̂2 b̂nÞ
0

¼ ½Ĥðb̂nÞ�
21EI U*

nðb̂nÞ U*
nðb̂nÞ

� �
0

� �
Ĥðb̂nÞ
� �21

þop

1

r

� 	
: ð12Þ

Under the proposed random hot-deck imputation, either unweighted (tj ¼ 1) or

weighted (tj ¼ wj), and using the simplified notation sr for the set of donors and sm for the

set of recipients, we have, for j [ sm, EI y*j

� �
¼
P

i[sr
ti yi=

P
i[sr

ti ¼ �ytr and

VarI y*j

� �
¼

X
i[sr

tiy
2
iX

i[sr

ti

2

X
i[sr

tiyiX
i[sr

ti

0@ 1A2

¼ s2tr
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In addition, y*j and y*k are independent if j – k. It follows that

EI y*i 2 mi

� �
y*i 2 mi

� �
0 ¼ VarI y*i 2 mi

� �
þ EI y*i 2 mi

� �
EI y*i 2 mi

� �
0

¼ VarI y*i
� �

þ EIy*i 2 mi

� �
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� �
0
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i
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i
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264
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264
375

0
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0 0
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j
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 !
2 mj

" # 0

for i – j. This further leads to the following expressions for EI U*
nðb̂nÞðU*

nðb̂nÞÞ
0

� �
:
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This completes the derivation of VI. As for Vp, it is a direct consequence of the expansion

b̂n 2 bN ¼ ½HðbNÞ�
21UnðbNÞ þ opð1=

ffiffiffi
n

p
Þ. The expression for Cj is derived based on the

two expansions for b̂2 b̂n and b̂n 2 bN . Details are omitted. A

Derivation of the bias term given by (6). First, we have

z*kz
*
k
0 2 zkz

0
k ¼

›m 0
k

›bN

V21
k

eO
k

eIk

0B@
1CA

^2

2

eO
k

eMk

0B@
1CA

^2264
375V21

k

›mk

›bN

¼
›m 0

k

›bN

V21
k

0 eO
k e

I
k

0

eIke
O
k

0

eIke
I
k

0

0B@
1CA2

0 eO
k e

M
k

0

eMk e
O
k

0

eMk eMk
0

0B@
1CA

264
375V21

k

›mk

›bN

and

z*kz
*
i
0 2 zkz

0
i ¼

›m 0
k

›bN

V21
k

eO
k

eIk

0B@
1CA eO

i

0

; eIi
0

� �
2

eO
k

eMk

0B@
1CA eO

i

0

; eMi
0

� �264
375V21

i

›mi

›bN

¼
›m 0

k

›bN

V21
k

0 eO
k e

I
i

0

eIke
O
i

0

eIke
I
i

0

0B@
1CA2

0 eO
k e

M
i

0

eMk eO
i

0

eMk eMi
0

0B@
1CA

264
375V21

i

›mi

›bN

Carrillo, Chen, and Wu: Analyzing Longitudinal Surveys under Imputation 275



for i – k. This leads to
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for i– k. The model-based bias Ej V̂
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(multiplied by the factor n 2 1) is

therefore given by
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