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We propose a weighted empirical likelihood approach to inference with multiple samples,
including stratified sampling, the estimation of a common mean using several independent
and non-homogeneous samples and inference on a particular population using other related
samples. The weighting scheme and the basic result are motivated and established under
stratified sampling. We show that the proposed method can ideally be applied to the com-
monmean problem and problems with related samples. The proposed weighted approach not
only provides a unified framework for inference with multiple samples, including two-sample
problems, but also facilitates asymptotic derivations and computational methods. A boot-
strap procedure is also proposed in conjunction with the weighted approach to provide better
coverage probabilities for the weighted empirical likelihood ratio confidence intervals. Simu-
lation studies show that theweighted empirical likelihood confidence intervals perform better
than existing ones.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The empirical likelihood (EL) method was first introduced by Owen (1988) to construct confidence intervals for a population
mean when there is one single sample of independent and identically distributed (iid) observations. This non-parametric and
likelihood-based approach has since become one of the most popular statistical methods in the past 15 years. Owen's 2001
monograph provides an excellent account of the EL approach, including extensions to various non-iid scenarios such as regression
models, biased and incomplete samples, and dependent data.

EL methods for multiple sample problems have not yet been fully explored. Chen and Sitter (1999) used a pseudo-EL ap-
proach for stratified sampling with unequal selection probabilities. Zhong and Rao (2000) used the EL method for stratified
simple random sampling when the sampling fraction within each stratum is negligible. Tsao and Wu (2006) recently applied
the EL method to the common mean problem in the presence of heteroscedasticity, using several independent samples. A naive
EL approach which combines EL functions through the product of all EL components of involved samples could result in an EL
confidence interval with extremely poor coverage properties for small samples. In some cases, the confidence interval could even
be an empty set.

The use of the EL approach for multiple sample problems faces three major challenges, among others commonly encountered
in the EL inference. First, the involved asymptotic development requires special technical treatment due to the special type of
constraints imposed by the multiple samples; second, which is also closely related to the first one, the computational procedures
do not follow directly from those developed for single sample problems; and third, the under-coverage problem of the EL
confidence intervals with small samples is often more pronounced under multiple sample scenarios.
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One of the most crucial technical requirements for any EL-based approach is to show that the involved Lagrange multiplier
is of the order of Op(n−1/2), where n is the sample size, so that the Taylor series expansion can be applied to the empirical
log-likelihood function. The asymptotic distribution of the empirical log-likelihood ratio statistic is then determined by the
asymptotic distribution of the leading term in the expansion. With multiple samples, the issue of equal or unequal sample sizes
has to be dealt with along the often irregular type of constraints, which imposes difficulties for handling the involved Lagrange
multipliers and the related asymptotic development.

The under-coverage problem of the EL confidence intervals under small samples is closely related to the non-existence of an
EL solution for certain finite samples. For one single sample, the EL confidence interval for the populationmean is confined by the
convex hull of the sample data. The smaller the sample size the more restrictive the convex hull. With multiple samples, taking
the common mean problem (Tsao andWu, 2006) as an example, the EL confidence interval is bounded by the intersection of the
convex hulls formed by each of the samples. Even if the asymptotic �2 distribution of the EL ratio function can be established
for large samples, using such a distribution as an approximation when the sample sizes are small will unduly produce very
undesirable results.

In this article, we propose a weighted EL (WEL) approach to inference involving multiple samples. Our method provides a
unified framework for stratified sampling, the estimation of a common mean using several independent and non-homogeneous
samples and inference on a particular population using other related samples. These three types of problems are quite different
but they all involve multiple samples. Stratified sampling is one of the most frequently used procedures in sample surveys.
Some practical examples on the common mean problem can be found in Tsao and Wu (2006) and references therein, and
the use of related samples has been discussed, for instance, inHu and Zidek (2002) andWang (2006). Ourmethod is also applicable
to a variety of two-sample problems. Asymptotic derivations and computational procedures are effectively handled under the
proposed weighting scheme. The under-coverage problem associated with the usual unweighted EL confidence intervals based
on a �2 approximation can often be alleviated through a bootstrap calibration method (Owen, 2001). For the WEL approach, we
develop bootstrap procedures for all three types ofmultiple sample problems considered in the paper. Finite sample performances
of these methods are investigated through simulation studies. Bartlett correction to the EL intervals is potentially another
alternative method, however, it involves non-trivial asymptotic development and has to be done one-at-a-time for different
scenarios. The bootstrap method, on the other hand, can be applied in a unified manner and has major operational advantages
as well.

The rest of the article is organized as follows. In Section 2, wemotivate and present the proposedWEL function and establish a
basic asymptotic result under stratified sampling. In Sections 3 and 4, we show that the proposed approach can ideally be applied
to the other two types of multiple sample problems, namely, the estimation of a common mean using several independent and
non-homogeneous samples, and inference on one particular population mean in the presence of related samples. Computational
notes are included for each of the cases. In Section 5, results from a limited simulation study, which focuses on the comparison
of the proposed method to existing ones, are reported. Some additional remarks and a discussion on applications to two-sample
problems are provided in Section 6.

2. Inference for a population mean under stratified sampling

Let {Yij, j = 1, . . . ,ni}, i = 1, . . . , k, be k independent samples such that Yij, j = 1, . . . ,ni are iid observations with a common

distribution function Fi. Let E(Yij)=�i and Var(Yij)=�2
i . Our inference is focused on an overall populationmean �0=∑k

i=1wi�i for

a fixed set of weightswi satisfyingwi�0 and
∑k

i=1wi =1. This setting arises from a typical stratified sampling design, where the
overall population is stratified into k strata with �i being the stratummean andwi being the stratumweight. Samples are drawn
independently from each of the k strata. We will ignore the finite population structure often attached to stratified sampling and
assume the stratum samples themselves are iid.

A conventional formulation of the EL inference for stratified sampling is to use the k-sample approach to ANOVA as outlined
in Owen (2001, p. 88) with the following empirical log-likelihood function:

l(F1, . . . , Fk) =
k∑

i=1

ni∑
j=1

log(pij),

where pij=Fi(yij)−Fi(yij−), Fi(yij)=P(Yij�yij) and Fi(yij−)=P(Yij < yij). Unfortunately, for the inference on the overall population

mean �0 = ∑k
i=1wi�i, this formulation is typically asymptotically intractable as shown in subsequent discussions and explained

in particular by the detailed remarks following the proof of Theorem 1.
We propose to use a weighted empirical (log) likelihood (WEL) function given by

lw(F1, . . . , Fk) =
k∑

i=1

wi
ni

ni∑
j=1

log(pij). (1)

The formulation of the WEL function (1) can be motivated using the argument of Chen and Sitter (1999). Suppose we have a
stratified finite population, with Ni units in stratum i, i= 1, . . . , k. The stratum weight iswi =Ni/N, where N =N1 + · · · +Nk is the
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total population size. If one knows the entire finite population, the total empirical log-likelihood at the population level would be

lN =
k∑

i=1

Ni∑
j=1

log(pij).

Under stratified random sampling, a sample-based estimate for the total likelihood lN is given by

l̂N = N
k∑

i=1

wi
ni

ni∑
j=1

log(pij),

which differs from lw(F1, . . . , Fk) only by a multiplying constant, N. The WEL function represents the total likelihood at the

population level. In view of the parameter �0 =∑k
i=1wi�i, the weightwi reflects the contribution of the ith stratum to the overall

population mean and ni adjusts for the discrepancy among stratum sample sizes. Under proportional sample size allocations
(i.e. ni ∝ wi), the WEL function lw(F1, . . . , Fk) reduces to the unweighted one l(F1, . . . , Fk).

The most important advantage of using this WEL formulation, however, is that the usual large sample properties of the EL
approach can be rigorously established under the often irregular type of constraints induced by stratified or multiple samples.
Computational procedures are also readily available under suitable reformulation of the constraints.

The maximum weighted empirical likelihood (MWEL) estimator of �0, denoted as �̂w, is defined as the maximizer of lw(�) =∑k
i=1 (wi/ni)

∑ni
j=1 log{p̂ij(�)}, where the p̂ij(�) maximize the WEL function lw(F1, . . . , Fk) subject to pij >0 and

ni∑
j=1

pij = 1, i = 1, . . . , k, (2)

k∑
i=1

wi

ni∑
j=1

pijYij = � (3)

for some fixed �. It is apparent that without further restrictions the MWEL estimator of �0 is given by �̂w = ∑k
i=1wiȲi·, the

stratified sample mean, where Ȳi· = n−1
i

∑ni
j=1 Yij.

We now turn to the asymptotic distribution of theWEL ratio statistic for constructing confidence intervals for �0. Let � be fixed
and used in the constraint (3). Let rw(�)=∑k

i=1 (wi/ni)
∑ni

j=1 log{nip̂ij(�)} be theWEL ratio function. We assume that ni/n → fi �0,

where n = n1 + · · · + nk is the total sample size. With this assumption it is not necessary to distinguish between O(n−1/2) and

O(n−1/2
i ) and between o(n−1/2) and o(n−1/2

i ). The following theorem establishes the asymptotic distribution of rw(�) at � = �0.

Theorem 1. Suppose {Yij, j=1, . . . ,ni} is an iid sample from Fi with mean �i = E(Yij) and finite variance �2
i =Var(Yij), i=1, . . . , k, and

the k samples are also independent of each other. Then −2rw(�0)/c1 converges in distribution to a �2 random variable with one degree
of freedom, where the scaling constant c1 is given by (12).

Proof. To ease presentation and without loss of generality, we consider k = 3. Constraints (2) and (3) can be reformulated as

3∑
i=1

wi

ni∑
j=1

pij = 1, (4)

3∑
i=1

wi

ni∑
j=1

pijZij = g, (5)

where the vector-valued variables Zij and g are given by

Z1j =
⎡
⎣ 1

0
Y1j

⎤
⎦ , Z2j =

⎡
⎣ 0

1
Y2j

⎤
⎦ , Z3j =

⎡
⎣0
0
Y3j

⎤
⎦ and g=

⎡
⎣w1
w2
�

⎤
⎦ .

We can also rewrite (5) as

3∑
i=1

wi

ni∑
j=1

pijuij = 0, (6)
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with uij = Zij − g. Using the standard Lagrange multiplier method, we can show that the p̂ij(�) which maximize lw(F1, F2, F3)
subject to (4) and (6) for a fixed � are given by

p̂ij(�) = 1
ni(1 + k′uij)

, (7)

with the vector-valued Lagrange multiplier k being the solution to

g(k) =
3∑

i=1

wi
ni

ni∑
j=1

uij
1 + k′uij

= 0. (8)

The algorithm described in Wu (2004) can be used to solve (8). If we rewrite the numerator uij in (8) as uij{(1 + k′uij) − u′
ijk},

we can re-express (8) as⎧⎨
⎩

3∑
i=1

wi
ni

ni∑
j=1

uiju
′
ij

1 + k′uij

⎫⎬
⎭k=

3∑
i=1

wi
ni

ni∑
j=1

uij. (9)

Note that
∑ni

j=1 {1/[ni(1+k′uij)]}=1 for i=1, 2, 3, the order of k is related to the order of the right side of (9), which can be shown

to be

U =
3∑

i=1

wi
ni

ni∑
j=1

uij =
⎛
⎝0, 0,

3∑
i=1

wiȲi· − �

⎞
⎠

′
. (10)

It follows that U = Op(n−1/2) (component-wise) when � = �0.
Note that D = ∑3

i=1 (wi/ni)
∑ni

j=1 uiju
′
ij =Op(1), it follows from (9) that we must have k=Op(n−1/2). Under the finite variance

assumption, we also havemaxij |uij|=op(n1/2) and k
′uij=op(1) uniformly over all i and j (Owen, 2001, Lemma 11.2).We therefore

obtain the following asymptotic expression for k

k= D−1U + op(n−1/2). (11)

The WEL ratio function at �0 is given by

rw(�0) = −
3∑

i=1

wi
ni

ni∑
j=1

log(1 + k′uij),

where both k and uij depend on �0. Using the Taylor series expansion log(1 + x) = x − x2/2 + o(x2) at x = k′uij, which is of the
order op(1) (uniform over all i and j) when � = �0, we obtain

−2rw(�0) = 2
3∑

i=1

wi
ni

ni∑
j=1

log(1 + k′uij)

= 2
3∑

i=1

wi
ni

ni∑
j=1

(
k′uij − 1

2
k′uiju′

ijk

)
+ op(n−1)

= U′D−1U + op(n−1)

= d(33)

⎛
⎝ 3∑
i=1

wiȲi· − �0

⎞
⎠
2

+ op(n−1),

where the last step is due to (10) and d(33) is the last (the third for k = 3) diagonal element of D−1. Let

c1 = d(33)
3∑

i=1

w2
i �

2
i /ni. (12)

It immediately follows that −2rw(�0)/c1 converges in distribution to a �2 random variable with one degree of freedom. �

One of the key asymptotic arguments in the EL-based inference is to show that the involved Lagrange multiplier k is of the
order Op(n−1/2), so that Taylor series expansions can be applied to log(1 + k′uij) when maxij |uij| = op(n1/2) and consequently
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maxij |k′uij| = op(1). This is the case under our proposed formulation of the WEL function lw(F1, . . . , Fk), as shown in the proof of

Theorem 1, but not so under the naive unweighted formulation l(F1, . . . , Fk). It can be shown that for k = 3 and using l(F1, . . . , Fk),
the equation for determining the related Lagrange multiplier, similar to (9) under the weighted approach, involves

U = 1
n

3∑
i=1

ni∑
j=1

uij =
(
n1
n

− w1,
n2
n

− w2,
n1
n

Ȳ1· + n2
n

Ȳ2· + n3
n

Ȳ3· − �
)′
,

which is not of the order Op(n−1/2) unless ni/n = wi + O(n−1/2) for all i. This essentially requires proportional sample size
allocations.

The scaling constant c1 involves the unknown parameters �0 and �2
i . It is easy to see (for k = 3 here) that replacing �0 by∑3

i=1wiȲi· and �2
i by S2i = (ni −1)−1∑ni

j=1 (Yij − Ȳi·)2 in calculating c1 will not change the asymptotic distribution of −2rw(�0)/c1.

When k = 2, the scaling constant is given by c1 = (w2
1S

2
1/n1 + w2

2S
2
2/n2)/(w1S

2
1 + w2S

2
2).

A (1 − �)-level WEL ratio confidence interval on �0 can therefore be constructed as {� | − 2rw(�)/c1 <�21(�)},where �21(�) is
the upper �-quantile from the �2 distribution with one degree of freedom. It can be seen that rw(�) is computable for any � such
that minij {Yij} <� <maxij {Yij}, i.e. � is an inner point of the convex hull formed by the combined sample data. This is not very
restrictive as long as the total sample size n is not too small.

The quantile from the limiting �2 distribution may be replaced by the quantile from a bootstrap distribution. One advantage
of the bootstrap procedure, to be described below, is that the scaling constant c1 can be bypassed. It also improves the coverage
probability of the WEL interval when the total sample size is not large.

Let {Y∗
ij , j = 1, . . . ,ni} be a bootstrap sample, randomly selected from the original sample {Yij, j = 1, . . . ,ni} with replacement,

i= 1, . . . , k; let r∗w(�̂w) be computed in the same way as how rw(�) is computed but replacing the original sample by the bootstrap
sample and use �̂w for � in the constraint (3). Let b∗

� be the upper�-quantile of the bootstrap distribution of −2r∗w(�̂w) obtained
through the usualMonte Carlo approximation. The (1−�)-level bootstrap calibrated confidence interval on �0 is then constructed
as {�| − 2rw(�) < b∗

�}. It can easily be argued that the interval has correct asymptotic coverage probability at the (1 − �)-level and
should perform better than the �2 calibrated interval for samples of small or moderate sizes.

3. Inference for a common mean with multiple samples

Consider k independent samples {Yij, j=1, . . . ,ni}, i=1, . . . , kwith a commonmean �0=E(Yij) but different variances Var(Yij)=
�2
i . Such a scenario can arise from a variety of practical situations and inference about the common mean, �0, using information

from all k samples have been addressed by several authors. Tsao and Wu (2006) recently explored the use of the EL method for
both point estimation and confidence intervals on the common mean. Under their naive EL approach, the EL ratio function is
given by r(�) = ∑k

i=1
∑ni

j=1 log(nip̂ij(�)), where the p̂ij(�) maximize the unweighted EL function l(F1, . . . , Fk) = ∑k
i=1

∑ni
j=1 log(pij)

subject to
∑ni

j=1 pij = 1 and
∑ni

j=1 pijYij = �, i= 1, . . . , k, for a fixed �. Under some mild moment conditions and the commonmean

model, Tsao and Wu (2006) showed that −2r(�0)converges in distribution to a �2 random variable with k degrees of freedom.
Consequently, a (1− �)-level confidence interval on �0 may be constructed in the form ofC= {�| − 2r(�) <�2k (�)}, where �2k (�) is

the upper �-quantile from a �2 distribution with k degrees of freedom.
One of the major drawbacks of the naive EL approach for the common mean is that the EL ratio conference intervals have

severe under-coverage problems andmay even not be constructible. There are twomajor causes behind this. First, the intervalC
is confined by the intersection of the k convex hulls formed respectively by the k samples, which is very restrictive and particularly
so when any one of the sample sizes is small. The asymptotic �2 distribution provides a poor approximation to the actual finite
sample distribution of the EL ratio statistic. Second, there is another unusual restriction arising from this particular application:
for any given samples the minimum value of the profile function −2r(�) is not zero unless Ȳ1· = · · · = Ȳk·. Tsao and Wu (2006)
presented a real example involving two samples where −2r(�) >�22(0.05) for all �, and consequently the desired 95% level EL
confidence interval {�| − 2r(�) <�22(0.05)} is an empty set!

The critical model assumption, i.e. the k samples have a common mean, is only used in the derivation of the asymptotic
distribution ofthe EL ratio statistic. It is not explicitly used in forming a suitable constraint such as (13) below, which will be
used in the current article. A detailed examination of the asymptotic derivations, not presented here to save space, reveals that
including (13) as part of the constraints under the naive EL approach makes the derivation intractable.

We now present a WEL approach to constructing confidence intervals on the common mean �0 with improved coverage
properties. We use the WEL formulation of Section 2 and the resulting WEL ratio function eliminates the non-zero minimum
value problem; we further improve the interval by replacing the poor asymptotic �2 approximation by a conditional bootstrap
calibration method, which provides consistent results under large samples but works dramatically better for samples of small or
moderate sizes.
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With k independent samples {Yij, j= 1, . . . ,ni}, i= 1, . . . , k, the WEL function lw is given by (1) with equal “weights”w1 = · · · =
wk = 1/k (see further comments in the proof of Theorem 2 on the choice of equal weights). Let p̂ij be the maximizer of lw under
the normalization constraints (2) and

n1∑
j=1

p1jY1j = · · · =
nk∑
j=1

pkjYkj, (13)

which is the constraint induced by the common mean structure. Let p̃ij(�) be the maximizer of lw subject to (2), (13) and an
additional constraint induced by the parameter of interest, i.e. the common mean:

ni∑
j=1

pijYij = �, i = 1, . . . , k. (14)

Note that (14) only adds one constraint on top of (13). The WEL ratio statistic for � is given by

rw(�) = −2{lw(p̃(�)) − lw(p̂)},

where lw(p̂) = ∑k
i=1 (wi/ni)

∑ni
j=1 log(p̂ij) and lw(p̃(�)) is similarly defined using p̃ij(�).

We have the following asymptotic result regarding rw(�).

Theorem 2. Suppose {Yij, j=1, . . . ,ni} is an iid sample from Fiwith commonmean�0=E(Yij)and finite variance�2
i =Var(Yij), i=1, . . . , k,

and the k samples are also independent of each other. Then −2rw(�0)/c2 converges in distribution to a �2 random variable with one
degree of freedom, where the scaling constant c2 is given by (18).

Proof. Once again, we consider k = 3. To derive an asymptotic expansion for lw(p̂), we used the same technique from the proof
of Theorem 1 with reformulated variables

Z1j =

⎡
⎢⎢⎣

1
0
Y1j
Y1j

⎤
⎥⎥⎦ , Z2j =

⎡
⎢⎢⎣

0
1

−Y2j
0

⎤
⎥⎥⎦ , Z3j =

⎡
⎢⎢⎣

0
0
0

−Y3j

⎤
⎥⎥⎦ and g=

⎡
⎢⎢⎣
w1
w2
0
0

⎤
⎥⎥⎦ .

It is straightforward to show that the constraints (2) and (13) can equivalently be written as (4) and (6) with uij =Zij −g. A critical
point to observe is that

U =
3∑

i=1

wi
ni

ni∑
j=1

uij = (0, 0,w1Ȳ1· − w2Ȳ2·,w1Ȳ1· − w3Ȳ3·)′, (15)

which is of the order Op(n−1/2) under the choice of equal weights wi = 1/k and the common mean structure. For instance,
w1Ȳ1· − w2Ȳ2· = {(Ȳ1· − �0) − (Ȳ2· − �0)}/k = Op(n−1/2). It follows from the steps in the proof of Theorem 1 that

−2lw(p̂) = 2
3∑

i=1

wi log(ni) + U′D−1U + op(n−1), (16)

whereU is given by (15) andD=∑3
i=1 (wi/ni)

∑ni
j=1 uiju

′
ij. To derive a similar expansion for lw(p̃(�)), we reformulate the additional

constraint (14) as

3∑
i=1

wi

ni∑
j=1

pij(Yij − �) = 0. (17)

The two equations (14) and (17) are equivalent if (4) and (13) also hold.
Let B = [

∑3
i=1wiE(uiju

′
ij)]

−1∑3
i=1wiE[(Yij − �)uij], which can be estimated by

B̂ =
⎡
⎣ 3∑
i=1

wi
ni

ni∑
j=1

uiju
′
ij

⎤
⎦

−1 3∑
i=1

wi
ni

ni∑
j=1

(Yij − �)uij,

with the usual
√
n consistency, i.e. B̂ = B + Op(n−1/2). If we let Xij = Yij − � − B′uij, then

(i) The set of constraints (6) and (17) is equivalent to the set of constraints (6) and
∑3

i=1wi
∑ni

j=1 pijXij = 0.
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(ii)
∑3

i=1 (wi/ni)
∑ni

j=1 Xijuij = Op(n−1/2) when � = �0.
(iii) The p̃ij's whichmaximize lw subject to (4), (6) and the additional constraint (14) will lead to the same type of expansion (16)

for lw(p̃(�)), if we replace uij by u∗
ij = (u′

ij,Xij)
′.

To finish the proof, we further notice that

U∗ =
3∑

i=1

wi
ni

ni∑
j=1

u∗
ij = (U′, X̄)′,

where X̄ = ∑3
i=1 (wi/ni)

∑ni
j=1 Xij, which is of the order Op(n−1/2) when � = �0, and

D∗ =
3∑

i=1

wi
ni

ni∑
j=1

u∗
iju

∗′
ij =

(
D 0
0 A

)
+ Op(n−1/2),

where A = ∑3
i=1 (wi/ni)

∑ni
j=1 X

2
ij . The fact that U∗ = Op(n−1/2) further leads to

U∗′
(D∗)−1U∗ = U′D−1U + (X̄)2/A + op(n−1).

The final asymptotic expansion for the WEL ratio statistic is given by −2rw(�) = (X̄)2/A + op(n−1). If we let

c2 = Var(X̄)/A, (18)

then the conclusion of Theorem 2 follows from the fact that X̄ is asymptotically normally distributed with zero mean
when � = �0. �

The weighted formulation of the EL ratio statistic presented in Theorem 2 eliminates the non-zero minimum value problem
associated with the naive EL approach of Tsao andWu (2006), since −2rw(�)=0when �=∑n1

j=1 p̂1jY1j (=
∑ni

j=1 p̂ijYij for i=2, . . . , k

due to constraint (13)). But the problem of poor asymptotic �2 approximation remains since the interval is confined by the
intersection of the k convex hulls formed respectively by the k samples. In addition, the scaling constant c2 involves unknown
parameters that need to be estimated from the sample. The bootstrap calibration method described below not only bypasses
the estimation of c2 but also provides better approximation to the sampling distribution of −2rw(�0) when sample sizes are not
large. The procedure provides an approximation to the conditional distribution of −2rw(�0) given that �0 is an inner point of the
intersection of the convex hulls, a condition required for −2rw(�0) to be computable.

Let �̂0 = ∑n1
j=1 p̂1jY1j be the MWEL estimator of the common mean �0. It follows from the same argument as in Tsao and Wu

(2006) that �̂0 = �0 +Op(n−1/2). Let {Y∗
ij , j= 1, . . . ,ni, i= 1, . . . , k} be a bootstrap sample, i.e. Y∗

ij , j= 1, . . . ,ni are randomly selected

from {Yij, j = 1, . . . ,ni} with replacement, i = 1, . . . , k. Let −2r∗w(�̂0) be computed in the same way as for −2rw(�) but using the

bootstrap samplewith �= �̂0 being used in (14). To obtain aMonte Carlo approximation to the conditional distribution of−2r∗w(�)
given that it is computable, a sequence of independent bootstrap samples are used but samples for which the intersection of the
convex hulls formed by the bootstrap samples does not include �̂0as an inner point are disregarded. An asymptotic expansion
to −2r∗w(�̂0) can easily be established by following the same argument used in the proof of Theorem 2. The conclusion that the
sampling distribution of −2r∗w(�̂0) is a consistent estimator of the sampling distribution of −2rw(�) follows from the fact that
both have the same scaled asymptotic �2 distribution.

Let b∗
� be the �th upper quantile obtained from the Monte Carlo approximation to the distribution of −2r∗w(�̂0). The bootstrap

calibrated (1 − �)-level WEL ratio confidence interval on �0 can be constructed as

C∗ = {�| − 2rw(�) < b∗
�}.

This interval has correct 1− � coverage probability under large samples but performs dramatically better than the naive EL ratio
confidence intervals for samples of small or moderate sizes.

4. Inference on a population mean using related samples

One unique scenario of multiple sample problems is when we havemultiple samples available but our inference is focused on
one particular sample. This is the case, for instance, when we have a combined stratified sample from the overall population but
we are only interested in estimating the mean of one particular stratum. In a more general setting, we could have data collected
from other occasions which are related to the current study. These related samples might contain very useful information that
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could be used to improve the inference on the population of interest. Wang et al. (2004) studied the point estimation problem
under such settings, using a parametric weighted likelihood approach. In this section, we show that the WEL method proposed
in Section 2 can be used to construct confidence intervals on the population mean using information from related samples.

We first briefly introduce the parametric weighted likelihood proposed by Wang et al. (2004). Suppose Yij, j = 1, . . . ,ni are
iid random variables with probability density fi(yij;�i). The parameter of interest is �1 of the first density f1. Wang et al. (2004)
proposed a parametric weighted likelihood to integrate information from related but different samples to yield a more reliable
estimator of �1 than the classical maximum likelihood estimator based on the single sample. The parametric weighted likelihood
for �1 using related samples is defined as

WL(�1, y) =
k∏

i=1

ni∏
j=1

f1(yij;�1)
�i , (19)

where y = (y1, . . . , yk), yi = (yi1, . . . , yini )
′, i = 1, . . . , k, and the �i's are likelihood weights that must be specified. The weight

assigned to each related sample must accurately reflect the importance or relevance of the information contained in that
sample. The parametric weighted likelihood given by (19) is closely related to the relevant weighted likelihood proposed by
Hu (1997) and the local likelihood method proposed by Tibshirani and Hastie (1987) and Eguchi and Copas (1998). There exist
some other types of parametric weighted likelihood methods proposed in the literature for different purposes. Hu and Zidek
(2002) provided an excellent review of various weighted parametric likelihood approaches to date. These weighted likelihoods
are primarily designed for point estimation. Confidence intervals have not been considered in previous studies of parametric
weighted likelihood approaches.

The WEL approach described in Section 2 can be applied here to make inference on the parameter of interest, �1. Let us
again consider k related samples Yi = (Yi1, . . . ,Yini )

′, i = 1, . . . , k with �i = E(Yij) being the population means and the goal is to
construct WEL confidence intervals on �1 of the first population, using all related samples. Our proposed strategy is to put the
first sample along with other related samples under a synthetic stratified population. We then consider the “overall population
mean” �= ∑k

i=1wi�i with judiciously chosen weightswi to achieve the following two goals: (i) theWEL confidence interval on �
is asymptotically equivalent to the single sample EL confidence interval on �1 when the first sample size n1 is large; (ii) the WEL
interval on �, treated as if it is for �1, performs better than the single sample EL interval on �1 when n1 is small or evenmoderate.
For a given set of weightsw = (w1, . . . ,wk)

′, the MWEL estimator of � = ∑k
i=1wi�i is given by �̂ = ∑k

i=1wiȲi·.
The central issue for the WEL inference when relevant samples are available is the choice of the weights wi, which is parallel

to the selection of �i in the parametric weighted likelihood case. How to choose a set of optimal likelihood weights is indeed a
very challenging research problem. Various choices of likelihood weights currently available in the literature all face different
difficulties. For example, the kernel weights often used in the local likelihood would require the determination of the bandwidth
parameter h. Likelihood weights without parametric forms such as the cross-validated (cv) weights proposed byWang and Zidek
(2005a) also face difficulties on numerical instabilities. A thorough study of optimal weights is beyond the scope of this article.
In this section, we propose to choose the weights for the WEL approach using a supervised cross-validation procedure based on
the likelihood weights of Wang and Zidek (2005a).

For the purpose of point estimation,Wang and Zidek (2005a) propose to choose the likelihoodweights using a cross-validation
procedure for the parametricweighted likelihood.More specifically, consider the followingnaturalmeasure of the total prediction
error when we use the MWEL estimator �̂ to estimate �1,

D(w,Y1, . . . ,Yk) =
n1∑
j=1

(Y1j − �̂[−j])2,

where �̂[−j] is the MWEL estimator of � without using the jth observation Y1j from the first sample. The optimum cv weights can
then be chosen to minimize the total prediction error, i.e.

wcv = argmin
w

D(w,Y1, . . . ,Yk).

The cv weights are intended to obtain likelihood weights without the knowledge of the functional form of the underlying
distribution function. Thus, it could be used for choosing weights for WEL. However, the direct use of the cv likelihood weights
for constructing confidence intervals could be difficult for the following two reasons. Firstly, the weights chosen by the cross-
validation are designed to achieve better point estimation for �1 as D(w,Y1, . . . ,Yk) is closely related to the mean squared error.
However, our experiences suggest that the optimal set of weights for point estimation does not necessarily lead to optimal results
for confidence intervals. Secondly, the cross-validation procedure might not work well for very small sample sizes as stated in
Wang and Zidek (2005a). To see this, we consider the case k = 2 with equal sample sizes n1 = n2, denoted by m, and �̂[−j] is
obtained by the alternative deletion schemewhere the jth observations from both samples are removed.Wang and Zidek (2005a)
showed that the optimum cv weights take the following form:

wcv
1 = 1 − wcv

2 and wcv
2 = S2/S1,
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where

S1 = m(m − 2)

(m − 1)2
(Ȳ1· − Ȳ2·)2 + 1

m(m − 1)2

m∑
j=1

(Y1j − Y2j)
2,

S2 = m

(m − 1)2
(�̂2

1 − ˆcov),

with �̂2
1 being the first sample variance and ˆcov being the sample covariance between the two samples. It can be seen that the

first term in S1 is dominant when m is large. For small m, however, the term (Ȳ1· − Ȳ2·)2 has a chance of being very small. If this
happens, then the S1, which serves as the denominator in wcv

2 , could be very small and result in a very unreasonably large value
for wcv

2 that could be bigger than 1 which is clearly not a reasonable weight for the relevant sample.
Wang and Zidek (2005b) showed that the optimal weights should be non-negative if the loss function is chosen to be the

Kullback–Leibler function also known as the relative entropy. One simple solution is to truncate the cv weights so that they all lie
between 0 and 1. For example, ifwcv

2 is too large or negative due to numerical instability, we could set it to be zero. This approach,
however, could result in losing all relevant information from related samples when such information is desperately needed for
small sample inference.

Instead of using the simple truncation, we propose the following supervised cross-validation procedure. We again consider
the simple case of k= 2 with equal sample sizes n1 = n2 =m. We utilize the classical t statistic when the cv weights are unstable.
To be more specific, we consider the following truncation for the second weight:

ws
2 = min(t/m, 0.5)

0.5 + min(t/m, 0.5)
, (20)

where t = |Ȳ1· − Ȳ2·|/
√

�̂2
1/m + �̂2

2/mwith �̂2
2 being the second sample variance. It is apparent that the weightws

2 will not exceed
0.5, and consequently, the weight assigned to the first sample will always assume a bigger value than that for the second sample.
The second weight can be approximated by

ws
2 = 2min(t/m, 0.5)

1 + 2min(t/m, 0.5)
≈ 2t/m (21)

when t/m is small. Let

wscv
1 = 1 − wscv

2 , wscv
2 = min(wcv

2 , 2t/m, 0.5). (22)

We term wscv
i , i= 1, 2 the supervised cross-validated (scv) weights. They are designed to correct the numerical instability of the

unsupervised cv weights. When the unsupervised weightwcv
2 is too big, which is often related to cases where |Ȳ1· − Ȳ2·| is small,

we use the classical t statistic for the truncation. The weight for the second sample is also controlled so that the inference will be
dominated by the first sample.

The supervised weights also have the same order of asymptotic convergence as the cv weights. This is due to the fact that
2t/m converges to 0 in probability and is of the order Op(m−1). It is then straightforward to show that

(wscv
1 ,wscv

2 )
p−→(1, 0).

Therefore, the WEL confidence interval on � obtained using the result of Theorem 1 and the weights wscv
i reduce to the usual

single sample EL confidence interval on �1 as m → ∞.
The proposed scv weights can be generalized for multiple samples as well as samples of unequal sizes. However, when there

are more than two samples and the sample sizes are unequal, the unsupervised cross-validation procedure is computationally
intensive and the cv weights are difficult to compute since the derivation of the optimal weights involves handling matrices
which are not invertible (Wang and Zidek, 2005a). Therefore, we propose the following pair-wise approach to determine the
likelihood weights when there are k samples with unequal sizes. Let

wscv
1 = 1 −

k∑
i=2

wscv
i , wscv

i =
min(wcv

i , 2ti/n1, 0.5)

(k − 1)/2 + ∑k
i=2 min(wcv

i , 2ti/n1, 0.5)
, i = 2, . . . , k, (23)

where wcv
i is the unsupervised cv likelihood weight and ti is the t statistic using samples 1 and i only. Therefore, the relevance

of each related sample is evaluated against the first sample on a pair-wise fashion. The term (k− 1)/2 is introduced as part of the
normalizing constant to ensure that the sum of the weights of all related samples will not exceed the weight assigned to the first
sample.

The WEL confidence interval on �1 can be constructed using the methods described in Section 2, with the weights wi's pre-
calculated from the aforementioned supervised cross-validation procedure and treating the “overall population mean” � as if it
is �1. For the bootstrap calibration method, the weights wi remain the same and are not re-calculated for each of the bootstrap

samples. Sincew1
p−→1 andwi

p−→0 for i >1, theWEL interval reduces to the usual single sample EL interval under large samples.
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We demonstrate through a simulation study reported in the next section that the WEL confidence interval on �1 using related
samples performs much better than the single sample EL confidence interval when sample sizes are small or moderate.

5. Simulation studies

In this section, we report results from an extensive simulation study on the finite sample performance of the WEL confidence
intervals for the three types of problems discussed in the previous sections, and compare them with existing methods. The total
number of simulation runs for each of the parameter settings is 2000. For the bootstrapmethod, 1000 bootstrap samples are used
in the Monte Carlo approximation.

5.1. Stratified sampling

We consider the case in which k = 3. Stratified samples are generated from the following model:

Yij = �i + �i�ij, j = 1, . . . ,ni, i = 1, 2, 3,

where �ij are iid (�21 −1)/
√
2 with zero mean and unit variance. We choose �i = i and (�2

1,�
2
2,�

2
3)= ( 12 , 1, 2) such that E(Yij)= i and

Var(Yij) = �2
i . The stratum weights are chosen as (w1,w2,w3) = (0.5, 0.3, 0.2). Under this setting, the smaller stratum has bigger

mean and variance, a scenario often seen in practice. The choice of a non-symmetric distribution for �ij and hence for Yij is also
common in real world situations. The true population mean is �0 = 0.5 × 1 + 0.3 × 2 + 0.2 × 3 = 1.7.

For each simulated sample of size (n1,n2,n3), three confidence intervals on �0 are computed: (i) the conventional normal
theory interval (NTI) based on the stratified mean estimator and its estimated variance; (ii) the WEL interval using the �2

calibration method (WEL1) based on Theorem 1; and (iii) the WEL interval using the bootstrap calibration method (WEL2).
Table 1 reports the simulated coverage probability (CP), lower (L) and upper (U) tail error rates, the average length (AL) of

the 90% confidence intervals on �0 for different sample size combinations. We note that NTI and WEL1 have similar coverage
probabilities and they are both lower than the nominal levelwhen the sample sizes are (10, 10, 10). The bootstrap calibratedWEL2
interval has much improved coverage probabilities but its average length is a bit enlarged for the case of (n1,n2,n3)= (10, 10, 10).
For the three sample size combinations where the total sample size n is 60, both NTI andWEL1 intervals are improved andWEL2
remains the best. The twoWEL intervals become virtually identical when ni�60. As for tail error rates, the WEL-based intervals
(WEL1 and WEL2) are more balanced than NTI under all sample size combinations.

5.2. The common mean problem

Once again, we consider k = 3. The three samples are generated from the common mean model:

Yij = �0 + �i�ij, j = 1, . . . ,ni, i = 1, 2, 3,

where the �ij's follow the same location and scale transformed �21 distribution as in themodel of Section 5.1. The true value of the

commonmean �0 is set to be 1. Several variance structures (�2
1,�

2
2,�

2
3) are considered to reflect the severity of heteroscedasticity.

Table 1
Simulated results of 90% confidence intervals under stratified sampling.

(n1,n2,n3) CI L CP U AL

(10,10,10) NTI 1.9 84.7 13.4 0.31
WEL1 4.5 85.4 10.1 0.31
WEL2 3.2 88.6 8.2 0.36

(20,20,20) NTI 2.3 87.2 10.5 0.23
WEL1 5.0 87.1 7.9 0.23
WEL2 4.0 88.9 7.1 0.25

(10,20,30) NTI 2.5 85.7 11.8 0.25
WEL1 4.8 86.7 8.5 0.26
WEL2 4.4 87.4 8.2 0.27

(30,20,10) NTI 1.7 85.7 12.6 0.24
WEL1 5.1 85.2 9.7 0.24
WEL2 3.9 87.5 8.6 0.26

(60,60,60) NTI 3.0 89.9 7.1 0.13
WEL1 4.6 90.5 4.9 0.14
WEL2 4.4 90.8 4.8 0.14

(90,90,90) NTI 2.7 89.6 7.7 0.11
WEL1 3.8 90.3 5.9 0.11
WEL2 3.8 90.2 6.0 0.11
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Table 2
Simulated results of 90% confidence intervals for the common mean.

(n1,n2,n3) CI L CP U AL

(20,20,20) EL-3 4.3 75.9 19.8 0.37
WEL1 4.1 78.3 17.6 0.33
WEL2 1.0 87.5 11.5 0.50

(10,20,30) EL-3 4.8 74.4 20.8 0.40
WEL1 4.1 77.3 18.6 0.38
WEL2 2.1 81.3 16.6 0.55

(30,20,10) EL-3 4.1 73.3 22.6 0.33
WEL1 3.5 75.0 21.5 0.33
WEL2 1.0 83.6 15.4 0.51

(30,30,30) EL-3 4.9 80.1 15.0 0.33
WEL1 4.0 83.5 12.5 0.29
WEL2 1.5 89.2 9.3 0.36

(20,30,40) EL-3 5.0 79.4 15.6 0.35
WEL1 4.3 82.2 13.5 0.32
WEL2 1.9 88.2 9.9 0.42

(40,30,20) EL-3 4.8 79.6 15.6 0.31
WEL1 4.0 83.0 13.0 0.28
WEL2 1.5 89.9 8.6 0.38

(60,60,60) EL-3 5.9 84.1 10.0 0.26
WEL1 5.5 86.1 8.4 0.22
WEL2 3.0 89.6 7.4 0.24

(90,90,90) EL-3 5.6 86.1 8.3 0.22
WEL1 5.1 87.5 7.4 0.18
WEL2 3.0 90.1 6.9 0.19

For each simulated sample of sizes (n1,n2,n3), three confidence intervals of the commonmean �0 are computed: the unweighted
EL interval based on three degrees of freedom (EL-3) and the two WEL intervals, WEL1 and WEL2, similarly defined as in
Section 5.1 but based on Theorem 2.

Table 2 summarizes the simulated results of CP, L, U and AL of the 90% confidence intervals for the case of (�2
1,�

2
2,�

2
3)=( 12 , 1, 2)

with selected sample size combinations. When min{n1,n2,n3} = 10, none of the three EL type intervals is acceptable, since their
coverage probabilities are too low; when min{n1,n2,n3} = 20, the bootstrap calibrated WEL2 interval has coverage probability
close to the nominal value while the other two alternatives still have serious under-coverage problems. The naive EL method
(EL-3) has low coverage probabilities even for ni�60. The bootstrap calibratedWEL2 interval has improved coverage probabilities
in all cases considered but it comes with a price of inflated length when the sample sizes are small. This is also the case for the EL
method in many other scenarios as well. For the common meanproblem discussed here, the inflation in length disappears when
ni�60. In general, the bootstrap calibrated WEL method proposed in this article offers a significant improvement in terms of
coverage probabilities over the naive EL approach discussed in Tsao and Wu (2006) .

5.3. Inference using related samples

We also consider k = 3. The parameter of interest is the mean of the first population, �1. We consider several combinations
of normal and exponential distributions as the initial population setting from which the three samples are generated. For each
simulated sample of sizes (n1,n2,n3), four confidence intervals on �1 are computed: (i) the �2 calibrated unweighted EL interval
based on the first sample only (EL1); (ii) the bootstrap calibrated EL interval based on the first sample only (EL2); (iii) the �2

calibrated WEL interval using information from related samples (WEL1); and (iv) the bootstrap calibrated WEL interval using
information from related samples (WEL2).

Table 3 presents the simulated results of CP, L, U and AL of the 90% confidence intervals for selected sample size combinations
under several population settings. There are two striking patterns shown from Table 3. First, compared with the single sample
based EL1,WEL1 not only improves the coverage probability but also dramatically reduces the average length of the interval.
Second, when bootstrap calibration is used, the WEL method (WEL2) provides similar coverage probabilities as EL2 but with
much shorter interval length. The reduction of average length ranges from 18% to 24%.

6. Some additional remarks

Multiple sample problems are quite common in many statistical applications. A naive formulation of the EL-based approach
is either not very efficient or asymptotically intractable due to the irregular types of constraints induced by themultiple samples.
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Table 3
Simulated results of 90% confidence intervals on the first population mean.

1st S 2nd S 3rd S (n1,n2,n3) CI L CP U AL

N(0, 1) N(0.1, 1) N(0.3, 1) (15, 15, 15) EL1 7.0 85.8 7.2 0.81
WEL1 7.3 87.6 5.1 0.72
EL2 5.4 88.7 6.0 0.90
WEL2 6.8 88.5 4.8 0.74

N(0, 1) N(−0.1, 1) N(0.3, 1) (15, 15, 15) EL1 7.2 86.3 6.6 0.82
WEL1 6.9 88.5 4.6 0.72
EL2 6.1 89.1 4.9 0.91
WEL2 6.4 89.4 4.3 0.75

Exp(1) Exp(10/9) Exp(10/8) (15,20,20) EL1 4.9 83.9 11.3 0.79
WEL1 2.7 86.1 11.3 0.68
EL2 3.6 87.9 8.6 0.97
WEL2 2.3 87.1 10.7 0.75

Exp(1/3) Exp(1/2) Exp(1/4) (15,20,20) EL1 5.8 83.8 10.5 2.35
WEL1 4.0 86.6 9.5 2.02
EL2 3.5 88.7 7.9 2.91
WEL2 3.3 88.0 8.7 2.20

The proposedWEL approach provides a unified framework for the EL-based inference. We have demonstrated this through three
scenarios, namely, inference under stratified sampling, the estimation of a common mean using multiple samples, and inference
of one particular population mean in the presence of related samples. Our weighted approach facilitates the involved asymptotic
derivations as well as computational procedures. The WEL confidence intervals under the three scenarios considered in this
article are shown to be more efficient than existing ones.

Our proposedmethod can also be applied to a variety of two-sample problems. Jing (1995) investigated the EL inference on the
difference of two populationmeans, �=�1−�2, using the simple unweighted approach. He used three constraints corresponding
to the three parameters:

∑n1
i=1 p1iY1i = �1,

∑n2
i=1 p2iY2i = �2 and

∑n1
i=1 p1iY1i −

∑n2
i=1 p2iY2i = �. But clearly the last constraint is

redundant and his profile likelihood function for � is essentially for both �1 and �2. It is not clear how inference about � is directly
handled under such an approach. Under our proposedWEL approach, theWEL function is given by (1) with k=2 andw1=w2= 1

2 .

In addition to the normalization constraints
∑n1

i=1 p1i = 1 and
∑n2

i=1 p2i = 1, we only need to impose one single constraint

corresponding to the true parameter of interest, the difference of the two population means:
∑n1

i=1 p1iY1i − ∑n2
i=1 p2iY2i = �. It

can be shown that a result similar to Theorem 2 regarding � can be established. Some further examination along this line, with
applications to case–control studies, is currently under investigation.
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