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Abstract: The authors develop jackknife and analytical variance estimators for the estimator of Chambers &
Dunstan (1986) and Rao, Kovar & Mantel (1990) of the finite population distribution function, using com-
plete auxiliary information. They also describe the associated model and show the design consistency of
the variance estimators, whose small-sample performance is examined through a limited simulation study.
They highlight the operational advantages of the jackknife in the model-battied £ Chambers & Dun-

stan (1986) and its better catidnal performance in the design-based setting of Rao, Kovar & Mantel
(1990).

Utilisation de I'information auxiliaire compléte pour obtenir des estimations

de la fonction de répartition d’'une population finie

Résune’: Les auteurs montrent comment utiliser de l'information auxiliaire cetepgbour obtenir des es-
timations de variance analytique et jackknife pour les estimateurs de Chambers & Dunstan (1986) et de
Rao, Kovar & Mantel (1990) de la fonction depértition d'unepopulation finie. lls écrivent aussi le
modeéle asso@’et montrent la cadrence des estimateurs de variance en fonction du plagriegrital.

Le comportemena taille finie de ces estimateurs esfalemenefud@ par voie de simulation. lls soulig-

nent les avantages egtionnels du jackknife dans le cadre du mledde Chambers & Dunstan (1986) et

ses meilleures performancesnditionnelles du point de vue du plan d’@phental que privégient Rao,

Kovar & Mantel (1990).

1. INTRODUCTION

The use of auxiliary information in estimating the finite population distribution function has
attracted increased attention in reciietrature. Several estimators which incorporate knowledge

of an auxiliary variable known for every unit in the finite population have been proposed and
their performances examined and compared. See, for examples, Chambers & Dunstan (1986),
Rao, Kovar & Mantel (1990), Chambers, Dorfman & Hall (1992), Kuk (1993) and Wang &
Dorfman (1996). For some discussion on situations where auxiliary information is available at
the unit level in complex surveys, sear8dal, Swensson & Wretman (1992, Chapter 8). Less
attention has been given to the variance estimation problem.

This paper examines variance estimation in this setting for two leading estimators of the
finite-population distribution function, the model-based estimator of Chambers & Dunstan
(1986) and the design-based estimator of Rao, Kovar & Mantel (1990). For the model-based
estimator, analytical variance estimators must be developed for each assumgubsuiadion
model. In the case of the simple linear regression model, such an estimator is derived, based
on an asymptotic result of Chambers, Dorfman & Hall (1992). We do so by using some results
in Wang & Dorfman (1996). This variance estimator is less than desirable as it involves kernel
density estimators, and must be re-derived for each popetation model considered. Rao,
Kovar & Mantel (1990) give an analytical variance estimator for the design-based difference
estimator. The design consistency of this variance estimator assumes the existence of an expan-
sion in Randles (1982) which is not verifiable for general sampling designs. This point was not
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considered by Rao, Kovar & Mantel (1990). We establish the existence for some specific and
important designs.

One of the goals of this paper is to demonstrate that jackknife variance estimators are an
attractive alternative. The jackknife is a commonly used technique to estimate variance which
is easy to implement. It is attractive as it merely involves deleting a unit and re-calculating the
estimator. In Section 4.1, we investigate the use of the delete-one jackknife for estimating the
variance of the model-based estimator and establish consistency results. This method avoids the
need for kernel density estimates and remains operationally the same for different superpopu-
lation models. In Section 4.2, we similarly establish the consistency of the jackknife for the
design-based difference estimator for some common designs. In the design-based case, the jack-
knife does not have as great an operational advantage because the analytical variance estimator
can quite easily be extended to other models. However, while investigating the small sample
performances of these variance estimators through simulation in Section 5, we demonstrate that
the jackknife displays better conditional properties in the design-based case. We conclude with
a brief discussion in Section 6.

2. ESTIMATORS OF THE DISTRIBUTION FUNCTION

Suppose tha is the characteristic of interest amds the auxiliary variable associated wigh
The finite population of sizeV consists of all pairs ofy;,z;), ¢ = 1,..., N. The finite-
population distribution function of evaluated at is defined as the proportion of units in the
population withy values less than or equaltoviz.

1 N
F0 = 7 3T <0

wherel( -) denotes the indicator function. Lebe a sample of units from the finite population

under a general sampling design andsléenote the non-sampled units of the finite population.

We assume that the auxiliary informatief is known for all elements in the finite population

while y; is known only for: € s.

The paper of Chambers & Dunstan (1986) motivated much of the later work. In their model-
based frameworky andy are assumed to follow a superpopulation model. Though the results
can be extended to more complex models, for simplicity of presentation, we will first restrict
attention to the simple linear regression model,

Yy =a+ Pz, +e, 1=1,...,N, Q)

where thes;’s are independent and identically distributed wiitke;) = 0, var(e;) = ¢ anda
andg are unknown superpopulation parameters.

Under (1), the model-based estimator
~ 1 1 .
Fn(t) = N[Z Iy, + - 3> Hu <t =Gl —m}] )
i€s JET i€s

is asymptotically model-unbiased fé¥{t), whereg = Soies (Wi — W) (@i — B)/ Y0, (i — T)2.
This is a Royall-type estimator which Chambers & Dunstan (1992) develop by noting that

F(t) = N‘l{z Iy <t)+ Zl(yi < t)}

and using a model-based predictor of the second term. A crucial point here i@nxlfre)t is
independent of the sampling design, (&s, ;) fori = 1,..., N are viewed as independent
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sample values from superpopulation model (1) regardless of whether they belong to the set of
sampled unitss, or to the set of non-sampled uniis,The estimato#,, (t) being asymptotically
model-unbiased fo#(¢) is understood to meahm,, E{ﬁm(t) — F(t)} = 0, whereE
denotes the model expectation. We should also note that, for asymptotic theory, a sequence of
finite populations indexed by is assumed. All limiting processes will be understood to be as
v — oo. We also assume — oo, N — oo asv — co. However, throughout this paper, we will
not make distinctions among— oo, n — co andN — oo.

Rao, Kovar & Mantel (1990) proposed a design-based estimator which is asymptotically both
design-unbiased under a general sampling design and model-unbiased under a working model

such as (1),
N
~ 1 ~ ~
Fa(t) = N{Zwi‘lf(yi <H+Y G- im‘lGic},
j=1

=¥ =¥

where

G = YomEe<t—a—pay) [ 3wt

kes kes

~ T B B - T

Gic — Z . I(Ek St_a_ﬁ$i)/z : 3 (3)
kes Tik kes Tik

G o= Yot —g) [ Y (e - 8)
=¥ =¥

o = y—Pr, & = yr—a— Py,

Po= Ywte /A 5= Yot [ 3w
=¥ =¥ =¥ =¥

andm;, m;; are the first- and second-order inclusion probabilities. Note that the original formu-
lation of F4(¢) given by Rao , Kovar & Mantel (1990) was under a heteroscedastic model which
we will mention in Section 4.
The estimatoiF;(¢) was motivated as a difference estimator (also called a modified Horvitz—
Thompson estimator; see Basu 1971) by assuming the
1 N
Gj: sz(gl §t—a—ﬁxj)

i=1

are known and then replacing them by their estimates in (3). It is design-unbiased and usually has
smaller variance than the conventional Horvitz—Thompson estimator. Godambe (1989) derived
F4(t) based on the model- and design-based optimum estimating function theory and showed
thatﬁd(t) is robust against departures from the superpopulation model.

The model—basecﬁn(t) is model-unbiased but design-inconsistent. Rao, Kovar & Man-
tel (1990) argue through simulation that the model—ba@@(ﬂt) has superior performance in
small samples when the superpopulation model is correctly specified but is more vulnerable than
F4(t) to model-misspecification and in such cases can perform poorly in large samples. Cham-
bers, Dorfman & Hall (1992) do a theoretical comparison and conclude that there is no clear
winner. One must take care judging whether any model-based or design-based estimator is “bet-
ter”, since they are developed under completely different frameworks. Whether one chooses
to work under a model-based framework and #5gt) or a design-based framework and use
F4(t), variance estimation will need to be considered.
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3. ANALYTICAL VARIANCE ESTIMATION

In this section, we propose an analytical variance estimator for the model-based esﬁm(at)or

by combining the theoretical results of Chambers, Dorfman & Hall (1992) and some results from
Wang & Dorfman (1996). We also introduce the analytical variance estimator for the design-
based estimatoF,(¢) proposed by Rao, Kovar & Mantel (1990). The establishment of design-
consistency of this variance estimator relies on a condition which was not considered in Rao,
Kovar and Mantel's original derivation. This condition is given in Section 4.2 and has been
verified in Appendix 2.

3.1. Model-based estimator.

Six years after Chambers and Dunstan’s original paper, Chambers, Dorfman & Hall (1992) de-
rived the asymptotic model variance 6§, (¢) under (1). To summarize their results, assume
thatf = n/N — = € [0,1) asn — oo, and assume the sampled and non-sampjechave a
common asymptotic density(z). Let G andg be the error distribution function and the error
density function, respectively, lef be the error variance, and

/xh(x)dx, ol = /xzh(x)dx—pi,

po =
I = /(x — pz)g(t —a — Bx)h(z) de,
b= [ [Glit=a= e A= o pbhih) de dy

Is = /G(t—a—ﬁx)h(x) de,

14

/{G(t — o — fBr) — G*(t — a — pr)}h(x) de,

wherea A b denotes the minimum af andb. Then, under model (1),

var{Fj,(t) — F(t)} = %{(1 —7)? (Z—gff +I— fg) + (1 — 71')[4} + OG) (4)

xr

In their construction of a different point estimator B{¢), Wang & Dorfman (1996) suggest
estimatingly, I», I3 and/ls by

L= (N=n)™'Y (z; - 2)g(t — & = fry),

e
I = (N—n)_zizén{(t—@—Bﬂﬁi)A(t_@_Bgﬁj)}’
I = <N—n>—1§g<t—d—ém
e
Iy = (N—n)‘lJZGn(t—d—@xj){l—én(t—d—ﬁxj)}, (5)
JjEs
where
én(u)_n_lzf(él<u), & =y — & — Ba;,
i€s
and

§(w) = (nd)™" 3" K{(& - w)/d)

=¥
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is a standard kernel density estimator with bandwidtnd kernelX (-). Lettingo? = s2,
62 = (n—2)"1 3", €7, we can then estimater{ 7}, (t)—F(t)} by estimating all the unknown

components in (4) term-by-term.
We suggest that it is computationally more stable to wiite= I, — I? as

/ G{(t—a—ﬁx) /\(t—oz—ﬁy)}[l— G{(t—a—ﬁx) \Y (t—a—ﬁy)}]h(r)h(y) dzx dy,

wherea V b denotes the maximum afandb. We can rewritevar{ ., (t) — F(t)} by replacing
I — I3 in (4) by I3. We therefore propose to estimate{ I, (t) — F'(t)} by

v = v{Fp(t) — F(t)} = %{(1 -1 (Z—gff + fzg) + (1 - f)f4},

xr

wherel,s equals

NN Ga{t—a—pai) At —a - Bay) 1= Go{(t—a—Bri) V(-6 — Baj) }].

1€E5 jEF

It is not difficult to see that,,, is more robust and it is guaranteed that > 0.

There are still difficulties with this variance estimatgg. One difficulty is that the kernel
density estimatofi( - ) is computer intensive and involves choosing a kefiél ) and a band-
width d which are always difficult choices to make. In our simulation study, we tried two choices
of kernel density estimator: a standard normal kernel with 1.0595.n~ /%, recommended by
Simonoff (1996); and a standard logistic kernel with= R/n, recommended by Kuk (1993),
whereR is the range of residuals. We chaoBe= 44, for each simulation.

Another greater drawback which will be shared by other analytical variance estimators is
the fact that the derivation of the analytical variance formula depends heavily on the model.
One may, at first glance at the form of (4), intuit that deriving such for a different model would
merely amount to a redefinition of the residuals. This is not the case, as can be seen by viewing
the development for a linear model with heteroscedastic errors in Chambers & Dunstan (1986).
The variance estimator must be completely re-derived for every new model considered.

3.2. Design-based estimator.
Rao, Kovar & Mantel (1990) propose estimating the design-varianﬁe(o)j by

vg = o{Fa(t) NzZZW] mij {uﬂ(j) _v;ii)}z’ )

1€s j>1

whereu; (j) = I(yi <1t) — Gic(5), v; (i) = I(y; < t) — Gj(i) and

T o A !

keEs

which is a conditionally design-unbiased estimator ¢grgiven theith and thejth units are
selected in the sample.

Rao, Kovar & Mantel (1990) argue tha is design-consistent by referring to a result from
Randles (1982). Though this claim may be true for many commonly used designs, it relies on
the existence of an asymptotic expansion in Randles’s paper which may or may not exist for a
particular design and is difficult to verify generally. This point is discussed furtherin Section 4.2
since similar problems must be overcome to establish the consistency of the delete-one jackknife.
In the process, we verify the design-consistencydffor some common situations.
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As noted by Rao, Kovar & Mantel (1990)4 “involves the computation of third order in-
clusion probabilitiess; ;, which could be cumbersome under unequal probability sampling”.
However, it is often the case that the sampling fraction (in the first stage for multi-stage sam-
pling) is small. If so, it is common practice to assume with-replacement sampling (at the first
stage for multi-stage sampling) for the purpose of variance estimation. This usually yields a
conservative variance estimate and also simplifies (6) by eliminating the need for second- and
third-order inclusion probabilities. This is further discussed in Section 4.2.

4. JACKKNIFE VARIANCE ESTIMATION

4.1. Using the jackknife to estimate the varianceﬂ;ﬂ(t) — F(1).

Let us considelvar{ﬁm(t) — F (1)} under model (1). First, notice that we cannot ignore the
variability induced by estimation of and 5. To see this, denoté,, (¢) by I, (¢; &, ) and
compare

rlFaltio,9) - FO) = H{( =P Ea b ni-mn) +o(1)

to \/Aar{ﬁm (t; &, A) — F(t)} givenin (4). We see that, under (1), the asymptotic model variance
of Fi,(t; &, 3) — F(t) is the same as that %, (; «, 5) — F(¢) if and only if

h= [~ gt = = go)h(a) dz = 0. ®)

For a particular population quantiteof interest, (8) is usually not true and the impact of
replacinga, 2 by &, # on asymptotic variance depends on the valug/of and the ratio of
o2 /o2, This suggests that any jackknife variance estimator will havedalculatey and 3 with
each deleted unit. We mention this because, as we will see in Section 4.2, this is not the case
for the design-based estimator. It is also worth noting that this remains true evensfdr. It
is interesting that Chambers, Dorfman & Hall (1992) identified the sizg @k an indicator of
cases wheré;(¢) outperformed?,, (¢) even when the model was correct.

Next, note that

Fult) = F(t)= =SS My <t = oy o)) = = S0 <1, (9)

JEZ i€s jES

and thuazar{f?m(t) — F()} = V1 + V3, where

Vo= Val’[%z%zl{yiSt—é(xj_xi)}] and

i€s jEs
v = v St <0} = IS G- a - et - G- a- sy
JES JjEF

The jackknife cannot be applied directly 6, (¢) — F(t) since it involves the unobserved
values of the variable. Typically, the jackknife is applicable in surveys whiea n/N is small,
which is often the case. By ignorinfy we may induce a positive bias which will hopefully be
small. We will first consider this case, by assumifg> 7 = 0. We will then consider the case
wherer > 0.

There are two things to observefif— 0. First, V> = o(1/n), and secondyar{ﬁm(t)} =
Vi + o(1/n). This last follows from viewing?,, (t) as the sum of two terms in (2) and noting
that the variance of the first term i35,

el W S <0 f = 7wt Srt <0 <o 3)

i€s i€s
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and that the covariance term can also be shown tg bé).

Thus, the leading term in bottr{ 7},, t)—F(t)} andvar{F}, (t)} is V1. We are now ready
to state conditions needed for establishing the consistency of the jackknife variance estimator
whenf — 0, Theorem 1 below. Recall that(-) andg(-) are the error cumulative distribu-
tion function and density function under model (1). I&t( -) be the corresponding empirical
distribution function based on a sample of size

— N

AL N7 2= 0(1).
A2. For a random sampleof sizen, max;¢, |¢;| = Op(n?) for someg € (0,1/4).

A3. G(-) has bounded first and second derivativednwhere® is the closure of all possible
values oft — o — Bz, j = 1,..., N in the limiting process.

Ad. For fixedt, N=1 5270 g(t —a — Br;) = O(1) andN =} S0 2jg(t — o — Baj) = O(1).

Condition Al is not restrictive. Condition A2 is needed to furnish our proofs and a sufficient
condition for this isE (X'/9) = O(1), where X is the auxiliary variable. For example, for
q = 1/5, finite fifth moment is enough.

THEOREM 1. (i) Under conditions A1-A4, mod@), and assuming — 0,

Viml = (n—1) Z(Fz* - F*)Z

n N
i=1

is a consistent estimator ofar{ﬁm (t) — F(t)}, where

no1 1 1 .
Fr=— Ik <)+ —— 3 |+ S Huw <t Bile; —
PNl £ (yk_)—i_n—lke [NjEs {ye <t =G — 2l

; is calculated based os;, the sample data with thih observation excluded, anfi* =
Z?:l FZ*/n
(i) With the same conditions as ), (vsm1)~'/2{Fn(t) — F(t)} converges taN(0,1) in
distribution.

Proof of Theorem 1See Appendix 1.

Thus, in the case whergis negligible, one can use the usual delete-one jackknife variance
estimator.

Now let us consider the case where> 7 € (0, 1). In this case, we cannot merely apply the
jackknife, as the last term in (9) involves unobseryédand its variancels, is not negligible.
On the other hand, we would prefer to avoid the problems with the analytical variance estimators
of Section 3, which arise due to the first term of (9) and estimation of its variendé turns out
that we can combine the jackknife and analytical approaches to get a variance estimator which is
easy to implement (much easier thap) and consistent. We summarize this in Theorem 2.

THEOREM 2. (i) Under conditions A1-A4 and mod@l), let ve = f(1 — f)f4/n and

n

n—1 —
— ng* _F** 2
VJj1 n Z( 7 ) ;

i=1

where . .
F = S| St - ey - ),

keEs; JES
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I, is given in(5), 3; is calculated froms; and F** = .7 F**/n. Thenv s = vy + vz iSa
consistent estimator ofar{ F,, (t; &, 3) — F(t)}.

(i) With the same conditions as {{), (vsm2)~'/2{Fn(t) — F(t)} converges taN(0,1) in
distribution.

Proof of Theorem 2The result follows easily from the fact thatr{ 7,,, B —FH)t=Vi+ Vo,
vy — Vo andwy; — Vi by the proof of Theorem 1.

Thus, we jackknife term 1 of (9) and analytically estimate the variance of term 2 with a
substitution estimator which does not require kernel density estimation.

Generalizations of the simple linear regression model in (1) to other models are important in
practice. For example, in the original papers of both Rao, Kovar & Mantel (1990) and Cham-
bers & Dunstan (1986), the following heteroscedastic linear model was assumed:

yi:6$i+v(l‘i)6i, izla"'aNa (10)

wherewv(z) is a strictly positive function of only and thes;’s are independent and identically
distributed. Under model (10), we need modified versions of A1-A4 to validate the proposed
variance estimation strategy. If we redefine= (y; — fz;)/v(z;), é; = (y; — Bz;)/v(z;) and

b= { S wwvt ) [{ et}

i€s i€s

then we can replace A1-A4 by AJA4' obtained by replacing; by »;/v(z;) in Al and A2,
replacingz; by «; /v(z;) for z; notin the argument of in A4, and replacing — « — Sx; by
(t = B;)/v(x;) in A3 and A4.

Noting that

Vo= N3 G{(t = By) [o(z;)}[1 = G{(t = Bj) [v(1)}]
JES
can be estimated by
vo = N72Y " Ga{(t = Bay) /v(wy) 1 = Ga{(t = Ba;) [v(x5)}],
JES

Theorems 1 and 2 can then both be extended to model (10) if we assum&4AIThe method
extends as easily to more complex models.

4.2. Jackknife variance estimation fBi(t).

In this section, we will consider the delete-one jackknife variance estimatcﬁ‘d(m). By Ran-
dles (1982), ifXy, ..., X,, is arandom sample and¥f, (A) = 7,, (X1, ..., X,; A), whereA isa
consistent estimator for parameferthen assuming that the following expansion holds,

V:A} + o, (%) : (11)

T, (A) and T,,(A) have the same limiting distribution providetl:(v)/dv|,=» = 0, where
pu(v) = lim, o E {7, (v)} and the expectation is taken when the true parameter is
Denoteﬁd(t) by ﬁd(t; Q, 5). Let ﬁd(t; «, §) be the same estimator but with 8 not esti-
mated from the sample. Rao, Kovar & Mantel (1990) show that, v2)/0v;|,=» = 0 for
i =1,2,whereu(vy,vs) = limy 00 E ay@{ﬁd(t; vi,va)}, ﬁd(t; Vi, V2) denotesﬁd(t; «, §) but

100 = 1) = T3) = 1) + (= 3] 2tv)
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replacingh = («, 5) by mathematical symbal = (v, v2). Using the above argument, they

conclude that - .
var{F4(t; &, )}
Var{ﬁd(t; o, 6)}

asn — oo, by quoting Randles (1982). They did not mention the crucial condition, that expan-

sion (11) exists. Although (11) holds for many statisfi¢g») which are not smooth functions

of v, itis mathematically unverifiable fcﬁd(t; vy, v2) for general sampling designs.

We will look at a couple of important sampling designs. First consider unequal probability
sampling with replacement. In this case, it is possible to verify (11) anduii@@r assumptions
similar to those made by Shao & Rao (1993) when they consider estimators of the low income
proportionin the context of stratified multi-stage sampling. In our case, we must derive the result
uniformly overt; = ¢ — o — Sz;. Thisis done in Appendix 2. In practice the units are sampled
without rephcement, but iff is small, assuming with-replacement sampling for the purpose of
variance estimation is a common practice. This simplifies the calculations and is likely to create
only a small positive bias in the resulting variance estimates. The same arguments hold for
stratified multi-stage sampling with first-stage clusters sampled witheepient.

Once (11) and (12) have been established in this setting, consistency of the jackknife variance
estimator follows quite easily. To see this, let

Fi(t) = %{Zwﬂ(% <t) +ZGj — ZwiGi},

i€s i€s

1, (12)

wherew; = 1/x;,
1 N
G; = NZI(Ej <t—a-—pr)
j=1
is a population characteristic, anf= y; — o — ;. Itis straightforward to show that; (¢) —
Fy(t;o, B) = o,(n=1/?), i.e., Fy(t; o, B) and F; (t) have the same asymptotic design variance.
One can then take note that

N 1
var{ F;(t)} = var [N ; wi{l(y; <t)— GZ}] (13)
is the design variance of a weighted average. Assuming certain regularity conditions, the con-
ventional delete-one jackknife variance estimator, denotegb(;), will thus be a consistent

estimator ofvar{F; (¢)} (Shao & Tu, 1995, p. 261, Theorem 6.1). The jackknife variance esti-
mator,v7,(G;), can further be approximated by replacifigby

More formally,

THEOREM 3. Lets; = s — {i} and

N
chll) = N_l{z w,(j)l(yk < t) + ZG] - Zw,(j)Gk}

kes j=1 kes
with w,(f) = nwg/(n — 1) for k € s; and wl(i) = 0. For single stage sampling satisfying
max;es nw; /N = O(1),
-1 —
via = =y {Fg =Ty (14)

n -
1€Es



10 WU & SITTER Vol. 29, No. 1

is a design-consistent estimator\cmfr{ﬁd(t)}, where

N
Fgl — ZFdz — —I{Zwif(yiSt)—l—Zéj—Zwiéi}.
J=1

=¥ =¥ =¥

One could redefine

F = NUS wi {Ige <)~ G} and F = N2 wi {I(y <) - Gi)
kes i€s

in Theorem 3. We chose to write it more like a jackknife might be applied. That is, to merely
delete a unit and recalculate the estimator. In Theorem 3, we do not quite do tfis ias

not recalculated with each unit deleted. We are able to do this because of (12). For small or
moderate sample sizeg it will be of interest to consider a modified version of the jackknife
variance estimator which recalculates3 andG, for each deletion. That is, defining 2 asin

(14) but using

where

Gt = {Zw,(f)l(ék <t—dy— Bixj)}/{Zw,(f)},

kes kes

with &; and j3; calculated from the sample data using the jackknife weigmﬁé), for k =

1,...,n. Thisis a true delete-one jackknife as it completelgaiculates the estimator with each

unit deleted. If the sampling is in fact without repement, one mayhoose to multiply (14) by

1 — f. This is not strictly correct for unequal probability sampling but may be used to attempt to
reduce the positive bias induced by using a variance estimator based on with-replacement sam-
pling (see Durbin 1953, andaBidal, Swensson & Wretman 1992, p. 99). This was done in the
simulations of Section 5.

If the design is stratified multistage sampling, the formulation gf and the required reg-
ularity conditions need to be modified, (see Shao & Tu 1995, Chapter 6; Wu (1999). However,
the basic ideas behind the verification of (11) and (12) remain similar provided the sampling of
first-stage clusters is assumed to be with-replacement for the purposes of variance estimation.
The usual jackknife variance estimator, which deletash cluster one at a time is then design
consistent as the number of strata gets large (Wu 1999).

The formulation ofﬁd(t) can be easily extended to other superpopulation models and the
corresponding jackknife variance estimator is still design consistent.

A simplified version of the analytical variance estimator can also be obtained from (13).
In the variance formula (6) proposed by Rao, Kovar & Mantel (1990), we could simply replace

ui(j) by u; = I(y; <t)—Gj, with no third order inclusion probabilities involved (the difference
betweenuz andu; (j) is thaty; is a simple substitution estimator whilg(j) is a conditionally
design-unbiased estimator fofy; < t) — G; given theith andjth units are selected in the sam-
ple). Further, if the sampling fractiofis small, we could adapt the sampling-with-replacement
variance estimator which involvess only. Thus, in view of the theoretical developments in
this section, we can say that the only real advantage, if any, of the jackknife variance estimator
in the design-based case is operational convenience. We will demonstrate through simulation,
however, that the jackknife does seem to have better conditional properties than the analytical
variance estimator. This has been noted in other contexts (Rao & Sitter 1995; Sitter 1997).
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5. A SIMULATION

In this section, we present the results of a limited simulation study on the small sample per-
formance of variance estimators proposed in Sections 3 and 4. The finite populations used in
the simulation were generated from the simple linear regression model (1pwith3 = 1.
The covariatese; were generated as an independent and identically distributed sample from
a lognormal2.0, 0.25) ande;’s were independent and identically distributed frofN@, 0.6).
The population size was chosen/ds= 2000.

For the model-based estimators, a new finite population was createddieisimulation and
then a simple random sample of size= 50 was drawn from the population. The variance esti-
mators,v,,, vrm1, vim2 andvy; were computed from each sample. This process was repeated
B = 1000 times. We then reconducted the above simulation with 200. The same procedure
was repeated for the design-based estimators except that only one finite population was gener-
ated and used for all simulations. The variance estimatons; s, andv j42 were computed from
each simulated sample from this finfiepulation. The sample sizes= 50 andn = 200 used
here were trying to mimic two situations: sampling fraction negligilfle{50/2000 = 0.025)
and sampling fraction non-negligiblg & 200,/2000 = 0.1).

The performance of variance estimators was measured and compared in terms of relative
percentage biaRB%) and instability [NST). The simulated values dtB% andINST for a
particular variance estimaterwere computed as

v — MSE Sy
TSE and INST(U) = MSE’

RBY%(v) = 100 x

wheres = B °F v, 52 = BT Y.E (v, — MSE)?, MSE = B~ .2 {Fy(t) — F(1)}?
is the estimated mean square errorﬁtﬁ) from another independerit simulations, ancﬁ,(t)
andw, are the values of (t) andwv from thesth simulation, respectivelyRB% andINST were
computed for = &, atp = 0.10, p = 0.25, p = 0.50, p = 0.75 andp = 0.90, whereg, is the
pth population quantile.

Table 1 reports the values &B% andINST of variance estimators,,, vym1, vym2 and
vy, for the model-based estimatdt,, (t). We observe that: (a) For = 50 (f = 0.025):
(i) the jackknife variance estimatotg,,,; andvsm,2 perform well; (i) vs1, the leading term in
bothv;,,,1 andv,,2, also provides valid estimated variance, but has negative bias in all cases;
(iii) the analytical variance estimatey, has the smallest value BXST in all cases, but it has the
largest negative bias among,, vs,,1 andv,,2; (b) Forn = 200 (f = 0.1): (i) vm, vim1 and
vyme perform quantitatively similar in terms of bothB% andINST; (ii) they all have larger
and positive bias foF (¢) close t00.50 and smaller or negative bias whét{t) is close ta) or 1;
(i) by ignoring the sampling fractiony s, seriously underestimates the true variance; (iv) it is
interesting to notice the good performancevgf,; for n = 200, since it is not clear whether
vym1 1S consistent or not whey is not negligible; and (v) we should note that took in the
order of 30 times longer to calculate than the jackknife variance estimatcasige of the density
estimation.
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TABLE 1: Relative percentage bias and instability of variance estimators for the model-based estimator
Fn(t) att = &,.

p=010 p=025 p=050 p=075 p=0.90

N = 2000, n = 50

U RB%  —9.47 —6.56 -1.73 -3.01 —5.83
INST 0.254 0.208 0.210 0.251 0.307

vimi RB%  —-1.72 1.05 1.33 3.24 0.99
INST 0.346 0.293 0.243 0.382 0.499
vim2 RB%  —-0.25 221 3.95 6.48 451

INST 0.338 0.287 0.244 0.380 0.493
v RB% —-6.61 —4.04 —-4.14 —2.39 —-4.09
INST 0.338 0.285 0.236 0.368 0.487

N = 2000, n = 200

U RB% -5.94 5.27 11.19 4.06 0.57
INST 0.145 0.126 0.160 0.127 0.152

vimi RB%  —5.48 7.84 8.91 204 -171
INST 0.186 0.171 0.151 0.163 0.226

vim2 RB%  —3.12 8.12 12.55 6.48 0.030

INST 0.166 0.163 0.173 0.167 0.210
v RB% -26.34 -16.86 —18.84 —-2546 —-28.14
INST 0.302 0.213 0.214 0.290 0.341

Table 2 reports the results for the design-based estinﬂ%(o)): (a) For simple random sam-
pling, the jackknife variance estimatoy; is identical to the analytical variance estimatQr
(b) (i) vr42 is more stable than, in all cases; (ii) fom = 50, vs42 has larger positive bias than
vg atF'(t) = 0.10 and0.90, but this difference disappears whenr= 200.

Turning to conditional properties, we chose two value,di.1 and0.5, ordered the sim-
ulated samples on the valuesofand then grouped them into twentycsessive groups. We
ran 10,000 simulations to reduce Monte Carlo error so that each group is os&izd-or each
group, the conditional mean efch variance estimatemwas calculated as

1
Ec(v) = mva.

b=1

Independently, we generatéd0,000 simulated samples and similarly grouped themzanto
20 groups and calculated the simulated conditional MSEamh ofF,,, (¢) and F4(t) as

5000

MSE. {F(1) 5000 Z{ )

in obvious notation.
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TABLE 2: Relative percentage bias and instability of variance estimators for the design-based estimator
Fd(t) att = ¢,.

p=0.10 p=025 p=050 p=075 p=0.90

N = 2000, n = 50

vg RB% 7.87 158 -3.74 —-3.70 3.87
INST 0.484 0.3134 0.274 0.369 0.581

viar RB% 7.87 158 -3.74 —-3.70 3.87
INST 0.484 0.313 0.274 0.369 0.581

viez RB%  14.84 6.24 -0.24 0.88 13.45

INST 0.452 0.301 0.247 0.343 0.558

N = 2000, n = 200

vg RB% —-2.89 —5.03 1.14 3.57 5.36
INST 0.201 0.146 0.134 0.192 0.282

via1 RB% —2.89 —5.03 1.14 3.57 5.36
INST 0.201 0.146 0.134 0.192 0.282

viez RB% —0.98 —4.00 1.87 4.50 7.56

INST 0.176 0.129 0.120 0.176 0.258

For the design-based case, the valueg ofv) (x10%) for v = v4(= vja1) andvy42 and
MSEC{ﬁd(t)} (x10%) were plotted against the group averages:ofFigure 1 gives this plot
for n = 50, andt = ¢, for p = 0.1 and0.5. As we can see, all of the variance estimators
for F4(t) perform well in tracking the conditional MSE for the cgse= 0.5, butv 4, the full
jackknife, significantly outperforms the other variance estimators in this respegt $£o10.1.
In other simulations which are not presented here, it can be seen that this property is a func-
tion of p and becomes more pronounced as one moves awayrei.5 in either direction.
This suggests that despite the asymptotic (and unconditional) arguments of Section 4 and the
previously presented unconditional simulations, which suggest these variance estimators are es-
sentially equivalent, there is an advantage to completely recalculBjiftgyfor each deleted unit
when applying the jackknife. This also suggests that the jackknife when so applied has better
conditional properties than the analytical variance estimator of Section 3.

For the model-based case, similar plots were examined but are not presented as all of the
variance estimators faF,, (t) performed well in tracking the conditional MSE for all values
of p.

6. CONCLUDING REMARKS

Based on the theoretical development and our limited simulation study, we suggest that, for
the model-based estimatéy, (¢), the true delete-one jackknife variance estimatgy; is rec-
ommended iff is small; in cases wherg is not negligible, it is safe to use;,,2, although
simulation results suggest thaf,,,; can also be used in these caseg; was included in the
simulation to serve the purpose of illustrating the asymptotic results only, it should not be used
in practice even though it is consistent whgis small. It should be emphasized that our solution
(Theorem 2 ,,2) for this latter case is a hybrid of the jackknife and the analytical approach.
Compared to the pure analytical approach, where the derivation of analytical variance for more
complex models is very difficult (if not impossible) and the estimation of the variance requires
a kernel smoother, the analytical component of this hybrid estimator involves a simple empirical
distribution estimator of the residual distribution. Thus, this hybrid estimator is simple, stable
and easily applicable, and its extension to more complex models is obvious and easy.
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FIGURE 1: Plot of conditional performance of variance estimators: Conditional méats;), E (v sa2)
(x10*) and conditioned mean squared erddSE . { Fu(t)} (x10*) for (@) t = &0.1 and (b)t = o 5,
versus group average of

For the design-based case, in terms of conditional performange, the true delete-one
jackknife variance estimator, performs the best. However, it tends to have larger positive un-
conditional bias wher¥ () is close to0 or 1 andn is not large. Jackknife variance estimator is
usually less stable. In our settings here, both the analytical and the jackknife variance estimators
are approximately unbiased, the jackknife may be preferred due to its operational simplicity.

APPENDIX 1: PROOF OF THEOREM 1
The following lemma is used in our proof.

LEMMA. Leta, = ¢on~%, ¢ € (0,1/2) be a constant. I&& has bounded first derivative ovér,
then
sup [{Gn(u+ ) = Ga(u)} = {G(u+2) = Gu)}| < Ry,

|z|<an

whereR,, = o(n='/?), independent of € ©.

Proof. The proof follows along the lines of Bahadur (1966) (see also Serfling 1980, pp. 97-99).
Using his notation, let,, = n2(1=% so thath2 = n!~9 anda,b;* = o(n~/2). Next, letting
Y = cyn~3(1+9) (log n)1/2 = o(n_l/z), we can show that
2
_ n
On = 72((:2% o) > 2logn

for sufficiently largen. The fact thaG'(u)| = |g(u)] < M, u € © for some constand/
indicates that the choices of ande» can be independent af which also implies the uniformity
of R,, over®.

Proof of Theorem 1(i) We need only to show th& = var{ﬁ(t)} can be consistently estimated
by a jackknife estimator, where

H(t) = %ZZI{% <t —Baj— i)}
i€s jEF

To do this, letA(u;t, o, 5) = L_a_ﬁx>u h(z)dz, B(t,o,8) = [ g(t — a — Bx)h(z) dz and
Ct,a,B8) = [2g(t — a — Br)h(z) dx and note that

Nl_nZg(t—a—ﬁxj) = B(t,a,8)+o(1),
Jjes
Nl_anjg(t—a—ﬁxj) = C(t,«o,p0)+ o(1), (15)
Jjes
Nl_nZI(ugt—a—ﬁxj) = A(w;t,o,8)+ Rnn(ut, o, 8),
Jjes

where Ry ,(u;t,a,3) = o(1). Under model (1),; = v — o — Bz; and Gp(z) =
n~ty".c, I(e; < x). For a given samples, leta,, = |3 — 3| max;e, |2;| and observe that
1
G N —ay) < — I(g; < < G, N — n)-
(z4+é—a a)_n%;(a_x)_ (x+d&—a+ay)
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This impliesthan ™'Y, I(é; < z) = G (x + d,,), for somed,, = (& — a) + (8 = B)e, and
len] < max;es |2;]. Now, let

1
ZZ[{% <t—B(x; —w) :NZGH(@»), (16)
zEs ]Es JES
wheret; =t — o — fBz;. Noting thatvar{ Rx » (¢i;t, o, 5) } = o(1), we get

HE) = (1—%)%ZN1_RZI(62'§15—@—5%’)

i€s jEF

— (1__) Z{A (eist, o, B) + Rnn(eist, o, B) } (17)

=¥
1
= 1——) ZAaZ,t,a ﬁ)—|—0p< )
(-5 )% 7
Also note that

A(t) —ZZI{@/Z <t = flej - i)}

i€s jEF
_ %ZGn(t—@—Ba@ﬁdn) (18)
JES
1 ~
= T2 Gnlti+ (B Plen —2))},
JES

where the second equality holds sindey; <t — G(x; — #;)} = I(é; <t — & — ;).
By Condition A1 which implies? — 3 = O, (n~'/?), Conditions A1 and A2 which together
imply (6 — 8)(c, — #;) = 0,(n~'/*), and the lemma,

|Gdty + (8 = B)(en — )} = Galty) = G{t; + (8 — B)(en — )} + G(tj)] < R,

whereR,, = o,(n~'/2). SinceG has bounded second derivative akid! S 27 = O(1), by
applying (16), (18) and a Taylor expansion®ft; + (4 — 3)(c. — ;) } att; to the second order,

we get
H(t) = {(H(@)-H@O}+H(®)
= NZG{t+5 B)(en = )}

- G”( j) - G{tj + (B - 6)(671 — $])} + G(t])]
SO + (5= Blen — )} = Glty)] + 7100

JEs

1= ey Tott) - 5 L asat) | + 70 +0, (2 ).

JEs JES

We know from (4) and (7) thatar{f[(t)} = O(1/n) andvar{H (t)} = O(1/n). From the
fact thatvar(3 — 8) = O(1/n), var{o,(n='/?)} = o(1/n), and for anyX,Y, cov(X,Y) <
{var(X) var(Y)}/2, we conclude that, = O(1) or o(1). This together with (15) and (17)
implies the asymptotic variance éf(t) is the same as that of

(1__) [(ﬁ B){ea B(t, a,ﬁ)_(J(t,a,ﬁ)}+%ZA(ei;t,a,ﬁ)],

=¥
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which is a smooth function of sample means of properly defined population characteristics. The
conventional delete-one jackknife variance estimator is therefore consistent and construction of
this estimator is straightforward.

(i) The asymptotic normality o, (t) follows from the fact that’,, (t) is asymptotically equiv-
alent to a smooth function of sample means.

APPENDIX 2: ILLUSTRATION OF (11) AND (12) UNDER SAMPLING WITH RE-
PLACEMENT

We first consider unequal probability sampling W|th mmment with inclusion probdities ;.

Lete; =y —a—Bx;fori=1,...,N,Gn(u) = 1Z] 1 I(¢5 < wu)and
= Zﬂ-i_lj(gi < u)/Zﬂ'fl
=¥ =¥
We assume

Cl.max;es n(Nm)~t = O(1).
C2. There existgy(z) > 0, fordxy = O(N~9), ¢ € (0,1/2), such that
{Gn(z +0n) — Gn(2)}/On —gn(2) = "Ne, T €O,

where|rn,| < Ry andRy = o(1), independent of, and© is the closure of all possible values
oft —a — fz; forj =1,..., Ninthe limiting process.
C3.|gn(x)| < M, foranyz € ©, whereM is a constant. C4d — a = O, (n~ /%), — § =
Op(n=/2), N=1 3% | 22 = O(1) andmax;e, |z;| = O,(n'/2~1) for someq € (0,1/2).

Conditions C2 and C3 used here are stronger than (C2) and (C3) in Shao & Rao (1993) in
order to achieve certain uniformity (C2 and C3 together is equivalent to A3 used in Theorem 1);
C4 holds for most common situations.

The following development is similar to the proof of Theorem 1. Note that C1 also implies
N~ ot — 1 = 0p(n~%/?). Following the lines of Shao & Rao (1993, p. 400), we can

K3

show that, under conditions C1-C3 for- 6 = O, (n~%), ¢ € (0,1/2),6 € O,
Ga(0) = Ga(0) = G (0) + Gn (0) +un(0), 0 €O, (19)

where|u, (0)] < uy, uy = o,(n~'/?), independent of. Recall that;; = y; — o — fa;,

é:yi—d—ﬁxiand
domil(si<t4a—a—a,) <> m HE <)<Y w7 (e <t+a—atap),
=¥ =¥ =¥

wherea,, = |3 — 8| max;e, |2;|. Hence,

Zﬂ'_1162<t/2ﬂ' =Gt +dy),

i€s i€s

whered, = (@ — @) + (8 — B)e, and |e,| < maxie, |z;]. Letd; =t —a — fGz; and
0j =t —a—Prz;. Itis easy to see tha{r? =G (6; + d,,) in the formulation ofF,(t; &, 3).
Also note thats;. = G; under sampling with repcement. Therefore,

Fy(tia, B) = %{Z m I (y < ) i:v:é DR N }

i€s i€s
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With condition C4,0; — 6; = —(& — a) — (6 — B)z; = O,(n~?) andd, = O,(n"9).
Assumingd; + d,, € @ from (19),

Gn(0; + dn) = Go(0; + dn) — G (0; + dn) + Gn (05 + dn) + un(6; + d)
and
G (0 + dn) = Gn(0;) = Gn(0;) + G (0 + dn) + un (6).
Now it follows that
~ s 1 1
Pt ) = N[Zw I <)
+Z{G (05) + GN (0 4 dn) + 1 (0 + dn) + un(6;)}

IR (0:) + G (i + dn) + 1w (0:) + wn (6 + dn) }

N

j=1

e A G+ ) = G (0) 4 0y (= ).

=¥

Under condition C4¢; — 6; + d,, = (3 — f)(cn — ;) = O,(n~9). From condition C2,

G (05 + dn) — Gn(05) = (B = B)(en — 2){an(0;) + rne, },

where|ryg,;| < Op(n~7), uniformly overd;. Therefore, we have the following expansion,

- . 8 1
Faltia,B) = Falti, 9)+ (5= ) la,9) +0,( = ). (20)
where
1 N
Z n— )9 (0 ——Zﬂ' n = 2;)gn(0;).
]:1 i€s

It is interesting to notice that does not appear in the right-hand side of (20) explicitly. In
fact, Fd(t a, (3) contains nav at all. If all the finite population moments involved jny («, 3)
are bounded (similar to those assumed in A4), we immediately concludextiat 3) = o, (1),
thatis,Fy(t; &, 8) = Fa(t; o, 8) + 0, (n=1/2), which implies (12).

For stratified multi-stage sampling with first-stage clusters sampled withaemient, the
above development is similar, except that condition C1 needs to be re-formulated (cf. Shao &
Rao 1993, for the exact formulation) and the triple indé%j) should be used in place 6f
throughout.
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