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By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population,
we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information
from survey data can be readily extended to obtain efficient estimators of quadratic and other second-order finite population functions.
In particular, estimation of a finite population variance, covariance, or variance of a linear estimator can be greatly improved when
auxiliary information is available. The proposed methods are model assisted in that the resulting estimators are asymptotically design
unbiased irrespective of the correctness of a working model but very efficient if the working model is nearly correct. They have
a number of attractive features, which include applicability to a general sampling design, incorporation of information on possibly
multivariate auxiliary variables, and the ability to entertain linear or nonlinear working models, and they result in nonnegative estimates
for certain strictly positive quantities such as variances. Several existing estimators are shown to be special cases of the proposed general
methodology under a linear working model.

KEY WORDS: Generalized regression estimator; Model-assisted approach; Model calibration; Pseudoempirical likelihood; Survey
sampling; Variance estimation.

1. INTRODUCTION

The problem of estimating a finite population mean or
total in the presence of auxiliary information has been
extensively discussed in survey sampling. Although a purely
model-based prediction approach has been used by some
researchers, the model-assisted approach has gained much
popularity in recent literature. Several general procedures have
been proposed, including generalized regression estimators
(Cassel, Särndal, and Wretman 1976; Särndal 1980), calibra-
tion estimators (Deville and Särndal 1992), empirical likeli-
hood methods (Chen and Qin 1993; Chen and Sitter 1999;
Zhong and Rao 2000), and, more recently, the model cali-
bration (MC) and model-calibrated pseudoempirical likelihood
(PEML) methods (Wu and Sitter 2001).
Estimation of quadratic or other higher-order finite popula-

tion functions is also important. For example, efficient estima-
tors for finite population variances, covariances between two
response variables, or variances of linear estimators are highly
desirable. Shah and Patel (1996) presented several examples
to illustrate why the estimation of population variances and
covariances might be useful in their own right. However,
because of the relative complexity of these functions, it is
not obvious that one can obtain more efficient estimators for
these higher-order population quantities when certain auxiliary
information is available from survey data.
The literature in this area can be roughly categorized as

either of the following, depending on the auxiliary information
available: case 1, in which the population total X or mean �X
of a single auxiliary variable x is known, or case 2, in which
the population variances and covariances, Sij , of one or several
auxiliary variables are known. In case 1, a common strategy
used by several authors is to restrict to a specific class of esti-
mators, say vh = h��X/x̄
v, where x̄ is the sample mean of the
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x variable, h�·
 is a smooth function satisfying h�1
= 1, and
v is a conventional variance estimator not using any auxiliary
information. The objective is then to find an “optimal” estima-
tor within this class (see Das and Tripathi 1978; Deng and Wu
1987, and references cited therein). Zhang (1996) discussed
the estimation of a population variance of y, �2

0 , with popu-
lation mean 
0 known in the context of infinite populations
(iid observations). His method can be viewed as a special case
of Chen and Qin’s (1993) empirical likelihood method. Datta
and Ghosh (1993) introduced a hierarchical Bayes procedure
for estimating the strata variances in the presence of auxiliary
information.
In case 2, a similar strategy has been used by consider-

ing certain classes of estimators that incorporate the auxiliary
information in a particular way. Examples include a ratio- or
product-type estimator, vg = �S2x/s

2
x

gv, a regression-type esti-

mator, vreg = v+ �̂2�S2x − s2x
, and some multivariate gener-
alizations of this kind, where S2x and s2x are the population
and sample variances of variable x. When both �X and S2x are
known, a more general class, say vu = u��X/x̄� S2x/s2x
v, may
be considered, where u�·� ·
 is a smooth function satisfying
u�1�1
 = 1. The work of Isaki (1983), Singh, Horn, and Yu
(1998) and Théberge (1999) deserves special consideration.
Motivated by the successful use of ratio and regression esti-

mators for estimation of population means and totals, assum-
ing simple random sampling with replacement, Isaki (1983)
proposed a multivariate ratio estimator, Ŝ2ym= s2y

∑k
i=1WiS

2
i /s

2
i ,

and regression estimator, Ŝ2yr = s2y +
∑k

i=1Bi�S
2
i − s2i 
, for the

finite population variance, S2y , where S
2
i and s

2
i are the known

population variance and sample variance of auxiliary variable
xi, i= 1� � � � � k, with 0<Wi < 1 and

∑k
i=1Wi = 1. With extra

assumptions from a superpopulation model, Wi and Bi are
then chosen by minimizing the model variances V��Ŝ

2
ym
 and

V��Ŝ
2
yr 
.

In the case of a single auxiliary variable, x, Singh et al.
(1998) proposed a high-level calibration approach for variance
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estimation. To estimate the Yates–Grundy (YG)-type variance
VYG = 2−1

∑N
i=1

∑N
j=1� i j − ij
�yi/ i − yj/ j
2, their pro-

posed estimator is V̂SS = 2−1
∑n

i=1
∑n

j=1"ij�yi/ i − yj/ j
2,
where "ij are modified from Dij = � i j − ij
/ ij by mini-
mizing a distance measure between "ij and Dij subject to the
constraint

1
2

n∑
i=1

n∑
j=1
"ij

(
xi
 i

− xj

 j

)2

= 1
2

N∑
i=1

N∑
j=1
� i j− ij


(
xi
 i

− xj

 j

)2

� (1)

where  i = P�i ∈ s
 and  ij = P�i� j ∈ s
 are the first- and
second-order inclusion probabilities and s denotes the set of
sampled units. The right side of (1) is VYG�X̂HT 
 and is
assumed known. Note that the Dij may take negative values,
which makes it difficult to interpret a distance measure like,
say,

∑∑
�"ij−Dij


2/�DijQij
. It is also unclear whether this
method can be extended to handle multiple auxiliary variables.
Treating calibration as a purely algebraic problem, Théberge

(1999) extended the calibration estimators of Deville and Särn-
dal (1992) to a bilinear parameter through the use of Kro-
necker products. The general form of the resulting estimator is
quite complicated and usually involves n2×n2 matrix opera-
tions, where n is the sample size, and thus is computationally
awkward. This same estimator cannot be extended further to
handle general second-order finite population quantities that
are not in bilinear form. The method can result in negative
estimates for known positive quantities.
The less fruitful and more sparse literature on this topic is

due mainly to the fact that the relationship between a high-
order function of the response variables and the auxiliary
variables is almost certainly nonlinear. Most existing meth-
ods for using auxiliary information are developed based on an
assumed linear working model, either explicitly or implicitly
(see Wu and Sitter 2001 for a discussion). Such an assumption
makes it virtually impossible to directly extend the methodol-
ogy to the estimation of higher-order population functions.
In this article we develop efficient estimators for quadratic

and other second-order finite population functions using the
recently proposed MC and model-calibrated PEML methods
(Wu and Sitter 2001). The procedure was originally proposed
for estimation of finite population means, totals, and distribu-
tion functions. The most significant feature of this approach is
that it effectively uses auxiliary information at the estimation
stage under a general sampling design and a general working
model, linear or nonlinear, with single or multiple auxiliary
variables. The approach is model assisted in that the result-
ing estimators are asymptotically design unbiased irrespective
of the correctness of the model, but high efficiency will be
achieved if the working model is nearly correct. By viewing
quadratic and other second-order finite population functions
as totals or means of a derived synthetic finite population,
we show that the MC and the model-calibrated PEML meth-
ods can be readily extended to obtain efficient estimators of
high-order finite population functions. In particular, estima-
tion of a finite population variance, a covariance between two
response variables, the variance of a linear estimator, and other

related functions can be greatly improved when certain auxil-
iary information is available.
In Section 2 we briefly describe the MC and PEML meth-

ods, with discussions on the use of calibration equations for
finite populations, and then extend them to the estimation of
quadratic and other second-order finite population quantities
and summarize some asymptotic properties. In Section 3 we
derive several new estimators for a finite population variance
or covariance and for the variance of a linear estimator using
the general estimation strategy of Section 2 and a linear work-
ing model relating y to x. We show that Ŝ2yr of Isaki (1983),
V̂SS of Singh et al. (1998), and the extended calibration esti-
mator of Théberge (1999) follow naturally as special cases
of the proposed estimators. The PEML method also provides
nonnegative estimates for certain known positive quantities.
In Section 4 we demonstrate through a limited simulation
study the improved performance of the proposed estimators
over their conventional counterparts. Variance estimation for
the generalized regression estimator (GREG) requires special
treatment, and we discuss this in Section 5. We give some
concluding remarks in Section 6.

2. EFFICIENT ESTIMATION OF QUADRATIC
FINITE POPULATION FUNCTIONS

Let U = )1�2� � � � �N * be the set of labels of the finite pop-
ulation. Associated with unit i are values of response vari-
ables, yi, and covariates, xi, both vector valued. In the case of
scalar variables, we use y and x. In the most general case, we
assume that the values x1� � � � �xN are known for the entire
finite population (referred to as complete auxiliary informa-
tion) but that yi is known only if the ith unit is selected in
the sample, s. However, under a linear working model we
only need that certain second-order summary statistics of x be
known. Throughout, we assume that all  i and  ij are strictly
positive and let di = 1/ i and dij = 1/ ij .
A quadratic finite population function can be defined as

Q = ∑N
i=1

∑N
j=i aijyiyj , where aij are known constants. More

generally, let

T =
N∑
i=1

N∑
j=i+1

-�yi�yj
�

where -�·� ·
 is a symmetric function (a kernel of degree 2 for
a U statistic). The quadratic form Q defined earlier and the
bilinear parameter discussed by Théberge (1999) are both spe-
cial cases of T . Practically useful examples include the finite
population variance of y, S2y = �N − 1
−1

∑N
i=1�yi −�Y 
2; the

finite population covariance between two response variables y
and z, Cyz = �N − 1
−1

∑N
i=1�yi−�Y 
�zi−�Z
 (see Sec. 3 for

alternative formulations of S2y and Cyz); and the YG form of
the variance, VYG =∑N

i=1
∑N

j=i+1� i j− ij
�yi/ i−yj/ j
2,
of the Horvitz–Thompson (HT) estimator of a population total,
ŶHT =∑

i∈s diyi. Other quantities of interest, such as the cor-
relation coefficient between y and z and the regression coeffi-
cient of y on z, are smooth functions of several quadratic or
other second-order functions.
If we arrange all of the pairs �ij
 with i < j in a sequence,

and denote this by 1= 1�2� � � � �N ∗, where N ∗ =N�N−1
/2,
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then we may express T as

T =
N ∗∑
1=1

t1�

where t1 = -�yi�yj
 for 1 = �ij
. Thus T can be viewed
as a population total defined on a synthetic finite population
U ∗ = )1�2� � � � �N ∗* with characteristic of interest t1. The cor-
responding sample of pairs would be s∗ = )1 = �ij
 3 i < j
and i� j ∈ s*. Let n∗ = n�n− 1
/2 be the number of pairs in
s∗. The “first-order” inclusion probabilities over this synthetic
population are  ∗

1 =  ij for unit 1 = �ij
. Let d∗
1 = 1/ ∗

1 =
1/ ij . Note that in many applications, the diagonal terms
-�yi�yi
= 0. If not then these terms can also be included in
T , which amounts to changing N ∗ to N�N + 1
/2 and n∗ to
n�n+1
/2 and using  ii =  i.

2.1 The Model-Calibration and Generalized
Difference Estimators

If one were to now directly apply the calibration method
of Deville and Särndal (1992) to estimate T viewed as a
population total over the derived population, then one would
use T̂C = ∑

1∈s∗ w1t1, where the w1’s minimize a distance
measure between the w1’s and the d∗

1’s subject to constraint∑
1∈s∗ w1c1 =

∑N ∗
1=1 c1, for some scalar auxiliary variable, say

c1. If so, then T̂C would be the same or asymptotically equiv-
alent to the GREG estimator treating c as the single auxiliary
variable (Deville and Särndal 1992). Thus, although the esti-
mator T̂C will be approximately design-unbiased for any fixed
constants c1, because it is a GREG-type estimator (see Wu
and Sitter 2001), the estimator will be most efficient if c1 is
chosen such that the relationship between t1 and c1 is nearly
linear. If the linear correlation coefficient between t1 and c1
is 1 or −1, then T̂C = T .
One could alternately use a difference estimator (Cassel

et al. 1976), which is given by T̂D =∑
1∈s∗ d∗

1t1+
∑N ∗

1=1 c1−∑
1∈s∗ d∗

1c1. In general, T̂D should be used with caution,
because it performs well only if c1 is a good proxy for t1.
When e1 = t1 − c1 is more variable than t1 itself, we will
have var�T̂D
 > var�T̂HT 
, where T̂HT = ∑

1∈s∗ d∗
1t1. Asymp-

totically, we also have var�T̂C
 ≤ var�T̂D
, so T̂C is preferred
in most situations.
Calibrating on an arbitrary known sequence of constants,

c1, will result in a calibration estimator T̂C that is asymptoti-
cally at least as good as the HT estimator, T̂HT . The question
then becomes: What is the “best” choice for these constants?
To determine how auxiliary information can be best used at the
estimation stage, two related questions need to be answered:
(1) How much auxiliary information is available? and (2) How
are the auxiliary variables related to the variables of interest?
Auxiliary information is usually available at one of two dif-
ferent levels: some summary statistics at the population level
or complete auxiliary information at the unit level. The sec-
ond question cannot be answered without resorting to a super-
population model. Blindly calibrating on individual auxiliary
variables generally is not a good approach.
Under a general sampling design and a general working

model, auxiliary information can be effectively used through
the fitted values. This idea has been developed in detail by

Wu and Sitter (2001) using the MC and model-calibrated
PEML methods. We describe the methods as we extend them
to the present context.
Suppose that the relationship between yi and xi can be

depicted by a semiparametric model through the first- and
second-order moments,

E��yi�xi
= 
�xi��
� V��yi�xi
= v2i �
2�

i = 1�2� � � � �N � (2)

where �= �80� � � � � 8p

′ and �2 are unknown superpopulation

parameters, 
�x��
 is a known function of x and �, the vi is a
known function of xi or 
i = 
�xi��
, and E� and V� denote
the expectation and variance with respect to the superpopu-
lation model. We also assume that �y1�x1
� � � � � �yN �xN 
 are
mutually independent. For ease of presentation, we restrict to
scalar yi at this point.
Let �N be an estimate of � based on the entire finite pop-

ulation, and let y∗i = 
�xi��N 
. If the working model (2) is
appropriate, then y∗i should be an “ideal” choice for approxi-
mating yi; that is, y

∗
i should have higher linear correlation with

yi than other ad hoc choices if the model is adequate and the
auxiliary information is really informative.
A design-based estimator �̂ for �N can be obtained from

the sample data (Wu and Sitter 2001). Let ŷi = 
�xi� �̂
, i =
1�2� � � � �N , be the fitted values from model (2). The MC
estimator for the finite population total Y =∑N

i=1 yi is defined
as ŶMC =

∑
i∈s wiyi, where the weights wi minimize an average

distance between wi and the basic design weights di and ;s ,
subject to constraints

∑
i∈s
wi = N� and

∑
i∈s
wiŷi =

N∑
i=1
ŷi< (3)

Under a linear regression working model with an intercept, the
first constraint in (3) is redundant. The resulting ŶMC under a
chi-squared distance measure coincides with the usual GREG.
The estimated regression coefficient B̂ between yi and ŷi is
always equal to 1 (thm. 1 of Wu and Sitter 2001). If the work-
ing model is nonlinear or the unknown population quantity to
be estimated is a nonlinear function (including quadratic func-
tions), then the B̂ will not necessarily be 1. Under such situ-
ations, adding the first constraint usually would improve the
estimate, which is equivalent to finding a GREG-type estima-
tor by regressing yi over ŷi with an intercept. (See the simu-
lation results reported in Wu and Sitter 2001.)
The MC method can be easily extended to the present con-

text for estimating T by using fitted values t̂1 = -�ŷi� ŷj
 for
t1 and treating d

∗
1 = 1/ ij as the basic design weights, where

1= �ij
. Recall that dij = 1/ ij and use the original pair index
�ij
; then the MC estimator of the quadratic function T is
defined as T̂MC =

∑∑
�ij
∈s∗ wij-�yi�yj
, where the wij’s mini-

mize an average distance measure between wij and dij subject
to

1
N ∗

∑
i∈s

∑
j>i

wij = 1 and

∑
i∈s

∑
j>i

wij-�ŷi� ŷj
=
N∑
i=1

N∑
j=i+1

-�ŷi� ŷj
< (4)
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Under the simple chi-squared distance measure

;s∗ =
∑
i∈s

∑
j>i

�wij−dij
2/�dijqij
�

where the qij’s are known positive weights unrelated to dij ,
the resulting estimator is given by

T̂MC =∑
i∈s

∑
j>i

dij-�yi�yj


+
{ N∑
i=1

N∑
j=i+1

-�ŷi� ŷj
−
∑
i∈s

∑
j>i

dij-�ŷi� ŷj

}
B̂� (5)

where B̂ = C�u� v
/C�u�u
, C�u� v
 = ∑∑
�ij
∈s∗ dijqij�uij −

ū
�vij − v̄
, uij = -�ŷi� ŷj
, vij = -�yi�yj
, ū =∑∑
�ij
∈s∗ dijqijuij/

∑∑
�ij
∈s∗ dijqij , and v̄ and C�u�u
 are

defined similarly. Note that the first term on the right side of
(5) is the usual HT estimator, T̂HT . When there is no aux-
iliary information, the constraints used in (4) will have to
be removed. The unconstrained minimization of ;s∗ results
in wij = dij , and thus in this case T̂MC reduces to T̂HT . For
simplicity of presentation, we consider a single y variable
with model (2) in the following theorem, but the results hold
for the general case of vector response variables, y. Under
proper asymptotic settings, assuming T = Op�N

∗
, we have
the following.

Theorem 1. a. Under the regularity conditions (a)–(c)
specified in the Appendix, the MC estimator T̂MC = T̂HT +
Op�N

∗/
√
n∗
 and is therefore an asymptotically design unbi-

ased estimator of T .
b. With an extra condition (d) also given in the Appendix,

the asymptotic design-based variance of T̂MC is given by

var�T̂MC

<= 1
2

N∑
i=1

N∑
j=i+1

N∑
l=1

N∑
m=l+1

� ij lm− ijlm

(
Eij

 ij
− Elm
 lm

)2

�

where  ijlm are the fourth-order inclusion probabilities,
Eij = vij − uijBN , BN = CN�u� v
/CN �u�u
, CN�u� v
 =∑N

i=1
∑N

j=i+1 dijqij�uij − ūN 
�vij − v̄N 
, uij = -�y∗i � y
∗
j 
, vij =

-�yi� yj
, y∗i = 
�xi��N 
, ūN = ∑N
i=1

∑N
j=i+1 uij/N

∗, and
CN�u�u
 and v̄N are defined similarly.
c. var�T̂MC
 can be consistently estimated by

var�T̂MC
=
1
2

n∑
i=1

n∑
j=i+1

n∑
l=1

n∑
m=l+1

 ij lm− ijlm
 ijlm

(
eij

 ij
− elm
 lm

)2

�

where eij = -�yi� yj
−-�ŷi� ŷj
B̂.
Proof. See the Appendix.

The asymptotic variance of T̂MC involves inclusion prob-
abilities up to the fourth order. A comprehensive algebraic
comparison between var�T̂MC
 and

var�T̂HT 

<= 1
2

N∑
i=1

N∑
j=i+1

N∑
l=1

N∑
m=l+1

� ij lm− ijlm

(
vij

 ij
− vlm
 lm

)2

is not possible; however, the relationship between var�T̂MC

and var�T̂HT 
 is similar to that of var�ŶGR
 and var�ŶHT 
,

where ŶGR is the GREG estimator for the population total Y .
The Eij’s are the fitted residuals of the “response variable”
t1 = vij over “covariate” uij . The fact that the Eij’s are less
variable than the vij’s implies that var�T̂MC
 will be smaller
than var�T̂HT 
 for most commonly used sampling designs. The
variance reduction depends on the correlation coefficient Av�u
between vij and uij . The two extreme cases are (a) �Av�u� = 1,
where Eij = 0 and var�T̂MC
 = 0, and (b) Av�u = 0, where
Eij = vij − v̄ and var�T̂MC
 = var�T̂HT 
. This relationship can
be seen more clearly under simple random sampling, where it
is easy to show that

var�T̂MC
= var�T̂HT 
�1−A2v�u
+O�N ∗/n∗
<

Note that var�T̂HT 
=O�N ∗2/n∗
, the MC estimator of T , will
perform at least as good as the HT estimator, with the variance
reduction depending on Av�u.
If x provides relevant information in explaining y through

a model like (2)—that is, the correlation between yi and
y∗i = 
�xi��N 
 is high, and, consequently, a high correlation
between vij and uij—then the gain from using T̂MC over T̂HT
can be substantial. Moreover, construction of T̂MC requires no
extra step in the modeling stage. The same fitted values ŷi
are used for the estimation of any quadratic and other second-
order population functions. Indeed, the structure of (5) is iden-
tical to the generalized regression estimator applied to a sin-
gle response variable, t1 = vij , and a single auxiliary variable,
t∗1 = -�y∗i � y

∗
j 
. Computation for T̂MC requires no extra matrix

manipulation after the initial modeling and thus is extremely
simple.
It is interesting to notice that if we let B̂ = 1 in (5), the

resulting estimator can be viewed as a generalized difference
(GD) estimator as discussed earlier. We denote this estima-
tor by T̂GD. A theorem similar to Theorem 1 can also be
restated in terms of T̂GD.
T̂GD is computationally simpler than T̂MC and can perform

very well under correctly specified working model where the
correlation between t1 and t∗1 is high. It may also perform
poorly under misspecified superpopulation model, where the
fitted values are off target. The MC estimator, on the other
hand, is more robust. The foregoing discussions regarding T̂C
and T̂D all apply here to make parallel statements about T̂MC
and T̂GD.

2.2 The Pseudoempirical Maximum
Likelihood Estimator

The model-calibrated PEML estimator for the finite popu-
lation mean �Y is defined as �̂Y EL =

∑
i∈s p̂iyi, where the p̂i’s

maximize the PEML

l̂�p
=∑
i∈s
di log pi� (6)

subject to
∑
i∈s
pi = 1�

∑
i∈s
piui = 0 �0< pi < 1
� (7)

where ui = ŷi−N−1∑N
i=1 ŷi. Despite the underlying nonpara-

metric likelihood motivations (Chen and Sitter 1999), �̂Y EL is
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asymptotically equivalent to the MC estimator �̂YMC =N−1ŶMC
(Wu and Sitter 2001). But the most practically important fea-
ture of �̂Y EL is the intrinsically positive weights p̂i > 0. This is
particularly appealing when we extend the technique to esti-
mating certain nonnegative quadratic finite population func-
tions. One may also alternatively view the PEML in (6) as a
distance measure; then the relationship between �̂YMC and �̂Y EL
follows naturally.
Paralleling the development of T̂MC , we define the model-

calibrated PEML estimator of T as T̂EL = N ∗∑∑
�ij
∈s∗ p̂ij-

�yi�yj
 where the p̂ij’s maximize

l̂�p
=∑
i∈s

∑
j>i

dij log pij�

subject to constraints

∑
i∈s

∑
j>i

pij = 1�
∑
i∈s

∑
j>i

pij-�ŷi� ŷj
=
1
N ∗

N∑
i=1

N∑
j=i+1

-�ŷi� ŷj


�pij > 0
< (8)

Theorem 2. Under the regularity conditions specified in
the Appendix, the PEML estimator of T , T̂EL, is asymptoti-
cally equivalent to the MC estimator T̂MC under the uniform
weight qij = 1; that is, T̂EL = T̂MC + op�N ∗/

√
n∗
. Thus T̂EL

is also an asymptotically design-unbiased estimator of T with
the same asymptotic variance as T̂MC .

Proof. See the Appendix.

One advantage of T̂EL besides its likelihood-based motiva-
tion is that the weights, p̂ij , are always positive, which may not
be true for the weights of the MC estimator, wij . This prop-
erty might be very attractive when all of the terms in T are
themselves positive and therefore positive weights will ensure
positive estimation.
The Lagrange multiplier method can be used to show that

p̂ij =
d∗
ij

1+Dbij
for �ij
 ∈ s∗�

where d∗
ij = dij/

∑
i∈s

∑
j>i dij , bij = -�ŷi� ŷj
 − �N ∗
−1×∑N

i=1
∑N

j=i+1-�ŷi� ŷj
, and the scalar Lagrange multiplier, D,
is the solution to

g�D
=∑
i∈s

∑
j>i

dijbij

1+Dbij
= 0< (9)

The simple, stable algorithm described by Chen, Sitter, and
Wu (2002) can be modified to solve (9). The modified algo-
rithm comprises only two steps:

1. Compute bL = min)bij 3 �ij
 ∈ s∗*, and bU = max)bij 3
�ij
 ∈ s∗*. If bL > 0 or bU < 0, then the PEML estimator
does not exist; otherwise, proceed to the next step.

2. Find the solution to g�D
 = 0 in the interval
�−1/bU �−1/bL
 using the bisection method:
a. Let L=−1/bU , R=−1/bL, and F = 108.
b. Let M = �L+R
/2. If �g�M
� ≤ F, then stop and

report D=M ; otherwise, let L=M if g�M
 > 0, or
let R=M if g�M
 < 0.

c. Repeat step b until �g�M
� ≤ F and report D=M .

Chen et al. (2002) extend this algorithm to allow one to restrict
the range of the resulting weights. A similar extension could
be done in this context.

3. ESTIMATING VARIANCES AND COVARIANCES
UNDER A LINEAR WORKING MODEL

In this section we consider the estimation of S2y = �N −
1
−1

∑N
i=1�yi−�Y 
2, Cyz = �N −1
−1

∑N
i=1�yi−�Y 
�zi−�Z
, and

VYG =∑N
i=1

∑N
j=i+1� i j− ij
�yi/ i−yj/ j
2 using the pro-

posed estimation strategy. We consider linear regression work-
ing models for both y and z, that is, E��yi
= x′i� and E��zi
=
x′i�. The fitted values for yi and zi are ŷi = x′i�̂ and ẑi = x′i�̂,
where �̂ is the design-based estimator for the regression coef-
ficients �,

�̂=
{∑
i∈s
dixix

′
i

}−1∑
i∈s
dixiyi�

and �̂ is defined similarly with yi replaced with zi. Note that
S2y and Cyz can be reexpressed as

S2y =
1

N�N −1


N∑
i=1

N∑
j=i+1

�yi−yj
2

and

Cyz =
1

N�N −1


N∑
i=1

N∑
j=i+1

�yi−yj
�zi− zj
<

It is then straightforward to show that the MC estimators for
S2y , Cyz, and VYG are given by

Ŝ 2
MC = Ŝ 2

HT + �̂′�S2x − s2x
�̂B̂1�

ĈMC = ĈHT + �̂′�S2x − s2x
�̂B̂2�

and

V̂MC = V̂HT + �̂′�U 2
YG− Û 2

HT 
�̂B̂3�

where

Ŝ 2
HT =

1
N�N −1


∑
i∈s

∑
j>i

dij�yi−yj
2�

ĈHT =
1

N�N −1


∑
i∈s

∑
j>i

dij�yi−yj
�zi− zj
�

V̂HT =
∑
i∈s

∑
j>i

dij� i j− ij

(
yi
 i

− yj

 j

)2

�

S2x =
1

N −1

N∑
i=1
�xi−�X
�xi−�X
′�

s2x =
1

N�N −1


∑
i∈s

∑
j>i

dij�xi−xj
�xi−xj

′�

U 2
YG =

N∑
i=1

N∑
j=i+1

� i j− ij

(
xi
 i

− xj
 j

)(
xi
 i

− xj
 j

)′
�

Û 2
HT =

∑
i∈s

∑
j>i

dij� i j− ij

(
xi
 i

− xj
 j

)(
xi
 i

− xj
 j

)′
�
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and B̂1, B̂2, and B̂3 are defined similarly as B̂ in (5) with
uij = �̂′�xi− xj
�xi− xj


′�̂ and vij = �yi− yj
2 for B̂1, uij =
�̂′�xi− xj
�xi− xj


′�̂ and vij = �yi− yj
�zi− zj
 for B̂2, and
uij = �̂′G� i j −  ij
�xi/ i − xj/ j
�xi/ i − xj/ j


′H�̂ and
vij = � i j− ij
�yi/ i−yj/ j
2 for B̂3.
The generalized difference estimators Ŝ 2

GD, ĈGD, and V̂GD
are obtained by letting B̂1 = B̂2 = B̂3 = 1, as before.
The PEML estimators for S2y , Cyz, and VYG are given by

Ŝ 2
EL =

1
2

∑
i∈s

∑
j>i

p̂ij�yi−yj
2�

ĈEL =
1
2

∑
i∈s

∑
j>i

p̂ij�yi−yj
�zi− zj
�

and

V̂EL = N ∗∑
i∈s

∑
j>i

p̂ij� i j− ij

(
yi
 i

− yj

 j

)2

�

where N ∗ = N�N − 1
/2, p̂ij = d∗
ij/�1+ Dbij
, and D is the

solution to (9). For Ŝ 2
EL, bij = �̂′)�xi− xj
�xi− xj


′ − 2S2x*�̂;
for ĈEL, bij = �̂′)�xi−xj
�xi−xj


′ −2S2x*�̂; and for V̂EL, bij =
�̂′)� i j− ij
�xi−xj
�xi−xj


′ − �N ∗
−1U 2
YG*�̂.

Note that in the case of a linear working model, despite the
motivation of using the predicted values for each unit and thus
implicitly desiring complete auxiliary information, one needs
only knowledge of certain population quantities of the x vari-
ables, such as S2x or U

2
YG. We can also establish the relationship

of these proposed general estimators with those in the litera-
ture that have been developed for some more restrictive cases:
Case 1. Vector x variables with a general sampling

design and a bilinear parameter. A practically useful result
of Théberge’s extended calibration estimator for a bilinear
parameter (form. 22 of Théberge 1999, p. 639) is identical to
the GD estimator proposed in this article under a linear work-
ing model.
Case 2. Vector x variables under simple random sampling.

Under simple random sampling, s2x reduces to the usual sample
variance-covariance matrix. Both Ŝ 2

MC and Ŝ 2
GD can be viewed

as more general forms of the estimator Ŝ2yr proposed by Isaki
(1983) without his model assumption (2). Isaki’s estimator V̂G
is also in the same spirit as V̂MC or V̂GD.

Case 3. A scalar x variable with a general sampling design.
If we drop the constraint

∑∑
�ij
∈s∗ wij = N ∗, assume  i j −

 ij > 0, and let qij =Qij/� i j− ij
, then V̂MC will be iden-
tical to V̂SS of Singh et al. (1998). Including the constraint∑∑

�ij
∈s∗ wij = N ∗ will usually improve the estimate. In this
setting,

Ŝ 2
MC = Ŝ 2

HT + �S2x − s2x
Ĉ1�

ĈMC = ĈHT + �S2x − s2x
Ĉ2�

Ŝ 2
GD = Ŝ 2

HT + �̂2�S2x − s2x
�
and

ĈGD = ĈHT + �̂Î�S2x − s2x
�
where �̂ and Î are the estimated slopes of the two regression
lines with y and z as response variables, Ĉ1 and Ĉ2 are defined

as B̂ in (5) with uij = �xi−xj
2 and vij = �yi−yj
2 for Ĉ1 and
uij = �xi− xj
2 and vij = �yi− yj
�zi− zj
 for Ĉ2. Both Ŝ

2
MC

and ĈMC are independent of � and I. The difference estimator
Ŝ 2
GD was also discussed by Shah and Patel (1996). The MC
estimator Ŝ 2

MC reduces to the ratio estimator Ŝ 2
R = Ŝ 2

HT �S
2
x/s

2
x


if we drop the constraint
∑

i∈s
∑

j>i wij = N ∗ from (4) and
choose qij = �xi − xj
−2 in the distance measure, assuming
xi−xj �= 0 for all �i� j
.
For the PEML in the case of a single auxiliary variable x,

bij = �xi− xj
2 − 2S2x for both Ŝ 2
EL and ĈEL, so the p̂ij’s are

the same for both estimators. They are also independent of the
regression coefficients � and I. Note that Ŝ 2

EL always takes
nonnegative values. The same can be said of V̂EL if the design
satisfies  i j− ij ≥ 0 for all �i� j
.
Case 4. A scalar x variable with simple random sampling.

In this simple case, Ŝ 2
HT , ĈHT , and s

2
x all reduce to the usual

sample variances and covariances, s2y , syz, and s
2
x . Also, Ŝ

2
GD

becomes Ŝ2yre = s2y + �̂2�S2x− s2x
, as proposed by Isaki (1983).
It should be noted that in both cases 3 and 4, Ĉ1 �= �̂2 and

Ĉ2 �= �̂Î. With the uniform weights qij = 1, Ĉ1 and Ĉ2 are
actually the estimated slopes of the regression line of �yi−yj
2
on �xi−xj
2 and of �yi−yj
�zi− zj
 on �xi−xj
2.

4. SOME EMPIRICAL RESULTS

We carried out a limited simulation study to investigate the
finite sample performance of the proposed variance estima-
tors using the 1996 Statistics Canada’s Family Expenditure
(FAMEX) Survey data for the province of Ontario, down-
loaded from Statistics Canada Databases. The dataset contains
observations on N = 2396 sampled households over a vari-
ety of variables. For the purpose of illustration, we choose
x1, number of people in the household, and x2, total income
after taxes, as auxiliary variables and y1, annual expenditures
on clothing, and y2, total expenditure, as the study variables.
Because extra information is not available to us, we treat this
dataset itself as the finite population in the simulation study.
The population is split into eight strata using the original
design weights.
A scatterplot reveals that a linear working model might be

appropriate, but the relationship between the x variables and
the y variables is not particularly strong. The finite population
correlation coefficients are Ax1� y1 = <40, Ax1� y2 = <44, Ax2� y1 =
<60, and Ax2� y2 = <87.
A stratified simple random sample of size n = 64, with 8

units from each stratum, was drawn and the MC, GD, and
PEML estimators of Section 3 for the population variances S2y1
and S2y2 and covariance S12 = cov�y1� y2
 were computed. The
uniform weights qij = 1 were used for the MC estimators. The
usual HT estimators were also included for comparison. This
process was repeated B= 1�000 times. Note that the sampling
fraction here is approximately 2.5%.
The finite sample performance of the estimators was mea-

sured by the simulated relative bias in percentage (RB) and
the relative efficiency (RE), defined by

RB = 100× 1

B

B∑
b=1

Ŝ 2
b −S2
S2

and RE = MSEHT
MSE

�
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Table 1. Percentage RB and RE of Estimators for the Finite Population
Variance and Covariance

Parameter HT MC GD PEML

Percentage RB
S2
Y1

�584 −3�259 −�993 −3�759
S2
Y2

�560 4�743 3�739 5�664
S12 �591 �625 1�346 �022

RE to HT
S2
Y1

1�000 1�629 1�454 1�648
S2
Y2

1�000 1�318 1�525 1�289
S12 1�000 1�913 1�852 1�956

where Ŝ 2
b is the estimator of S2 computed from the bth simu-

lated sample, MSE= B−1∑B
b=1�Ŝ

2
b −S2
2, and MSEHT is the

MSE of Ŝ 2
HT .

Table 1 reports the RB and RE for estimators included in
the simulation. The absolute values of RBs are all within rea-
sonable range, with the largest occurring for the PEML esti-
mators at 5.664%. In terms of efficiency, all of MC, GD,
and PEML estimators outperform the conventional HT esti-
mators, with MSE reduced by almost half for estimating the
covariance S12. The MC and PEML estimators perform better
than the GD estimator when estimating S2y1 and S12, but this
is reversed when estimating S2y2 . One possible reason for this
is that the linear correlation between y2 and (x1� x2) is much
stronger than that of y1 (Ax2� y1 = <60� Ax2� y2 = <87). The GD
estimator usually performs well in this case (see Wu and Sit-
ter 2001 for a discussion).
When we rerun the foregoing simulation with a doubled

sample size (n = 128), the pattern for RE remains the same,
but in this case all of the absolute values of RBs are less than
3%, with the largest at 2.7% for the PEML estimators.

5. VARIANCE ESTIMATION FOR THE
GENERALIZED REGRESSION ESTIMATOR

One must take care when the auxiliary information has been
used in estimating a population quantity and one wishes to
again use it in estimating the variance of this estimator. For
example, to estimate the population total Y when the popu-
lation total X is known, the MC and GD estimators under
a linear working model both coincide with the widely used
GREG, ŶGR = ŶHT + �X− X̂HT 


′�̂ (Wu and Sitter 2001). Its
asymptotic design-based variance is given by

var�ŶGR

<=

N∑
i=1

N∑
j=i+1

� i j− ij

(
ei
 i

− ej

 j

)2

�

where ei = yi−x′i�N and �N is the finite population regression
coefficient.
Thus var�ŶGR
 is a special case of T . To apply the estima-

tion strategies of Section 2, using the original linear working
model, the fitted values for ei would be ẽi = ŷi−x′i�̂= 0. The
MC, GD, and EL estimators for var�ŶGR
 all reduce to the
usual HT estimator if ẽi’s are used in the construction of these
estimators. The fitted values t̂1 = � i j− ij
�ẽi/ i− ẽj/ j
2
form a constant sequence that has zero correlation with the
“response variable,” t1 = � i j− ij
�ei/ i− ej/ j
2.

Our proposed model calibration approach of Section 2
should now be modified so as to find a calibration vari-
able uij = u�xi� xj
 that is correlated with -�ei� ej
= � i j−
 ij
�ei/ i− ej/ j
2. We can then construct estimators as in
Section 2 by calibrating over the u�xi� xj
’s. The best choice
of u�xi� xj
 is the one with the highest correlation with
-�ei� ej
.
Whether the same auxiliary information can be used to

improve both the estimation of the population total Y using
ŶGR and the estimation of its variance depends on the joint dis-
tribution of the residual variable, e, and the auxiliary variables,
x. Let EN = �e1� � � � � eN 


′, XN = �x1� � � � �xN 

′, where xi con-

tains 1 as its first component. Under an ordinary least squares
fitting, we have X ′

NEN = 0, and the auxiliary variables x are
uncorrelated with the residual variable, e. If the joint distribu-
tion of e and x is close to normal, then e and x will be nearly
independent. Any choice of u�xi� xj
 will be nearly uncorre-
lated with -�ei� ej
. The same auxiliary information cannot be
used to improve the variance estimation for the GREG.
Some situations exist in which variance estimation for the

GREG can be improved. A simple example is when extra
auxiliary information not used for the initial model building
to estimate the total is available from other sources. Another
is where a GREG estimator has been used to estimate the
total because of internal consistency requirements to match
marginal totals or because it is well known and accepted by
practitioners. In this case, if a nonlinear working model or a
linear working model with nonhomogeneous variance is more
appropriate, then extra modeling work at the variance esti-
mation stage and calibrating over fitted values from a more
appropriate model will improve the estimation of var�ŶGR
.
Note that matching marginal totals at the variance estimation
stage is not as important.
We demonstrate the foregoing points by considering the

case in which a linear working model with implicitly
assumed homogeneous variance is used to estimate the pop-
ulation total (i.e., a GREG) when the homogeneous vari-
ance assumption is false. Under a linear working model
yi = x′i�+ Ji with variance of the error term Ji depending
on xi, there will be room for improvement in estimation of
var�ŶGR
. To see this, consider simple random sampling with
-�ei� ej
 = �ei − ej


2 and uij = Gu�xi
− u�xj
H
2 for a cer-

tain choice of ui = u�xi
. It is straightforward to show that
covG-�ei� ej
� uijH = �N ∗
−1

∑N
i=1

∑N
j=i+1-�ei� ej
uij − -̄ū

<=
2)N−1∑N

i=1 e
2
i u

∗
i
2− ē2 ¯u∗2*= 2cov�e2i � u

∗
i
2
, where u∗i = ui− ū,

and -̄, ē2, and so on are in obvious notation. If, for instance,
V��Ji
 = u2i �

2, then cov�e2i � u
∗
i
2
 �= 0. Calibrating over uij =

G�u�xi
−u�xj
H2 will improve the variance estimation for the
GREG.
To further demonstrate, we performed a limited simulation

study. For the FAMEX data discussed in Section 4, scatterplots
of fitted residuals against covariates and fitted values demon-
strate homogeneity of the error terms for response variables
y1 and y2. Several calibration variables uij were used, and
the resulting estimators for var�ŶGR
 showed no improvement,
as expected. We performed another simulation in which the
finite population has the same stratified structure and size as
the FAMEX data but is generated from a superpopulation
model yi = �0+�1x1i+�2x2i+Ji with V��Ji
= x22i�

2. Using
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uij = �x2i−x2j
2 as the calibration variable, the simulated RE
of the MC, GD, and PEML estimators for var�ŶGR
 were 1.33,
1.04, and 1.34. Similar results were also obtained under the
choice of uij = �ŷi− ŷj
2, where ŷi are the fitted values.

6. CONCLUDING REMARKS

Note that the finite population variance can be written as
S2y = �N − 1
−1G

∑N
i=1 y

2
i − �

∑N
i=1 yi


2/N H. The two population
totals,

∑N
i=1 y

2
i and

∑N
i=1 yi, can then be estimated separately

using the MC or PEML method. The resulting estimators
involve no second-order inclusion probabilities; however, the
nonnegativity of the estimators obtained from the two separate
pieces cannot be guaranteed.
To close, we note that the idea of treating quadratic finite

population functions as totals of certain generalized character-
istics over a derived finite population was used previously by
Hanurav (1966) and Liu and Thompson (1983). This, com-
bined with the MC and PEML methods, provides a general
way of using auxiliary information in estimating quadratic and
other second-order finite population functions. Some attractive
features of the proposed methodology are as follows:
1. Estimators can be constructed under a general sampling

design.
2. The methods can handle scalar or vector-valued auxiliary

variables, as well as linear or nonlinear working models and
thus are very flexible.
3. The approach is model-assisted in that the resulting esti-

mators are asymptotically design unbiased regardless of the
correctness of the model but have high efficiency if the work-
ing model adequately describes the relationship between the
response variables and the covariates.
4. The approaches require no additional step for the model-

ing; the same fitted values are used for any quadratic or other
second-order population functions.
5. In the case of linear working models, estimation of pop-

ulation variances and covariances or the variance of a linear
estimator requires that only the S2x or other second-order sum-
mary statistics of x be known at the population level. This is
much like the GREG for the population mean where only �X
need be known to construct the estimator.
6. After the initial modeling stage (e.g., estimation of �

and �), the construction of proposed estimators involves only
scalar manipulations, and the resulting estimators have very
simple forms.
7. The limited empirical results show that the proposed esti-

mators for population variances and covariances are very effi-
cient compared to the conventional estimators.
8. The model-calibrated PEML estimators ensure nonnega-

tive estimation for certain positive quantities, such as popula-
tion variances.
Estimation of quadratic and other second-order finite pop-

ulation functions requires the knowledge of second-order
inclusion probabilities,  ij , and knowledge of the auxiliary
information at the second-order level, such as S2x or some
other aggregated summary statistics. Knowing �X usually pro-
vides little or no information for improving the estimation
of quadratic functions. When the true relationship between
the response variables and the covariates is seriously nonlin-
ear, complete auxiliary information at unit level and a careful

model-building process are required for the effective use of
the auxiliary information and efficient estimation of quadratic
functions.

APPENDIX: REGULARITY CONDITIONS
AND PROOFS

The asymptotic framework assumes a sequence of sampling
designs and a sequence of finite populations, indexed by K. Both
the sample size nK and the population size NK approach infinity as
K→�. All limiting processes are understood to be as K→�, but
here the K is suppressed to simplify notation.
The required regularity conditions for Theorem 1 are as follows:

a. �̂= �N +Op�n−1/2
 and �N → �.
b. For each �xi�xj 
, L-G
�xi� t
�
�xj � t
H/Lt is continuous in t

and
�L-G
�xi� t
�
�xj � t
H/Lt� ≤ h�xi�xj ��


for t in a neighborhood of �, where �·� is the L1 norm and∑N
i=1

∑N
j=i+1 h�xi�xj ��
/N

∗ = O�1
.
c. The second-order inclusion probabilities  ij ensure the asymp-

totic normality of the HT estimator
∑∑

�ij
∈s∗ dijcij/N ∗ for a
certain sequence cij .

d. For each �xi�xj 
, L
2-G
�xi� t
�
�xj � t
H/LtLt

′ is continuous in
t and

�L2-G
�xi� t
�
�xj � t
H/LtLt′� ≤ k�xi�xj ��

for t in a neighborhood of �, where �·� denotes the max-
imum absolute value of the elements in the matrix and∑N

i=1
∑N

j=i+1 k�xi�xj ��
/N
∗ = O�1
.

Proof of Theorem 1

Under the regularity conditions (a)–(d), following a similar argu-
ment as in the proof of theorem 1 of Wu and Sitter (2001), it can be
shown that

T̂MC = T̂HT +
{ N∑
i=1

N∑
j=i+1

-�y∗i � y
∗
j 
−

n∑
i=1

n∑
j=i+1

dij-�y
∗
i � y

∗
j 


}
BN

+op
(
N ∗
√
n∗

)

=
n∑
i=1

n∑
j=i+1

dijEij +
N∑
i=1

N∑
j=i+1

-�y∗i � y
∗
j 
+op

(
N ∗
√
n∗

)
�

where BN is the finite population quantity estimated by B̂. It is easy
to show that

∑∑
i<j  ij = n�n−1
/2= n∗ and ∑∑

 ijlm = ij�n∗−
1
, where the double summation on the second equality is over all
l < m such that �lm
 �= �ij
. Hence the YG-type variance formula
applies here. The results of Theorem 1 then follow by noting that
BN = O�1
 and

∑N
i=1

∑N
j=i+1-�y

∗
i � y

∗
j 
−

∑n
i=1

∑n
j=i+1 dij-�y

∗
i � y

∗
j 
 =

Op�N
∗/
√
n∗
, by condition c.

The required regularity conditions for Theorem 2 are the foregoing
a–d, along with e–g as follows:

e. u∗ =max�ij
∈s∗ �u∗ij � = op�
√
n∗
.

f.
∑∑

�ij
∈s∗ diju∗ij/
∑∑

�ij
∈s∗ diju∗ij
2 = Op�1/

√
n∗
.

g. h∗ =max�ij
∈s∗ �h�xi�xj ��N 
� = op�n
∗
,

where

u∗ij = -G
�xi��N 
�
�xj ��N 
H

− �N ∗
−1
N∑
i=1

N∑
j=i+1

-G
�xi��N 
�
�xj ��N 
H<
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Proof of Theorem 2

Following the lines of the proof of theorem 2 of Wu and Sitter
(2001), if we switch all of the single summations to double summa-
tions, replacing di with dij and ui with u

∗
ij defined earlier, then we

can show that

T̂EL =
N ∗

N̂ ∗ T̂HT +
{ N∑
i=1

N∑
j=i+1

-�y∗i � y
∗
j 
−

N ∗

N̂ ∗

n∑
i=1

n∑
j=i+1

dij-�y
∗
i � y

∗
j 


}
BN

+ op

(
N ∗
√
n∗

)
�

where N̂ ∗ = ∑∑
�ij
∈s∗ dij . For most commonly used designs, such

as simple random sampling or stratified random sampling, N̂ ∗ = N ∗,
it follows that T̂EL = T̂MC +op�N ∗/

√
n∗
. Under unequal probability

sampling where N ∗/N̂ ∗ − 1 = Op�1/
√
n∗
, the asymptotic variance

of T̂EL will have to be modified from a ratio estimator in the same
fashion as in modifying var�

∑
i∈s diyi/N 
 for var�

∑
i∈s diyi/

∑
i∈s di
;

the details are omitted here.

[Received September 2000. Revised July 2001.]
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