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Abstract: It is often desirable to combine information collected in compatible multiple surveys in order to
improve estimation and meet consistency requirements. Zieschang (1990) and Renssen & Nieuwenbroek
(1997) suggested to this end the use of the generalized regression estimator with enlarged number of auxil-
iary variables. Unfortunately, adjusted weights associated with their approach can be negative. The author
uses the notion of pseudo empirical likelihood to construct new estimators that are consistent, efficient and
possess other attractive properties. The proposed approach is asymptotically equivalent to the earlier one,
but it has clear maximum likelihood interpretations and its adjusted weights are always positive. The author
also provides efficient algorithms for computing his estimators.

Regrouper l’information d’enquêtes multiples par
la méthode de la vraisemblance empirique
Résumé : Il est souvent souhaitable de regrouper l’information de diverses enquˆetes compatibles de fac¸onà
améliorer l’estimation et `a assurer une certaine coh´erence. Zieschang (1990) et Renssen & Nieuwenbroek
(1997) ont sugg´eréà cette fin l’emploi d’un estimateur de r´egression g´enéralisé exploitant un nombre accru
de variables auxiliaires. H´elas, les poids ajust´es liés à leur approche peuvent ˆetre négatifs. L’auteur tire
de l’approche par la vraisemblance pseudo empirique de nouveaux estimateurs qui sont `a la fois cohérents,
efficaces et poss`edent d’autres bonnes propri´etés. L’approche propos´ee est asymptotiquement ´equivalente
à la précédente mais a une interpr´etation claire en termes de vraisemblance maximale et ses poids ajust´es
sont toujours positifs. L’auteur fournit aussi des algorithmes efficaces pour le calcul de ses estimateurs.

1. INTRODUCTION

In survey practice, weight adjustment is routinely performed to accommodate, among other
things, internal consistency requirements that are of interest both to survey statisticians and to the
potential users of the survey data. Benchmark constraints are most commonly imposed where
the adjusted weightswi reproduce the known population totals (or means) of auxiliary variables
x, that is,

∑
i∈s wixi = X, wheres represents the set of sampled units andX is the vector of

known population totals. Such an adjustment can be achieved by using the generalized regression
estimator. The generalized regression estimator is not only a vehicle to achieve the benchmark
constraints; it is also more efficient when compared to the baseline Horvitz–Thompson estimator.

When two (or more) surveys are conducted for the same target population, another consis-
tency requirement may arise. If some auxiliary variables are jointly collected in both surveys but
their population totals are unknown, then it is desirable that, in addition to benchmark constraints
over auxiliary variables with known population totals, the weights of both surveys produce the
same estimates for the unknown population totals of the common auxiliary variables. This prob-
lem has previously been addressed by Zieschang (1990) and Renssen & Nieuwenbroek (1997).
Both works proposed that the generalized regression estimator with an enlarged number of aux-
iliary variables be used to achieve that goal.

The generalized regression approach, however, has an undesirable property that was already
being recognized by the authors. To quote Renssen & Nieuwenbroek (1997): “A disadvantage
of the method is the increased possibility of negative weights, due to the enlarged number of
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explanatory variables. The occurrence of negative weights is inherent to the general regression
estimator, and for many users this is an undesirable feature.”

We propose to use the recently developed pseudo empirical likelihood (EL) method to con-
struct estimators that not only meet the efficiency and consistency requirements but also have
other attractive features. The EL method is a powerful nonparametric inference tool with appli-
cations in many areas of statistics. See Owen (2001) for a comprehensiveaccount (and updated
overview) of the subject. Historically, however, this method was first used in survey sampling
by Hartley & Rao (1968). Its discrete and nonparametric nature is particularly appealing for
finite population problems. In this article, we demonstrate that the EL approach is well suited
to the current context, and consistency and efficiency requirements between two or multiple sur-
veys can naturally be formed as constraints and can be integrated into the maximum likelihood
estimation process. The two approaches, generalized regression and empirical likelihood (EL),
are asymptotically equivalent but the latter has clear maximum likelihood interpretations and the
resulting weights are always positive.

We consider two surveys in what follows, but our method can be extended to handle multi-
ple surveys. A logically sound approach involves a joint maximum likelihood estimation using
two samples. This is presented in Section 2. Also in Section 2, we present two algorithms for
computing the proposed EL estimator. The first algorithm involves the profile likelihood method
in searching for a solution and is efficient only when the common auxiliary variable is of dimen-
sion one. The second algorithm employs a novel reformulation of the problem and can easily be
applied in general situations using the well developed algorithm of Chen, Sitter & Wu (2002).
In Section 3, a separate empirical likelihood approach is employed where the EL estimators are
computed separately for each survey with theunknown population means of the common auxil-
iary variables estimated from the combined sample data and used as control values. Computation
in this case is simple and straightforward. The finite sample performance of the proposed EL es-
timators, with comparison to the generalized regression estimators of Zieschang (1990) and of
Renssen & Nieuwenbroek (1997), is investigated in Section 4 through a simulation study. Vari-
ance estimation for the proposed estimators is discussed in Section 5. We conclude with a brief
discussion on extending the method to multiple surveys and with some remarks in Section 6.

2. THE COMBINED EMPIRICAL LIKELIHOOD APPROACH

Suppose the finite population consists ofN identifiable units. Associated with theith unit are
values of the study variablesy1 andy2 and the vectors of auxiliary variablesx1, x2 andz,
denoted byy1i, y2i, x1i, x2i, andzi, respectively, fori = 1, . . . , N . Information on(y1,x1)
is collected in the first survey and information on(y2,x2) is gathered in the second survey.
In addition, data on the common auxiliary variablesz are collected in both surveys. The two
surveys, however, are carried out independently.

The two sets of sample data are{(y1i,x1i, zi), i ∈ s1} and{(y2j ,x2j, zj), j ∈ s2}, where
s1 ands2 are the sets of sampled units from the first and the second survey, respectively. The
population meansXt = N−1

∑N
i=1 xti are known (t = 1, 2), butZ = N−1

∑N
i=1 zi are un-

known. Zieschang (1990) and Renssen & Nieuwenbroek (1997) provided excellent motivations
and real examples on this setting, including a highly valuable application on the split question-
naire survey designs. LetY t = N−1

∑N
i=1 yti, t = 1, 2, be the population quantities of interest.

If y1 andy2 measure the same characteristic but over different time periods, then the difference
∆ = Y 2 − Y 1 may also be of interest.

Following arguments similar to those in Chen & Sitter (1999), the combined pseudo empirical
log-likelihood function based on the two samples can be written as

`(p, q) =
∑
i∈s1

d1i log(pi) +
∑
j∈s2

d2j log(qj),

wherep = (p1, . . . , pn1)′, q = (q1, . . . , qn2)′, pi = P (y1 = y1i), qj = P (y2 = y2j), dti =
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1/πti, theπti are the first order inclusion probabilities, andnt is the sample size for thetth
survey,t = 1, 2.

The maximum pseudo empirical likelihood estimators forY 1 andY 2 are defined as

Ŷ 1 =
∑
i∈s1

p̂iy1i and Ŷ 2 =
∑
j∈s2

q̂jy2j,

where thep̂i and q̂j, which are interpreted as the adjusted weights, maximize the joint pseudo
empirical likelihood functioǹ (p, q) subject to a system of normalization and consistency re-
quirements: ∑

i∈s1

pi = 1 (pi > 0),
∑
j∈s2

qj = 1 (qj > 0), (1)

∑
i∈s1

pix1i = X1,
∑
j∈s2

qjx2j = X2, (2)

∑
i∈s1

pizi =
∑
j∈s2

qjzj. (3)

Both sets of benchmark constraints in (2) could involve measurements on the samex vari-
ables and hence the same population means as well. In the absence of known population means,
some or all of the equations in (2) can be removed from the system. The last set of equations
(3) brings consistency between the two surveys over the common auxiliary variables. They also

make the resulting estimatorŝY 1 andŶ 2 more efficient by using the combined information from
both surveys.

One of the related issues here is the existence of the foregoing defined combined EL esti-

mators. The maximum pseudo empirical likelihood estimatorsŶ t will not exist if Xt is not an
inner point of the convex hull formed by{xti, i ∈ st}, or if the two convex hulls formed by
{zi, i ∈ s1} and{zj , j ∈ s2} are disjoint. This occurs with probability approaching to zero as
both sample sizes go to infinity. A proof of this can be sketched along the lines of Lemma 1 of
Chen & Sitter (1999).

Another practically important issue is the computational aspect of the proposed EL method.
We present two algorithms. Both of them take advantage of the well-behaved algorithm of Chen,
Sitter & Wu (2002) for computing maximum empirical likelihood estimators under a single non-
stratified sample. The first algorithm is efficient when the common auxiliary variable is univari-
ate, while the second algorithm can be used in general situations.

2.1. The first algorithm.

Let
∑

i∈s1
pizi =

∑
j∈s2

qjzj = θ be fixed. It is then straightforward to show by the Lagrange
multiplier method that

p̂i =
d∗1i

1 + λ′1u1i(θ)
, q̂j =

d∗2j

1 + λ′2u2j(θ)
, (4)

whered∗ti = dti/
∑

i∈st
dti and

uti(θ) =

(
xti −Xt

zti − θ

)
,

with the understanding thatzti refers tozi from thetth sample,t = 1, 2. The Lagrange multi-
pliersλ1 andλ2 are the solutions to∑

i∈s1

d∗1iu1i(θ)

1 + λ′1u1i(θ)
= 0 and

∑
j∈s2

d∗2ju2j(θ)

1 + λ′2u2j(θ)
= 0, (5)
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respectively. Then we obtain the profile likelihood function forθ by puttingp̂i andq̂j into`(p, q)
as given by (with a constant term omitted)

`(θ) = −
∑
i∈s1

d1i log{1 + λ′1u1i(θ)} −
∑
j∈s2

d2j log{1 + λ′2u2j(θ)}.

The maximum point of̀(θ), denoted bŷθ, can be found through the conventional profile analy-
sis. We obtain the final adjusted weightsp̂i andq̂j by pluggingθ̂ and the associatedλt into (4).

This algorithm involves findingλt (t = 1, 2) as solutions to (5) for each fixed value ofθ, and
then findingθ̂ that maximizes̀ (θ). For the first part, a simple and stable algorithm for solving
(5) to obtain the vector-valuedλt has been developed by Chen, Sitter & Wu (2002). As forθ̂,
if the common auxiliary variablez is of dimension one, it can easily be found through the usual
profile likelihood method. Whenz is high dimensional, so isθ, and this algorithm becomes
awkward and impracticable. A more flexible algorithm is needed.

2.2. The second algorithm.

Supposezi = (z1i, . . . , zki)
′ is of dimensionk. If we augmentzi to have dimensionk + 1 by

includingz(k+1)i = 1 as the last component, we can rewrite the system of constraints (1)–(3) as∑
i∈s1

pi +
∑
j∈s2

qj = 2, (6)X
(1) 0

0 X(2)

Z(1) −Z(2)

(p
q

)
=

X1

X2

0

 , (7)

whereX(t) = (xt1, . . . ,xtnt), Z
(t) = (zt1, . . . , ztnt), zti representszi from thetth survey

with 1 as its last component,t = 1, 2. Note that the very last equation in the system of (7) is∑
i∈s1

pi −
∑

j∈s2
qj = 0; this together with (6) implies that

∑
i∈s1

pi = 1 and
∑

j∈s2
qj = 1.

We can further rewrite (7) as∑
i∈s1

piu1i +
∑
j∈s2

qju2j = 0, (8)

where

u1i =

x1i

0

z1i

− 1

2

X1

X2

0

 , u2j =

 0

x2j

−z2j

− 1

2

X1

X2

0

 . (9)

It is now clear that maximizing̀(p, q) under the restrictions (1), (2) and (3) is equivalent
to maximizing`(p, q) subject to (6) and (8). By using the Lagrange multiplier method, we can
show that

p̂i =
d∗1i

1 + λ′u1i
, q̂j =

d∗2j

1 + λ′u2j
,

where

d∗ti = 2dti

/(∑
i∈s1

d1i +
∑
j∈s2

d2j

)
for t = 1, 2, and the common Lagrange multiplierλ is the solution to∑

t=1,2

∑
i∈st

d∗tiuti

1 + λ′uti
= 0. (10)
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The modified Newton–Raphson algorithm of Chen, Sitter & Wu (2002) can ideally be used
to solve (10). Although such a modification is necessary for the theoretical proof of convergence,
it is our experience that the following conventional Newton–Raphson iteration procedure works
well for almost all cases:

λ(m+1) = λ(m) +

{∑
t=1,2

∑
i∈st

d∗tiutiu
′
ti

(1 + [λ(m)]′uti)2

}−1 ∑
t=1,2

∑
i∈st

d∗tiuti

1 + [λ(m)]′uti
,

with the initial value ofλ chosen as0.
This second algorithm is applicable in general situations. It requires solving (10) only once

using the existing well-behaved algorithm of Chen, Sitter & Wu (2002) and can be programmed
by survey users with popular statistical software such as SAS or R/S-PLUS.

2.3. A comparison with Zieschang’s regression method.

The combined empirical likelihood approach proposed in this article is in the same spirit as the
composite generalized regression estimator proposed by Zieschang (1990). This is evident when
we compare the constraints (7) used here with the enlarged regression system (3.10) used by
Zieschang. There are several advantages, however, in using the empirical likelihood method.
In addition to its clear maximum likelihood interpretations, we compute the EL estimator based
on the normalized intrinsically positive weights, that is,p̂i > 0 and

∑
i∈s1

p̂i = 1. This latter
feature is particularly appealing to potential users of the survey data since the published weights
are often used for a variety of purposes, including the estimation of proportions or more generally
the finite population distribution functionF (y). The EL estimator̂FEL(y) itself will be a genuine
distribution function. It is range-respecting and can be inverted directly to get quantile estimates.

An explicit relationship between the EL estimator and a generalized regression-type estimator
can be established.

THEOREM 1. Under suitable regularity conditions, the maximum pseudo empirical likelihood
estimators

Ŷ 1 =
∑
i∈s1

p̂iy1i and Ŷ 2 =
∑
j∈s2

q̂jy2j

are asymptotically equivalent to a generalized regression-type estimator, that is,

Ŷ t = ȳt + B̂
′

t1(X1 − x̄1) + B̂
′

t2(X2 − x̄2) + B̂
′

t3(z̄2 − z̄1) + op(n
−1/2), (11)

where
ȳt =

∑
i∈st

d∗tiyti, x̄t =
∑
i∈st

d∗tixti, z̄t =
∑
i∈st

d∗tizti, n = n1 + n2

and the combined “regression coefficients”B̂t = (B̂
′

t1, B̂
′

t2, B̂
′

t3)′ are computed as

B̂t =

(∑
t=1,2

∑
i∈st

d∗tiutiu
′
ti

)−1∑
i∈st

d∗tiutiyti,

with theuti defined by(9).

The required regularity conditions and a proof of the theorem are given in the Appendix.
Note that the combined auxiliary informationX1, X2, z̄1 and z̄2, as well as the basic design
weightsd1i andd2j from both surveys all appear explicitly in the equivalent generalized regres-
sion estimator, an estimator that is quite unique from the conventional point of view. Further, if
both sampling designs satisfy

∑
i∈s1

d1i =
∑

i∈s2
d2i = N , as is the case under simple random

sampling or stratified random sampling, thend∗ti = dti/N , and the estimators̄yt, x̄t andz̄t all
reduce to the usual Horvitz–Thompson estimators for the corresponding population means.
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3. THE SEPARATE EMPIRICAL LIKELIHOOD APPROACH

In the combined approach, the unknown population mean vectorZ is implicitly estimated by the
maximum pseudo empirical likelihood estimatorθ̂ from the pooled sample. This can be seen
from the first algorithm presented in Section 2.1. Some computational complications arising
from the combined approach are due solely to the attempt to estimateZ by θ̂.

One way to circumvent this difficulty is to take a two-step approach. Suppose we replace
θ̂ by a different estimator ofZ, say z̄, using the combined data from both surveys. We then
use the entries in this̄z as control values for the constraints used in the empirical likelihood
estimation for each of the two surveys. By doing so, we not only bring consistency for the
common auxiliary variablesz between the two surveys but also improve the resulting estimators

Ŷ 1 andŶ 2 if z̄ is suitably constructed from the combined sample data. This is similar to the case
of two-phase sampling where the unknown population quantityZ is estimated using the large
first-phase sample.

The estimation ofY 1 andY 2 with a pre-determined̄z as control value becomes two separate

estimation problems. For instance, the EL estimator forY 1 is given byŶ 1 =
∑

i∈s1
p̂iy1i,

where thêpi maximize`(p) =
∑

i∈s1
d1i log(pi) subject to constraints∑

i∈s1

pi = 1 (pi > 0),
∑
i∈s1

pix1i = X1 and
∑
i∈s1

piz1i = z̄.

The resulting weights are computed asp̂i = d∗1i/(1 + λ′u1i), whered∗1i = d1i/
∑
i∈s1

d1i and
the Lagrange multiplierλ is the solution to

∑
i∈s1

d∗1iu1i

1 + λ′u1i
= 0, with u1i =

(
x1i −X1

z1i − z̄

)
. (12)

The algorithm of Chen, Sitter & Wu (2002) can be used directly here to obtainλ without any
modification.

The major issue in this separate EL approach is the choice ofz̄. Renssen & Nieuwen-
broek (1997) provided an excellentaccount of the estimation ofZ using combined sample data.
They suggested a general class of estimators of the formz̄ = Pz̄1 + Qz̄2, whereP andQ
are two matrices with compatible dimensions such thatP +Q = I, andz̄t is the generalized
regression estimator ofZ with xt as auxiliary variables. In the absence ofXt, one can takēzt
as the Horvitz–Thompson estimator ofZ using data from thetth survey.

Two choices of the matrix pair(P ,Q) will be examined in the simulation study presented in
the next section. The simplest one is the proportional combination, whereP = (n1 +n2)−1n1I
andQ = (n1 + n2)−1n2I; the optimal combination uses

P = Vp(z̄2){Vp(z̄1) + Vp(z̄2)}−1 and Q = Vp(z̄1){Vp(z̄1) + Vp(z̄2)}−1,

whereVp(z̄t) is the design-based variance-covariance matrix ofz̄t. Note that theP used in the
optimal combination can also be written as

P =
[
{Vp(z̄1)}−1 + {Vp(z̄2)}−1

]−1
{Vp(z̄1)}−1,

and similarly forQ as well. This choice is optimal since it minimizesVp(a′z̄) for an arbitrary
constant vectora among the general class of estimators considered by Renssen & Nieuwen-
broek (1997). When simple random sampling is used for both surveys and thez̄t are the simple
sample means, the optimal combination reduces to the proportional one if the two sampling
fractions are the same or can be ignored. Note that for the optimal combination, the matricesP
andQ need to be replaced by sample-based estimates for applications.
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The separate EL approach is less elegant than the combined one in terms of maximum likeli-
hood estimation. This approach, however, is intuitively attractive, and computation in this case is
straightforward and simple. Under suitable regularity conditions similar to those used in Theo-
rem 1, we can show that the separate EL estimator is asymptotically equivalent to the regression
estimator discussed by Renssen & Nieuwenbroek (1997), that is,

Ŷ t = ȳt + B̂
′

t1(Xt − x̄t) + B̂
′

t2(z̄ − z̄∗t ) + op(n−1/2), (13)

where

ȳt =
∑
i∈st

d∗tiyti, x̄t =
∑
i∈st

d∗tixti, z̄∗t =
∑
i∈st

d∗tizti, l d∗ti = dti
/ ∑
i∈st

dti,

and the regression coefficientŝBt = (B̂
′

t1, B̂
′

t2)′ are given by

B̂t =

(∑
i∈st

d∗tiutiu
′
ti

)−1 ∑
i∈st

d∗tiutiyti,

whereu1i (andu2i in obvious form) are defined in (12). The first two terms on the right-
hand side of (13) can be viewed as a generalized regression estimator forY t based on auxiliary
variablesxt and the third one is an adjusting term in an attempt to further improve the regression
estimator with the extra information onz variables.

It is worthwhile to note that for the separate EL estimator, the different sample sizes can
easily be taken into account for the estimation ofZ. The combined EL approach, however, does
not automatically accommodate this and requires a special weighting adjustment to achieve the
same goal. Further development in this direction will not be pursued here, but this argument
provides a possible explanation as to why the combined EL estimator is often outperformed by
the separate one, as shown by the simulation results reported in the next section.

4. SIMULATION STUDY

In this section, we examine the finite sample performance of proposed estimators through a
limited simulation study. The finite population used in this study was based on real data from
Statistics Canada’s 1996 Family Expenditure (FAMEX) Survey for the province of Ontario. The
data set containsN = 2396 observations measured over a variety of characteristics. Variables
which are relevant to our study includex1: number of children (age< 15); x2: number of youths
(age 15–24);x3: number of people in the household;z: total income after taxes; andy: total
expenditure.

In the simulation, we treat the data set itself as a finite population. This population is further
split into eight strata according to the original sampling design. For the first survey, the number
of children (x1) and the number of people (x3) with known population means are used as control
variables, and the total expenditurey is treated as the response variable. We also assume that the
variablesx2 andx3 are used as control variables in the second survey, and information on total
income (z) is conveniently collected for both surveys, but the population meanZ is unknown.
The goal is to estimate the population meanY using all useful information while respecting the
consistency requirement imposed over thez variable for the two surveys.

For each simulation run, a stratified random sample of sizent under proportional allocation
is taken for thetth survey,t = 1, 2, and three maximum pseudo empirical likelihood estimators
for Y are computed. Let EL(C) denote the combined EL estimator, let EL(SP) be the separate EL
estimator using proportional combination for the estimation ofZ, and let EL(SO) represent the
separate EL estimator using optimal combination in estimatingZ. Also computed for each simu-
lation are three generalized regression-type estimators: the one proposed by Zieschang (1990) is
denoted by GR(Z), which is equivalent to our combined EL estimator EL(C); and the estimators
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proposed by Renssen & Nieuwenbroek (1997) are denoted by GR(RN1) and GR(RN2), corre-
sponding to our EL(SP) and EL(SO), respectively. TheΛ matrix used to formulate the GR(Z)
estimator is taken asdiag (d1, . . . , dn). The process is repeated independentlyB = 1000 times.

The performance of an estimatorŶ is measured in terms of the simulated Relative Bias (RB)
and Relative Efficiency (RE) defined as

RB =
1

B

B∑
b=1

Ŷ (b)− Y

Y
and RE =

MSE(Ŷ 0)

MSE(Ŷ )
,

whereŶ (b) is the estimator̂Y computed from thebth simulated sample,

MSE(Ŷ ) =
1

B

B∑
b=1

{Ŷ (b)− Y }2,

and Ŷ 0 is the baseline estimator for comparison. In our study, we have chosenŶ 0 as the gen-
eralized regression estimator (GREG) ofY usingx1 andx3 as auxiliary variables. Note that
the sample information onz cannot be used here for the regression estimation ofY , sinceZ is
assumed to be unknown. The sample sizesnt = 80, 160 and240 used in the simulation represent
a typical sampling fractions of2.5%, 5% and10% respectively.

TABLE 1: Simulated relative efficiencies based on the 1996 Statcan FAMEX survey data.

n1 n2 GREG EL(C) GR(Z) EL(SP) GR(RN1) EL(SO) GR(RN2)

80 80 1.00 1.19 1.13 1.28 1.28 1.28 1.28

160 1.00 1.36 1.28 1.31 1.43 1.31 1.42

240 1.00 1.42 1.31 1.43 1.49 1.48 1.49

160 80 1.00 1.03 0.91 1.15 1.15 1.15 1.15

160 1.00 1.28 1.10 1.27 1.26 1.27 1.27

240 1.00 1.33 1.18 1.29 1.28 1.30 1.30

240 80 1.00 0.91 0.80 1.16 1.14 1.15 1.13

160 1.00 1.11 0.95 1.16 1.14 1.16 1.15

240 1.00 1.24 1.07 1.22 1.20 1.24 1.23

The absolute values of the simulated relative biases are all less than0.1% and are not re-
ported here. Table 1 reports the relative efficiency of the EL and the generalized regression-type
estimators under various scenarios for the sample size combinations. Our major findings can be
summarized as follows:

(i) The two separate EL estimators have similar performance and they both perform well. The
gain of efficiency is more pronounced when the second sample size is larger.

(ii) The combined EL estimator has satisfactory performance when the second sample has a
comparable size but could have deteriorated performance otherwise (that is, the case of
n1 = 240 andn2 = 80).

(iii) The generalized regression estimators of Renssen & Nieuwenbroek (1997) have very sim-
ilar performance to the separate EL estimators, but the generalized regression estimator of
Zieschang (1990) is outperformed by the combined EL estimator in all cases.

(iv) The use of information on the common auxiliary variablez provides substantial improve-
ment over the baseline generalized regression estimator when the second sample is not too
small.



2004 INFORMATION FROM MULTIPLE SURVEYS 9

5. VARIANCE ESTIMATION

The combined and the separate maximum pseudo empirical likelihood estimators developed in
this article belong to the general class of nonlinear estimators and their exact design-based vari-
ances do not have a closed form. Simple consistent variance estimators, however, can be derived
by using the asymptotically equivalent regression-type estimators given by (11) and (13). For the
combined EL estimator, one complication arises due to thed∗ti given by

2dti

/(∑
i∈s1

d1i +
∑
j∈s2

d2j

)
.

Under the assumed regularity conditions, we have

N−1
∑
i∈st

dti = 1 +Op(n
−1/2)

for t = 1, 2, wheren = n1 + n2. By using the delta method, we can approximate the nonlinear
terms in (11) by first order linear expansions. For instance,

ȳ1 =
∑
i∈s1

d∗1iy1i =
1

N

∑
i∈s1

d1iy1i−Y 1

(
1

N

∑
i∈s1

d1i−1

)
−Y 1

(
1

N

∑
j∈s2

d2j−1

)
+op(n−1/2).

It is straightforward to show that

Ŷ 1 = C +
1

N

∑
i∈s1

d1iA1i +
1

N

∑
j∈s2

d2jA2j + op(n
−1/2), (14)

whereC is a constant,

A1i = (y1i −B
′
11x1i −B

′
13z1i) − (Y 1 −B

′
11X1 −B

′
12X2),

A2j = (B′13z2j −B
′
12x2j) − (Y 1 −B

′
11X1 −B

′
12X2),

andB is the combined population regression coefficients given by

Bt = (B′t1,B
′
t2,B

′
t3)′ =

( 2∑
t=1

N∑
i=1

utiu
′
ti

)−1 N∑
i=1

utiyi.

Since the two surveys are independent, the asymptotic variance ofŶ 1 and a consistent vari-
ance estimator can be developed in obvious way by using (14) and the standard variance estima-
tion method for the Horvitz–Thompson estimator of population means. Similar developments
can also be made for the separate EL estimators. The details are omitted.

6. CONCLUDING REMARKS

The EL estimators developed in this article can be extended to handle multiple surveys. Suppose
there are three sets of sample data{(yti,xti, zti), i ∈ st}, t = 1, 2, 3, where the population
meansXt = N−1

∑N
i=1 xti are known fort = 1, 2, 3 but the population meansZ for the

common variablesz are unknown. For the separate EL approach, one can handle this by simply
usingz̄ = P z̄1 +Qz̄2 +Rz̄3 to estimateZ under a suitable combination ofP ,Q andR.

As for the combined approach, some modification is needed to deal with the computa-

tional complexities. The combined EL estimator forY t = N−1
∑N

i=1 yti is given byŶ t =∑
i∈st

p̂tiyti, where thêpti maximize

`(p) =

3∑
t=1

∑
i∈st

dti log(pti),
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subject to ∑
i∈st

pti = 1 (pti > 0),
∑
i∈st

ptixti = Xt, t = 1, 2, 3,

∑
i∈s1

p1iz1i =
∑
i∈s2

p2iz2i =
∑
i∈s3

p3iz3i.

Modification of the first algorithm for the current situation is straightforward: we let∑
i∈s1

p1iz1i =
∑
i∈s2

p2iz2i =
∑
i∈s3

p3iz3i = θ

be fixed first and then findθ for the EL estimator through the profile likelihood method. The
second algorithm can also be modified in this case. Letzti be augmented to include1 as its last
component. Findinĝpti is equivalent to maximizing̀(p) under the constraints

3∑
t=1

∑
i∈st

pti = 3,
3∑
t=1

∑
i∈st

ptiuti = 0,

where

u1i =



x1i

0

0

z1i

z1i

−
1

3



X1

X2

X3

0

0

 , u2i =



0

x2i

0

−z2i

0

−
1

3



X1

X2

X3

0

0

 , u3i =



0

0

x3i

0

−z3i

−
1

3



X1

X2

X3

0

0

 .

The final solution is given bŷpti = d∗ti/(1 + λ′uti), whered∗ti = 3dti/
∑3
t=1

∑
i∈st

dti andλ
is the solution to (10) but replacing the first summation with the one over all three samples.

Adjusting weights to satisfy certain efficiency and consistency requirements is a constant
theme in survey sampling, and having positive adjusted weights is a highly desirable property
for the users of production micro data files, where the weights are viewed as the number of units
in the finite population represented by the sampled unit. Positive weights will also guarantee
positive estimation for known positive population quantities.

It should be noted that positive weights in regression estimation can theoretically be achieved
through constrained minimization under the context of calibration estimation as discussed in De-
ville & Särndal (1992). The practical implementation of such a method is not straightforward,
however, and it often involves ad hoc approximations. The loss of efficiency due to these ap-
proximations is usually unknown. The empirical likelihood method, on the other hand, provides
a natural way of doing this with final adjusted weights that are intrinsically positive. It should
also be noted that the total amount of time required for computing the proposed EL estimators
remains limited. In our simulation study, it takes less than 20 seconds on a dual process Sun
Unix workstation to compute the combined EL estimator whenn1 = n2 = 240 and the program
is written in R/S-PLUS.

While the adjusted weights using a generalized regression-type technique tend to have some
small or negative values, the weights obtained from the EL approach can occasionally contain a
few large values. For the simulation results reported in Section 4, where a proportional sample
size allocation scheme is used to draw the two stratified random samples, theg-weights given
by gi = wi/di are all within the range of(0.25, 4.00), where thewi denote the EL adjusted
weights and thedi represent the basic design weights. More than99% of theseg-weights are
indeed between0.50 and2.00. If we use an unbalanced allocation scheme, where the largest
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stratum (Nh = 763) and the smallest one (Nh = 33) receive equal sample sizes, we observed
that a couple ofg-weights can be larger than4.00 or even6.00. Theoretically this is not a prob-
lem regarding the statistical properties of the EL estimators. For users who also have concerns
about large weights, the idea of minimum relaxation of constraints presented in Chen, Sitter &
Wu (2002) can be applied to obtain more general range restricted weights through the EL method.

It is easy to argue, both theoretically and empirically, that under ideal situations, the gain in
efficiency from using the combined sample data is almost guaranteed. Cases where the forced
consistency requirement over the common variables will likely be detrimental to the resulting
estimators include: (1) severe uncontrolled nonsampling errors; (2) extremely unbalanced sam-
pling designs or sample size allocations; (3) misconceptualized target populations; (4) weak or
lack of correlation between the common variables and the response variables; and (5) use of
questionable common variables.

The successful use of the proposed EL method for combining information on common aux-
iliary variables for real surveys requires detailed consideration at the planning stage and careful
discretion at the estimation stage. As pointed out by Renssen & Nieuwenbroek (1997), common
variables in the strict sense are not easily found due to discrepancies between definitions, meth-
ods of observation, and reference periods. Such complications can be reduced if the involved
surveys are harmonized at the design stage. For example, in split questionnaire design where
certain common questions are contained in both versions of the questionnaire, attention should
be given to the ordering and positioning of these common questions to reduce the potential re-
sponse bias and/or carry-over effect. For human population surveys conducted regularly over
time, variables related to gender, age, educational background, etc., can easily be conceived as
common variables when the change of population dynamics over a certain time period can be
ignored. Other variables need to be treated with care: for instance “Employment Status in May
2003” can be measured as direct answers in a June 2003 survey, but for surveys conducted at a
later time, only as recalled answers. Only if the recalled answers are as accurate as the direct
ones can measurements of this type be treated as common variables.

APPENDIX

We assume that the maximum pseudo empirical likelihoodestimators exist. A certain asymptotic
framework is also needed at this moment. We refer the reader to Isaki & Fuller (1982) for
details. The required regularity conditions are stated in terms of the basic design weightsdti
and the values of the auxiliary variables. The notationx̄t, z̄t andd∗ti follows from Section 2.2.
Stochastic orders involving random vectors or matrices are interpreted as componentwise.

(i) Xt − x̄t = Op(n
−1/2
t ) andZ − z̄t = Op(n

−1/2
t );

(ii)
∑

t=1,2

∑
i∈st

d∗tiutiu
′
ti −N

−1
∑

t=1,2

∑N
i=1 utiu

′
ti = Op(n

−1/2);

(iii)
∣∣∑

t=1,2

∑
i∈st

d∗tiutiu
′
ti

∣∣ 6= 0 andN−1
∑

t=1,2

∑N
i=1utiu

′
ti = O(1).

Conditions (i) and (ii) are standard; the second part of condition (iii) states that thex and the
z variables have finite second moments, and this implies

max{xti, i ∈ st} = op(n
1/2
t ) and max{zti, i ∈ st} = op(n

1/2
t )

(Owen 1990, Lemma 3). A key result for the proof of the theorem is to showλ = Op(n
−1/2).

This can be (nonrigorously) argued as follows: by rewritingd∗tiuti as d∗ti
{
uti(1 + λ′uti) −

utiu
′
tiλ
}

in (10), we have

∑
t=1,2

∑
i∈st

d∗tiuti =

(∑
t=1,2

∑
i∈st

ŵtiutiu
′
ti

)
λ,
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whereŵ1i = p̂i andŵ2i = q̂i. Since∑
t=1,2

∑
i∈st

d∗tiuti =
[
(x̄1 −X1)′, (x̄2 −X2)′, (z̄1 − z̄2)′

]′
is of orderOp(n−1/2) (componentwise),

∑
t=1,2

∑
i∈st

ŵtiutiu
′
ti is the maximum empirical

likelihood estimator ofN−1
∑

t=1,2

∑N
i=1 utiu

′
ti which is of orderO(1), then we must have

λ = Op(n
−1/2). A more rigorous argument leading to this conclusion will follow the lines

of (2.11)–(2.14) of Owen (1990, pp. 100–101). It follows thatmaxi∈st |λ
′uti| = op(1) and

(1 + λ′uti)
−1 = 1 − λ′uti{1 + op(1)}, with the uniform termop(1) over i ∈ st, t = 1, 2.

Applying this last expansion to (10), we get

λ =

(∑
t=1,2

∑
i∈st

d∗tiutiu
′
ti

)−1 ∑
t=1,2

∑
i∈st

d∗tiuti + op(n
−1/2).

The final expansion for̂Y 1 (or Ŷ 2) is a simple consequence ofp̂i = d∗1i
[
1−λ′u1i{1 + op(1)}

]
,

where the termop(1) is independent ofi.
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