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Abstract:The authors develop jackknife and analytical variance estimators for the estimator of Chambers &
Dunstan (1986) and Rao, Kovar & Mantel (1990) of the finite population distribution function, using com-
plete auxiliary information. They also describe the associated model and show the design consistency of
the variance estimators, whose small-sample performance is examined through a limited simulation study.
They highlight the operational advantages of the jackknife in the model-based setting of Chambers & Dun-
stan (1986) and its better conditional performance in the design-based setting of Rao, Kovar & Mantel
(1990).

Utilisation de l’information auxiliaire complète pour obtenir des estimations
de la fonction de répartition d’une population finie
Résumé : Les auteurs montrent comment utiliser de l’information auxiliaire compl`ete pour obtenir des es-
timations de variance analytique et jackknife pour les estimateurs de Chambers & Dunstan (1986) et de
Rao, Kovar & Mantel (1990) de la fonction de r´epartition d’unepopulation finie. Ils d´ecrivent aussi le
modèle associ´e et montrent la coh´erence des estimateurs de variance en fonction du plan exp´erimental.
Le comportement `a taille finie de ces estimateurs est ´egalement ´etudié par voie de simulation. Ils soulig-
nent les avantages op´erationnels du jackknife dans le cadre du mod`ele de Chambers & Dunstan (1986) et
ses meilleures performances conditionnelles du point de vue du plan d’exp´erimental que privil´egient Rao,
Kovar & Mantel (1990).

1. INTRODUCTION

The use of auxiliary information in estimating the finite population distribution function has
attracted increased attention in recentliterature. Several estimators which incorporate knowledge
of an auxiliary variable known for every unit in the finite population have been proposed and
their performances examined and compared. See, for examples, Chambers & Dunstan (1986),
Rao, Kovar & Mantel (1990), Chambers, Dorfman & Hall (1992), Kuk (1993) and Wang &
Dorfman (1996). For some discussion on situations where auxiliary information is available at
the unit level in complex surveys, see S¨arndal, Swensson & Wretman (1992, Chapter 8). Less
attention has been given to the variance estimation problem.

This paper examines variance estimation in this setting for two leading estimators of the
finite-population distribution function, the model-based estimator of Chambers & Dunstan
(1986) and the design-based estimator of Rao, Kovar & Mantel (1990). For the model-based
estimator, analytical variance estimators must be developed for each assumed superpopulation
model. In the case of the simple linear regression model, such an estimator is derived, based
on an asymptotic result of Chambers, Dorfman & Hall (1992). We do so by using some results
in Wang & Dorfman (1996). This variance estimator is less than desirable as it involves kernel
density estimators, and must be re-derived for each superpopulation model considered. Rao,
Kovar & Mantel (1990) give an analytical variance estimator for the design-based difference
estimator. The design consistency of this variance estimator assumes the existence of an expan-
sion in Randles (1982) which is not verifiable for general sampling designs. This point was not
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considered by Rao, Kovar & Mantel (1990). We establish the existence for some specific and
important designs.

One of the goals of this paper is to demonstrate that jackknife variance estimators are an
attractive alternative. The jackknife is a commonly used technique to estimate variance which
is easy to implement. It is attractive as it merely involves deleting a unit and re-calculating the
estimator. In Section 4.1, we investigate the use of the delete-one jackknife for estimating the
variance of the model-based estimator and establish consistency results. This method avoids the
need for kernel density estimates and remains operationally the same for different superpopu-
lation models. In Section 4.2, we similarly establish the consistency of the jackknife for the
design-based difference estimator for some common designs. In the design-based case, the jack-
knife does not have as great an operational advantage because the analytical variance estimator
can quite easily be extended to other models. However, while investigating the small sample
performances of these variance estimators through simulation in Section 5, we demonstrate that
the jackknife displays better conditional properties in the design-based case. We conclude with
a brief discussion in Section 6.

2. ESTIMATORS OF THE DISTRIBUTION FUNCTION

Suppose thaty is the characteristic of interest andx is the auxiliary variable associated withy.
The finite population of sizeN consists of all pairs of(yi; xi), i = 1; : : : ; N . The finite-
population distribution function ofy evaluated att is defined as the proportion of units in the
population withy values less than or equal tot, viz.

F (t) =
1

N

NX
j=1

I(yj � t);

whereI( � ) denotes the indicator function. Lets be a sample ofn units from the finite population
under a general sampling design and let�s denote the non-sampled units of the finite population.
We assume that the auxiliary informationxi is known for all elements in the finite population
while yi is known only fori 2 s.

The paper of Chambers & Dunstan (1986) motivated much of the later work. In their model-
based framework,x andy are assumed to follow a superpopulation model. Though the results
can be extended to more complex models, for simplicity of presentation, we will first restrict
attention to the simple linear regression model,

yi = �+ �xi + "i; i = 1; : : : ; N; (1)

where the"i’s are independent and identically distributed withE ("i) = 0, var("i) = �2" and�
and� are unknown superpopulation parameters.

Under (1), the model-based estimator

bFm(t) = 1

N

�X
i2s

I[yi�t] +
1

n

X
j2�s

X
i2s

Ifyi � t� �̂(xj � xi)g
�

(2)

is asymptotically model-unbiased forF (t), where�̂ =
P

i2s(yi � �y)(xi � �x)=
P

i2s(xi � �x)2.
This is a Royall-type estimator which Chambers & Dunstan (1992) develop by noting that

F (t) = N�1

�X
i2s

I(yi � t) +
X
i2�s

I(yi � t)

�

and using a model-based predictor of the second term. A crucial point here is thatbFm(t) is
independent of the sampling design, as(yi; xi) for i = 1; : : : ; N are viewed as independent
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sample values from superpopulation model (1) regardless of whether they belong to the set of
sampled units,s, or to the set of non-sampled units,�s. The estimatorbFm(t) being asymptotically
model-unbiased forF (t) is understood to meanlimn!1 E f bFm(t) � F (t)g = 0, whereE
denotes the model expectation. We should also note that, for asymptotic theory, a sequence of
finite populations indexed by� is assumed. All limiting processes will be understood to be as
� !1. We also assumen!1,N !1 as� !1. However, throughout this paper, we will
not make distinctions among� !1, n!1 andN !1.

Rao, Kovar & Mantel (1990) proposed a design-based estimator which is asymptotically both
design-unbiased under a general sampling design and model-unbiased under a working model
such as (1),

bFd(t) = 1

N

�X
i2s

��1i I(yi � t) +
NX
j=1

bGj �
X
i2s

��1i
bGic

�
;

where

bGj =
X
k2s

��1k I(~"k � t� ~�� ~�xj)
.X

k2s

��1k ;

bGic =
X
k2s

�i
�ik

I(~"k � t � ~�� ~�xi)
.X

k2s

�i
�ik

; (3)

~� =
X
i2s

��1i (xi � ~x)(yi � ~y)
.X

i2s

��1i (xi � ~x)2;

~� = ~y � ~�~x; ~"k = yk � ~�� ~�xk;

~x =
X
i2s

��1i xi

.X
i2s

��1i ; ~y =
X
i2s

��1i yi

.X
i2s

��1i

and�i, �ij are the first- and second-order inclusion probabilities. Note that the original formu-
lation of bFd(t) given by Rao , Kovar & Mantel (1990) was under a heteroscedastic model which
we will mention in Section 4.

The estimatorbFd(t) was motivated as a difference estimator (also called a modified Horvitz–
Thompson estimator; see Basu 1971) by assuming the

Gj =
1

N

NX
i=1

I("i � t� �� �xj)

are known and then replacing them by their estimates in (3). It is design-unbiased and usually has
smaller variance than the conventional Horvitz–Thompson estimator. Godambe (1989) derivedbFd(t) based on the model- and design-based optimum estimating function theory and showed
that bFd(t) is robust against departures from the superpopulation model.

The model-basedbFm(t) is model-unbiased but design-inconsistent. Rao, Kovar & Man-
tel (1990) argue through simulation that the model-basedbFm(t) has superior performance in
small samples when the superpopulation model is correctly specified but is more vulnerable thanbFd(t) to model-misspecification and in such cases can perform poorly in large samples. Cham-
bers, Dorfman & Hall (1992) do a theoretical comparison and conclude that there is no clear
winner. One must take care judging whether any model-based or design-based estimator is “bet-
ter”, since they are developed under completely different frameworks. Whether one chooses
to work under a model-based framework and usebFm(t) or a design-based framework and usebFd(t), variance estimation will need to be considered.
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3. ANALYTICAL VARIANCE ESTIMATION

In this section, we propose an analytical variance estimator for the model-based estimatorbFm(t)
by combining the theoretical results of Chambers, Dorfman & Hall (1992) and some results from
Wang & Dorfman (1996). We also introduce the analytical variance estimator for the design-
based estimatorbFd(t) proposed by Rao, Kovar & Mantel (1990). The establishment of design-
consistency of this variance estimator relies on a condition which was not considered in Rao,
Kovar and Mantel’s original derivation. This condition is given in Section 4.2 and has been
verified in Appendix 2.

3.1. Model-based estimator.

Six years after Chambers and Dunstan’s original paper, Chambers, Dorfman & Hall (1992) de-
rived the asymptotic model variance ofbFm(t) under (1). To summarize their results, assume
thatf = n=N ! � 2 [0; 1) asn ! 1, and assume the sampled and non-sampledxis have a
common asymptotic densityh(x). Let G andg be the error distribution function and the error
density function, respectively, let�2" be the error variance, and

�x =

Z
xh(x) dx; �2x =

Z
x2h(x) dx� �2x;

I1 =

Z
(x� �x)g(t � �� �x)h(x) dx;

I2 =

Z Z
Gf(t� �� �x) ^ (t� �� �y)gh(x)h(y) dx dy;

I3 =

Z
G(t� �� �x)h(x) dx;

I4 =

Z
fG(t� �� �x) �G2(t� �� �x)gh(x) dx;

wherea ^ b denotes the minimum ofa andb. Then, under model (1),

varf bFm(t)� F (t)g = 1

n

�
(1 � �)2

�
�2"
�2x

I21 + I2 � I23

�
+ �(1� �)I4

�
+ o

�
1

n

�
: (4)

In their construction of a different point estimator ofF (t), Wang & Dorfman (1996) suggest
estimatingI1, I2, I3 andI4 by

Î1 = (N � n)�1
X
j2�s

(xj � �x)ĝ(t � �̂� �̂xj);

Î2 = (N � n)�2
X
i2�s

X
j2�s

bGn

�
(t � �̂� �̂xi) ^ (t � �̂� �̂xj)

	
;

Î3 = (N � n)�1
X
j2�s

bGn(t � �̂� �̂xj);

Î4 = (N � n)�1
X
j2�s

bGn(t � �̂� �̂xj)
�
1� bGn(t� �̂� �̂xj)

	
; (5)

where bGn(u) = n�1
X
i2s

I("̂i � u); "̂i = yi � �̂� �̂xi;

and

ĝ(u) = (nd)�1
X
i2s

Kf("̂i � u)=dg
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is a standard kernel density estimator with bandwidthd and kernelK( � ). Letting �̂2x = s2x,
�̂2" = (n�2)�1Pi2s "̂

2
i , we can then estimatevarf bFm(t)�F (t)g by estimating all the unknown

components in (4) term-by-term.
We suggest that it is computationally more stable to writeI23 = I2 � I23 asZZ
G
�
(t� �� �x) ^ (t� �� �y)

	�
1� G

�
(t� �� �x) _ (t� �� �y)

	�
h(x)h(y) dx dy;

wherea _ b denotes the maximum ofa andb. We can rewritevarf bFm(t) � F (t)g by replacing
I2 � I23 in (4) byI23. We therefore propose to estimatevarf bFm(t)� F (t)g by

vm = vf bFm(t)� F (t)g = 1

n

�
(1� f)2

�
�̂2"
�̂2x

Î21 + Î23

�
+ f(1 � f)Î4

�
;

whereÎ23 equals

(N�n)�2
X
i2�s

X
j2�s

bGn

�
(t��̂� �̂xi)^(t��̂� �̂xj)

	�
1� bGn

�
(t��̂� �̂xi)_(t��̂� �̂xj)

	�
:

It is not difficult to see thatvm is more robust and it is guaranteed thatvm � 0.
There are still difficulties with this variance estimatorvm. One difficulty is that the kernel

density estimator̂g( � ) is computer intensive and involves choosing a kernelK( � ) and a band-
widthd which are always difficult choices to make. In our simulation study, we tried two choices
of kernel density estimator: a standard normal kernel withd = 1:059�̂"n

�1=5, recommended by
Simonoff (1996); and a standard logistic kernel withd = R=n, recommended by Kuk (1993),
whereR is the range of residuals. We choseR = 4�̂" for each simulation.

Another greater drawback which will be shared by other analytical variance estimators is
the fact that the derivation of the analytical variance formula depends heavily on the model.
One may, at first glance at the form of (4), intuit that deriving such for a different model would
merely amount to a redefinition of the residuals. This is not the case, as can be seen by viewing
the development for a linear model with heteroscedastic errors in Chambers & Dunstan (1986).
The variance estimator must be completely re-derived for every new model considered.

3.2. Design-based estimator.

Rao, Kovar & Mantel (1990) propose estimating the design-variance ofbFd(t) by

vd = vf bFd(t)g = 1

N2

X
i2s

X
j>i

�i�j � �ij
�ij

�
ui(j)

�i
� vj(i)

�j

�2

; (6)

whereui(j) = I(yi � t)� bGic(j), vj(i) = I(yj � t)� bGjc(i) and

bGic(j) =

�X
k2s

�ij
�ijk

I

�
yk � t� ~�(xi � xk)

�� . �X
k2s

�ij
�ijk

�
;

which is a conditionally design-unbiased estimator forGi given theith and thejth units are
selected in the sample.

Rao, Kovar & Mantel (1990) argue thatvd is design-consistent by referring to a result from
Randles (1982). Though this claim may be true for many commonly used designs, it relies on
the existence of an asymptotic expansion in Randles’s paper which may or may not exist for a
particular design and is difficult to verify generally. This point is discussed further in Section 4.2
since similar problems must be overcome to establish the consistency of the delete-one jackknife.
In the process, we verify the design-consistency ofvd for some common situations.
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As noted by Rao, Kovar & Mantel (1990),vd “involves the computation of third order in-
clusion probabilities,�ijk, which could be cumbersome under unequal probability sampling”.
However, it is often the case that the sampling fraction (in the first stage for multi-stage sam-
pling) is small. If so, it is common practice to assume with-replacement sampling (at the first
stage for multi-stage sampling) for the purpose of variance estimation. This usually yields a
conservative variance estimate and also simplifies (6) by eliminating the need for second- and
third-order inclusion probabilities. This is further discussed in Section 4.2.

4. JACKKNIFE VARIANCE ESTIMATION

4.1. Using the jackknife to estimate the variance ofbFm(t)� F (t).

Let us considervarf bFm(t) � F (t)g under model (1). First, notice that we cannot ignore the
variability induced by estimation of� and�. To see this, denotebFm(t) by bFm(t; �̂; �̂) and
compare

varf bFm(t;�; �)� F (t)g = 1

n

�
(1� �)2I23 + �(1� �)I4

	
+ o

�
1

n

�
(7)

to varf bFm(t; �̂; �̂) � F (t)g given in (4). We see that, under (1), the asymptotic model variance
of bFm(t; �̂; �̂)� F (t) is the same as that ofbFm(t;�; �)� F (t) if and only if

I1 =

Z
(x� �x)g(t � �� �x)h(x) dx = 0: (8)

For a particular population quantilet of interest, (8) is usually not true and the impact of
replacing�, � by �̂, �̂ on asymptotic variance depends on the value ofjI1j and the ratio of
�2"=�

2
x. This suggests that any jackknife variance estimator will have to recalculatê� and�̂ with

each deleted unit. We mention this because, as we will see in Section 4.2, this is not the case
for the design-based estimator. It is also worth noting that this remains true even for� = 0. It
is interesting that Chambers, Dorfman & Hall (1992) identified the size ofI1 as an indicator of
cases wherebFd(t) outperformedbFm(t) even when the model was correct.

Next, note that

bFm(t) � F (t) =
1

nN

X
j2�s

X
i2s

Ifyi � t� �̂(xj � xi)g � 1

N

X
j2�s

I(yj � t); (9)

and thusvarf bFm(t) � F (t)g = V1 + V2, where

V1 = var

�
1

n

X
i2s

1

N

X
j2�s

Ifyi � t� �̂(xj � xi)g
�

and

V2 = var

�
1

N

X
j2�s

I(yj � t)

�
=

f(1 � f)

n(N � n)

X
j2�s

G(t� �� �xj)f1�G(t� �� �xj)g:

The jackknife cannot be applied directly tobFm(t) � F (t) since it involves the unobserved
values of they variable. Typically, the jackknife is applicable in surveys whenf = n=N is small,
which is often the case. By ignoringf , we may induce a positive bias which will hopefully be
small. We will first consider this case, by assumingf ! � = 0. We will then consider the case
where� > 0.

There are two things to observe iff ! 0. First,V2 = o(1=n), and second,varf bFm(t)g =

V1 + o(1=n). This last follows from viewingbFm(t) as the sum of two terms in (2) and noting
that the variance of the first term isV1,

var

�
N�1

X
i2s

I(yi � t)

�
= f2 � var

�
n�1

X
i2s

I(yi � t)

�
= o

�
1

n

�
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and that the covariance term can also be shown to beo(1=n).

Thus, the leading term in bothvarf bFm(t)�F (t)g andvarf bFm(t)g isV1. We are now ready
to state conditions needed for establishing the consistency of the jackknife variance estimator
whenf ! 0, Theorem 1 below. Recall thatG( � ) andg( � ) are the error cumulative distribu-
tion function and density function under model (1). LetGn( � ) be the corresponding empirical
distribution function based on a sample of sizen.

A1. N�1
PN

j=1 x
2
j = O(1).

A2. For a random samples of sizen, maxi2s jxij = Op(nq) for someq 2 (0; 1=4).

A3. G( � ) has bounded first and second derivative on�, where� is the closure of all possible
values oft � �� �xj, j = 1; : : : ; N in the limiting process.

A4. For fixedt,N�1
PN

j=1 g(t��� �xj) = O(1) andN�1
PN

j=1 xjg(t��� �xj) = O(1).

Condition A1 is not restrictive. Condition A2 is needed to furnish our proofs and a sufficient
condition for this isE (X1=q) = O(1), whereX is the auxiliary variable. For example, for
q = 1=5, finite fifth moment is enough.

THEOREM 1. (i) Under conditions A1–A4, model(1), and assumingf ! 0,

vJm1 =
(n� 1)

n

nX
i=1

(F �i � F �)2

is a consistent estimator ofvarf bFm(t) � F (t)g, where

F �i =
n

N

1

n� 1

X
k2si

I(yk � t) +
1

n� 1

X
k2si

�
1

N

X
j2�s

Ifyk � t� �̂i(xj � xk)g
�
;

�̂i is calculated based onsi, the sample data with theith observation excluded, andF � =Pn
i=1 F

�
i =n.

(ii) With the same conditions as in(i), (vJm1)
�1=2f bFm(t) � F (t)g converges toN(0; 1) in

distribution.

Proof of Theorem 1. See Appendix 1.

Thus, in the case wheref is negligible, one can use the usual delete-one jackknife variance
estimator.

Now let us consider the case wheref ! � 2 (0; 1). In this case, we cannot merely apply the
jackknife, as the last term in (9) involves unobservedy’s and its variance,V2, is not negligible.
On the other hand, we would prefer to avoid the problems with the analytical variance estimators
of Section 3, which arise due to the first term of (9) and estimation of its varianceV1. It turns out
that we can combine the jackknife and analytical approaches to get a variance estimator which is
easy to implement (much easier thanvm) and consistent. We summarize this in Theorem 2.

THEOREM 2. (i) Under conditions A1–A4 and model(1), let v2 = f(1 � f)Î4=n and

vJ1 =
n� 1

n

nX
i=1

(F ��i � F ��)2;

where

F ��i =
1

n� 1

X
k2si

�
1

N

X
j2�s

Ifyk � t� �̂i(xj � xk)g
�
;
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Î4 is given in(5), �̂i is calculated fromsi andF �� =
Pn

i=1 F
��
i =n. ThenvJm2 = vJ1 + v2 is a

consistent estimator ofvarf bFm(t; �̂; �̂) � F (t)g.
(ii) With the same conditions as in(i), (vJm2)�1=2f bFm(t) � F (t)g converges toN(0; 1) in
distribution.

Proof of Theorem 2. The result follows easily from the fact thatvarf bFm(t)� F (t)g = V1 + V2,
v2 ! V2 andvJ1 ! V1 by the proof of Theorem 1.

Thus, we jackknife term 1 of (9) and analytically estimate the variance of term 2 with a
substitution estimator which does not require kernel density estimation.

Generalizations of the simple linear regression model in (1) to other models are important in
practice. For example, in the original papers of both Rao, Kovar & Mantel (1990) and Cham-
bers & Dunstan (1986), the following heteroscedastic linear model was assumed:

yi = �xi + v(xi)"i; i = 1; : : : ; N; (10)

wherev(x) is a strictly positive function ofx only and the"i ’s are independent and identically
distributed. Under model (10), we need modified versions of A1–A4 to validate the proposed
variance estimation strategy. If we redefine"j = (yj � �xj)=v(xj), "̂j = (yj � �̂xj)=v(xj) and

�̂ =

�X
i2s

xiyi=v
2(xi)

�.�X
i2s

x2i=v
2(xi)

�
;

then we can replace A1–A4 by A10–A40 obtained by replacingxi by xi=v(xi) in A1 and A2,
replacingxj by xj=v(xj) for xj not in the argument ofg in A4, and replacingt � � � �xj by
(t� �j)=v(xj) in A3 and A4.

Noting that

V2 = N�2
X
j2�s

Gf(t� �xj)=v(xj)g
�
1�Gf(t� �xj)=v(xj)g

�

can be estimated by

v2 = N�2
X
j2�s

bGnf(t� �̂xj)=v(xj)g
�
1� bGnf(t� �̂xj)=v(xj)g

�
;

Theorems 1 and 2 can then both be extended to model (10) if we assume A10–A40. The method
extends as easily to more complex models.

4.2. Jackknife variance estimation forbFd(t).
In this section, we will consider the delete-one jackknife variance estimator forbFd(t). By Ran-
dles (1982), ifX1; : : : ; Xn is a random sample and ifTn(�̂) = Tn(X1; : : : ; Xn; �̂), where�̂ is a
consistent estimator for parameter�, then assuming that the following expansion holds,

Tn(�̂)� �(�) = Tn(�) � �(�) + (�̂� �)0
�
@

@�
�(�)

���
�=�

�
+ op

�
1p
n

�
; (11)

Tn(�) and Tn(�̂) have the same limiting distribution provided@�(�)=@�j�=� = 0, where
�(�) = limn!1 E �fTn(�)g and the expectation is taken when the true parameter is�.

DenotebFd(t) by bFd(t; ~�; ~�). Let bFd(t;�; �) be the same estimator but with�, � not esti-
mated from the sample. Rao, Kovar & Mantel (1990) show that@�(�1; �2)=@�ij�=� = 0 for
i = 1; 2, where�(�1; �2) = limn!1 E �;�f bFd(t; �1; �2)g, bFd(t; �1; �2) denotesbFd(t;�; �) but
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replacing� = (�; �) by mathematical symbol� = (�1; �2). Using the above argument, they
conclude that

varf bFd(t; ~�; ~�)g
varf bFd(t;�; �)g ! 1; (12)

asn !1, by quoting Randles (1982). They did not mention the crucial condition, that expan-
sion (11) exists. Although (11) holds for many statisticsTn(�) which are not smooth functions
of �, it is mathematically unverifiable forbFd(t; �1; �2) for general sampling designs.

We will look at a couple of important sampling designs. First consider unequal probability
sampling with replacement. In this case, it is possible to verify (11) and (12)under assumptions
similar to those made by Shao & Rao (1993) when they consider estimators of the low income
proportion in the context of stratified multi-stage sampling. In our case, we must derive the result
uniformly overtj = t� �� �xj . This is done in Appendix 2. In practice the units are sampled
without replacement, but iff is small, assuming with-replacement sampling for the purpose of
variance estimation is a common practice. This simplifies the calculations and is likely to create
only a small positive bias in the resulting variance estimates. The same arguments hold for
stratified multi-stage sampling with first-stage clusters sampled with replacement.

Once (11) and (12) have been established in this setting, consistency of the jackknife variance
estimator follows quite easily. To see this, let

F �d (t) =
1

N

�X
i2s

wiI(yi � t) +
NX
j=1

Gj �
X
i2s

wiGi

�
;

wherewi = 1=�i,

Gi =
1

N

NX
j=1

I("j � t� �� �xi)

is a population characteristic, and"j = yj ��� �xj. It is straightforward to show thatF �d (t)�bFd(t;�; �) = op(n�1=2), i.e., bFd(t;�; �) andF �d (t) have the same asymptotic design variance.
One can then take note that

varfF �d (t)g = var

�
1

N

X
i2s

wifI(yi � t)� Gig
�

(13)

is the design variance of a weighted average. Assuming certain regularity conditions, the con-
ventional delete-one jackknife variance estimator, denoted byv�Jd(Gi), will thus be a consistent
estimator ofvarfF �d (t)g (Shao & Tu, 1995, p. 261, Theorem 6.1). The jackknife variance esti-
mator,v�Jd(Gi), can further be approximated by replacingGi by

bGi =
X
k2s

wkI(~"k � t� ~�� ~�xi)
.X

k2s

wk:

More formally,

THEOREM 3. Let si = s � fig and

F
(1)
di = N�1

�X
k2s

w
(i)
k I(yk � t) +

NX
j=1

bGj �
X
k2s

w
(i)
k
bGk

�

with w
(i)
k = nwk=(n � 1) for k 2 si andw(i)

i = 0. For single stage sampling satisfying
maxi2s nwi=N = O(1),

vJd1 =
n� 1

n

X
i2s

�
F

(1)
di � F

(1)
d

	2
(14)
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is a design-consistent estimator ofvarf bFd(t)g, where

F
(1)
d =

1

n

X
i2s

F
(1)
di = N�1

�X
i2s

wiI(yi � t) +
NX
j=1

bGj �
X
i2s

wi
bGi

�
:

One could redefine

F
(1)
di = N�1

X
k2s

w
(i)
k fI(yk � t) � bGkg and F

(1)
d = N�1

X
i2s

wifI(yi � t)� bGig

in Theorem 3. We chose to write it more like a jackknife might be applied. That is, to merely
delete a unit and recalculate the estimator. In Theorem 3, we do not quite do this asbGk is
not recalculated with each unit deleted. We are able to do this because of (12). For small or
moderate sample sizen, it will be of interest to consider a modified version of the jackknife
variance estimator which recalculates~�, ~� and bGk for each deletion. That is, definingvJd2 as in
(14) but using

F
(2)
di =

1

N

�X
k2s

w
(i)
k I(yk � t) +

NX
j=1

bGji �
X
k2s

w
(i)
k
bGki

�
;

where bGji =

�X
k2s

w
(i)
k I("̂k � t� ~�i � ~�ixj)

�.�X
k2s

w
(i)
k

�
;

with ~�i and ~�i calculated from the sample data using the jackknife weights,w
(i)
k for k =

1; : : : ; n. This is a true delete-one jackknife as it completely recalculates the estimator with each
unit deleted. If the sampling is in fact without replacement, one may choose to multiply (14) by
1� f . This is not strictly correct for unequal probability sampling but may be used to attempt to
reduce the positive bias induced by using a variance estimator based on with-replacement sam-
pling (see Durbin 1953, and S¨arndal, Swensson & Wretman 1992, p. 99). This was done in the
simulations of Section 5.

If the design is stratified multistage sampling, the formulation ofvJd1 and the required reg-
ularity conditions need to be modified, (see Shao & Tu 1995, Chapter 6; Wu (1999). However,
the basic ideas behind the verification of (11) and (12) remain similar provided the sampling of
first-stage clusters is assumed to be with-replacement for the purposes of variance estimation.
The usual jackknife variance estimator, which deleteseach cluster one at a time is then design
consistent as the number of strata gets large (Wu 1999).

The formulation ofbFd(t) can be easily extended to other superpopulation models and the
corresponding jackknife variance estimator is still design consistent.

A simplified version of the analytical variance estimator can also be obtained from (13).
In the variance formula (6) proposed by Rao, Kovar & Mantel (1990), we could simply replace
ui(j) byui = I(yi � t)� bGi, with no third order inclusion probabilities involved (the difference
betweenui andui(j) is thatui is a simple substitution estimator whileui(j) is a conditionally
design-unbiased estimator forI(yi � t)�Gi given theith andjth units are selected in the sam-
ple). Further, if the sampling fractionf is small, we could adapt the sampling-with-replacement
variance estimator which involves�is only. Thus, in view of the theoretical developments in
this section, we can say that the only real advantage, if any, of the jackknife variance estimator
in the design-based case is operational convenience. We will demonstrate through simulation,
however, that the jackknife does seem to have better conditional properties than the analytical
variance estimator. This has been noted in other contexts (Rao & Sitter 1995; Sitter 1997).
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5. A SIMULATION

In this section, we present the results of a limited simulation study on the small sample per-
formance of variance estimators proposed in Sections 3 and 4. The finite populations used in
the simulation were generated from the simple linear regression model (1) with� = � = 1.
The covariatesxi were generated as an independent and identically distributed sample from
a lognormal(2:0; 0:25) and"i’s were independent and identically distributed from aN(0; 0:6).
The population size was chosen asN = 2000.

For the model-based estimators, a new finite population was created foreach simulation and
then a simple random sample of sizen = 50 was drawn from the population. The variance esti-
mators,vm, vJm1, vJm2 andvJ1 were computed from each sample. This process was repeated
B = 1000 times. We then reconducted the above simulation withn = 200. The same procedure
was repeated for the design-based estimators except that only one finite population was gener-
ated and used for all simulations. The variance estimatorsvd, vJd1 andvJd2 were computed from
each simulated sample from this finitepopulation. The sample sizesn = 50 andn = 200 used
here were trying to mimic two situations: sampling fraction negligible (f = 50=2000 = 0:025)
and sampling fraction non-negligible (f = 200=2000 = 0:1).

The performance of variance estimators was measured and compared in terms of relative
percentage bias (RB%) and instability (INST). The simulated values ofRB% andINST for a
particular variance estimatorv were computed as

RB%(v) = 100� �v �MSE

MSE
and INST(v) =

sv
MSE

;

where�v = B�1
PB

b=1 vb, s
2
v = B�1

PB
b=1(vb �MSE)2, MSE = B�1

PB
b=1f bFb(t)� F (t)g2

is the estimated mean square error ofbF (t) from another independentB simulations, andbFb(t)
andvb are the values ofbF (t) andv from thebth simulation, respectively.RB% andINST were
computed fort = �p at p = 0:10, p = 0:25, p = 0:50, p = 0:75 andp = 0:90, where�p is the
pth population quantile.

Table 1 reports the values ofRB% and INST of variance estimatorsvm, vJm1, vJm2 and
vJ1 for the model-based estimatorbFm(t). We observe that: (a) Forn = 50 (f = 0:025):
(i) the jackknife variance estimatorsvJm1 andvJm2 perform well; (ii) vJ1, the leading term in
bothvJm1 andvJm2, also provides valid estimated variance, but has negative bias in all cases;
(iii) the analytical variance estimatorvm has the smallest value ofINST in all cases, but it has the
largest negative bias amongvm, vJm1 andvJm2; (b) Forn = 200 (f = 0:1): (i) vm, vJm1 and
vJm2 perform quantitatively similar in terms of bothRB% andINST; (ii) they all have larger
and positive bias forF (t) close to0:50 and smaller or negative bias whenF (t) is close to0 or 1;
(iii) by ignoring the sampling fraction,vJ1 seriously underestimates the true variance; (iv) it is
interesting to notice the good performance ofvJm1 for n = 200, since it is not clear whether
vJm1 is consistent or not whenf is not negligible; and (v) we should note thatvm took in the
order of 30 times longer to calculate than the jackknife variance estimators because of the density
estimation.
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TABLE 1: Relative percentage bias and instability of variance estimators for the model-based estimator
bFm(t) at t = �p.

p = 0:10 p = 0:25 p = 0:50 p = 0:75 p = 0:90

N = 2000, n = 50

vm RB% �9.47 �6.56 �1.73 �3.01 �5.83

INST 0.254 0.208 0.210 0.251 0.307

vJm1 RB% �1.72 1.05 1.33 3.24 0.99

INST 0.346 0.293 0.243 0.382 0.499

vJm2 RB% �0.25 2.21 3.95 6.48 4.51

INST 0.338 0.287 0.244 0.380 0.493

vJ1 RB% �6.61 �4.04 �4.14 �2.39 �4.09

INST 0.338 0.285 0.236 0.368 0.487

N = 2000, n = 200

vm RB% �5.94 5.27 11.19 4.06 0.57

INST 0.145 0.126 0.160 0.127 0.152

vJm1 RB% �5.48 7.84 8.91 2.04 �1.71

INST 0.186 0.171 0.151 0.163 0.226

vJm2 RB% �3.12 8.12 12.55 6.48 0.030

INST 0.166 0.163 0.173 0.167 0.210

vJ1 RB% �26.34 �16.86 �18.84 �25.46 �28.14

INST 0.302 0.213 0.214 0.290 0.341

Table 2 reports the results for the design-based estimatorbFd(t): (a) For simple random sam-
pling, the jackknife variance estimatorvJd1 is identical to the analytical variance estimatorvd;
(b) (i) vJd2 is more stable thanvd in all cases; (ii) forn = 50, vJd2 has larger positive bias than
vd atF (t) = 0:10 and0:90, but this difference disappears whenn = 200.

Turning to conditional properties, we chose two values ofp, 0:1 and0:5, ordered the sim-
ulated samples on the values of�x and then grouped them into twenty successive groups. We
ran 10,000 simulations to reduce Monte Carlo error so that each group is of size500. For each
group, the conditional mean ofeach variance estimatorv was calculated as

E c(v) =
1

500

500X
b=1

vb:

Independently, we generated100;000 simulated samples and similarly grouped them on�x into
20 groups and calculated the simulated conditional MSE ofeach ofbFm(t) and bFd(t) as

MSEcf bF (t)g = 1

5000

5000X
b=1

f bFb(t) � F (t)g2;

in obvious notation.
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TABLE 2: Relative percentage bias and instability of variance estimators for the design-based estimator
bFd(t) at t = �p.

p = 0:10 p = 0:25 p = 0:50 p = 0:75 p = 0:90

N = 2000, n = 50

vd RB% 7.87 1.58 �3.74 �3.70 3.87

INST 0.484 0.3134 0.274 0.369 0.581

vJd1 RB% 7.87 1.58 �3.74 �3.70 3.87

INST 0.484 0.313 0.274 0.369 0.581

vJd2 RB% 14.84 6.24 �0.24 0.88 13.45

INST 0.452 0.301 0.247 0.343 0.558

N = 2000, n = 200

vd RB% �2.89 �5.03 1.14 3.57 5.36

INST 0.201 0.146 0.134 0.192 0.282

vJd1 RB% �2.89 �5.03 1.14 3.57 5.36

INST 0.201 0.146 0.134 0.192 0.282

vJd2 RB% �0.98 �4.00 1.87 4.50 7.56

INST 0.176 0.129 0.120 0.176 0.258

For the design-based case, the values ofE c(v) (�104) for v = vd(= vJd1) andvJd2 and
MSEcf bFd(t)g (�104) were plotted against the group averages of�x. Figure 1 gives this plot
for n = 50, and t = �p for p = 0:1 and0:5. As we can see, all of the variance estimators
for bFd(t) perform well in tracking the conditional MSE for the casep = 0:5, butvJd2, the full
jackknife, significantly outperforms the other variance estimators in this respect forp = 0:1.
In other simulations which are not presented here, it can be seen that this property is a func-
tion of p and becomes more pronounced as one moves away fromp = 0:5 in either direction.
This suggests that despite the asymptotic (and unconditional) arguments of Section 4 and the
previously presented unconditional simulations, which suggest these variance estimators are es-
sentially equivalent, there is an advantage to completely recalculatingbFd(t) for each deleted unit
when applying the jackknife. This also suggests that the jackknife when so applied has better
conditional properties than the analytical variance estimator of Section 3.

For the model-based case, similar plots were examined but are not presented as all of the
variance estimators forbFm(t) performed well in tracking the conditional MSE for all values
of p.

6. CONCLUDING REMARKS

Based on the theoretical development and our limited simulation study, we suggest that, for
the model-based estimatorbFm(t), the true delete-one jackknife variance estimatorvJm1 is rec-
ommended iff is small; in cases wheref is not negligible, it is safe to usevJm2, although
simulation results suggest thatvJm1 can also be used in these cases.vJ1 was included in the
simulation to serve the purpose of illustrating the asymptotic results only, it should not be used
in practice even though it is consistent whenf is small. It should be emphasized that our solution
(Theorem 2,vJm2) for this latter case is a hybrid of the jackknife and the analytical approach.
Compared to the pure analytical approach, where the derivation of analytical variance for more
complex models is very difficult (if not impossible) and the estimation of the variance requires
a kernel smoother, the analytical component of this hybrid estimator involves a simple empirical
distribution estimator of the residual distribution. Thus, this hybrid estimator is simple, stable
and easily applicable, and its extension to more complex models is obvious and easy.
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FIGURE 1: Plot of conditional performance of variance estimators: Conditional meansE c(vd),E c(vJd2)

(�104) and conditioned mean squared error,MSEcf bFd(t)g (�104) for (a) t = �0:1 and (b)t = �0:5,
versus group average of�x.

For the design-based case, in terms of conditional performance,vJd2, the true delete-one
jackknife variance estimator, performs the best. However, it tends to have larger positive un-
conditional bias whenF (t) is close to0 or 1 andn is not large. Jackknife variance estimator is
usually less stable. In our settings here, both the analytical and the jackknife variance estimators
are approximately unbiased, the jackknife may be preferred due to its operational simplicity.

APPENDIX 1: PROOF OF THEOREM 1

The following lemma is used in our proof.

LEMMA. Let an = c0n
�q, q 2 (0; 1=2) be a constant. IfG has bounded first derivative over�,

then
sup
jxj�an

jfGn(u+ x)� Gn(u)g � fG(u+ x)�G(u)gj � Rn;

whereRn = o(n�1=2), independent ofu 2 �.

Proof. The proof follows along the lines of Bahadur (1966) (see also Serfling 1980, pp. 97–99).
Using his notation, letbn = n

1

2
(1�q) so thatb2n = n1�q andanb�1n = o(n�1=2). Next, letting


n = c1n
� 1

2
(1+q)(logn)1=2 = o(n�1=2), we can show that

Æn =
n
2n

2(c2an + 
n)
> 2 logn

for sufficiently largen. The fact thatjG0(u)j = jg(u)j � M , u 2 � for some constantM
indicates that the choices ofc1 andc2 can be independent ofu, which also implies the uniformity
of Rn over�.

Proof of Theorem 1. (i) We need only to show thatV1 = varf bH(t)g can be consistently estimated
by a jackknife estimator, where

bH(t) =
1

nN

X
i2s

X
j2�s

Ifyi � t � �̂(xj � xi)g:

To do this, letA(u; t; �; �) =
R
t����x�u

h(x) dx, B(t; �; �) =
R
g(t � � � �x)h(x) dx and

C(t; �; �) =
R
xg(t � �� �x)h(x) dx and note that

1

N � n

X
j2�s

g(t� �� �xj) = B(t; �; �) + o(1);

1

N � n

X
j2�s

xjg(t� �� �xj) = C(t; �; �) + o(1); (15)

1

N � n

X
j2�s

I(u � t� �� �xj) = A(u; t; �; �) +RN;n(u; t; �; �);

whereRN;n(u; t; �; �) = o(1). Under model (1),"i = yi � � � �xi and Gn(x) =

n�1
P

i2s I("i � x). For a given sample,s, let an = j�̂ � �jmaxi2s jxij and observe that

Gn(x+ �̂� �� an) � 1

n

X
i2s

I("̂i � x) � Gn(x + �̂� �+ an):
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This implies thatn�1
P

i2s I("̂i � x) = Gn(x+ dn), for somedn = (�̂��) + (�̂ � �)cn and
jcnj � maxi2s jxij. Now, let

eH(t) =
1

nN

X
i2s

X
j2�s

Ifyi � t� �(xj � xi)g = 1

N

X
j2�s

Gn(tj); (16)

wheretj = t� �� �xj . Noting thatvarfRN;n("i; t; �; �)g = o(1), we get

eH(t) =

�
1� n

N

�
1

n

X
i2s

1

N � n

X
j2�s

I("i � t � �� �xj)

=

�
1� n

N

�
1

n

X
i2s

fA("i; t; �; �) + RN;n("i; t; �; �)g (17)

=

�
1� n

N

�
1

n

X
i2s

A("i; t; �; �) + op

�
1p
n

�
:

Also note that

bH(t) =
1

nN

X
i2s

X
j2�s

Ifyi � t� �̂(xj � xi)g

=
1

N

X
j2�s

Gn(t� �̂� �̂xj + dn) (18)

=
1

N

X
j2�s

Gnftj + (�̂ � �)(cn � xj)g;

where the second equality holds sinceIfyi � t � �̂(xj � xi)g = I("̂i � t� �̂� �̂xj).

By Condition A1 which implieŝ� � � = Op(n�1=2), Conditions A1 and A2 which together
imply (�̂ � �)(cn � xj) = op(n�1=4), and the lemma,��Gnftj + (�̂ � �)(cn � xj)g � Gn(tj)� Gftj + (�̂ � �)(cn � xj)g+ G(tj)

�� � Rn;

whereRn = op(n�1=2). SinceG has bounded second derivative andN�1
PN

1 x2j = O(1), by

applying (16), (18) and a Taylor expansion ofGftj+(�̂��)(cn�xj)g at tj to the second order,
we get

bH(t) = f bH(t)� eH(t)g+ eH(t)

=
1

N

X
j2�s

�
Gnftj + (�̂ � �)(cn � xj)g

� Gn(tj) �Gftj + (�̂ � �)(cn � xj)g+G(tj)
�

+
1

N

X
j2�s

�
Gftj + (�̂ � �)(cn � xj)g �G(tj)

�
+ eH(t)

= (�̂ � �)

�
cn

1

N

X
j2�s

g(tj)� 1

N

X
j2�s

xjg(tj)

�
+ eH(t) + op

�
1p
n

�
:

We know from (4) and (7) thatvarf bH(t)g = O(1=n) andvarf eH(t)g = O(1=n). From the
fact thatvar(�̂ � �) = O(1=n), varfop(n�1=2)g = o(1=n), and for anyX;Y , cov(X;Y ) �
fvar(X) var(Y )g1=2, we conclude thatcn = O(1) or o(1). This together with (15) and (17)
implies the asymptotic variance ofbH(t) is the same as that of�

1� n

N

��
(�̂ � �)fcnB(t; �; �)� C(t; �; �)g+ 1

n

X
i2s

A("i; t; �; �)

�
;
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which is a smooth function of sample means of properly defined population characteristics. The
conventional delete-one jackknife variance estimator is therefore consistent and construction of
this estimator is straightforward.

(ii) The asymptotic normality ofbFm(t) follows from the fact thatbFm(t) is asymptotically equiv-
alent to a smooth function of sample means.

APPENDIX 2: ILLUSTRATION OF (11) AND (12) UNDER SAMPLING WITH RE-
PLACEMENT

We first consider unequal probability sampling with replacement with inclusion probabilities �i.
Let "i = yi � �� �xi for i = 1; : : : ; N ,GN (u) = N�1

PN
j=1 I("j � u) and

bGn(u) =
X
i2s

��1i I("i � u)
.X

i2s

��1i :

We assume

C1.maxi2s n(N�i)�1 = O(1).

C2. There existsgN (x) � 0, for ÆN = O(N�q), q 2 (0; 1=2), such that

fGN (x+ ÆN ) �GN (x)g=ÆN � gN (x) = rNx; x 2 �;

wherejrNxj � RN andRN = o(1), independent ofx, and� is the closure of all possible values
of t� �� �xj for j = 1; : : : ; N in the limiting process.

C3. jgN (x)j � M , for anyx 2 �, whereM is a constant. C4.~� � � = Op(n�1=2), ~� � � =

Op(n�1=2), N�1
PN

j=1 x
2
j = O(1) andmaxi2s jxij = Op(n1=2�q) for someq 2 (0; 1=2).

Conditions C2 and C3 used here are stronger than (C2) and (C3) in Shao & Rao (1993) in
order to achieve certain uniformity (C2 and C3 together is equivalent to A3 used in Theorem 1);
C4 holds for most common situations.

The following development is similar to the proof of Theorem 1. Note that C1 also implies
N�1

P
i2s �

�1
i � 1 = Op(n�1=2). Following the lines of Shao & Rao (1993, p. 400), we can

show that, under conditions C1–C3 for�̂ � � = Op(n�q), q 2 (0; 1=2), � 2 �,

bGn(�̂) = bGn(�) �GN (�) +GN (�̂) + un(�); � 2 �; (19)

wherejun(�)j � uN , uN = op(n�1=2), independent of�. Recall that"i = yi � � � �xi,
~"i = yi � ~�� ~�xi andX

i2s

��1i I("i � t+ ~�� �� an) �
X
i2s

��1i I(~"i � t) �
X
i2s

��1i I("i � t+ ~�� �+ an);

wherean = j~� � �jmaxi2s jxij. Hence,X
i2s

��1i I(~"i � t)
.X

i2s

��1i = bGn(t + dn);

wheredn = (~� � �) + (~� � �)cn and jcnj � maxi2s jxij. Let �̂j = t � ~� � ~�xj and
�j = t � � � �xj . It is easy to see thatbGj = bGn(�̂j + dn) in the formulation ofbFd(t; ~�; ~�).
Also note thatbGic = bGi under sampling with replacement. Therefore,

bFd(t;�; �) = 1

N

�X
i2s

��1i I(yi � t) +
NX
j=1

bGn(�j)�
X
i2s

��1i
bGn(�i)

�
:
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With condition C4,�̂j � �j = �(~� � �) � ( ~� � �)xj = Op(n
�1=2) anddn = Op(n

�q).
Assuming�j + dn 2 �, from (19),

bGn(�̂j + dn) = bGn(�j + dn)�GN (�j + dn) +GN (�̂j + dn) + un(�j + dn)

and bGn(�j + dn) = bGn(�j) �GN (�j) +GN (�j + dn) + un(�j):

Now it follows that

bFd(t; ~�; ~�) =
1

N

�X
i2s

��1i I(yi � t)

+
NX
j=1

� bGn(�j) �GN (�j) +GN (�̂j + dn) + un(�j + dn) + un(�j)
	

�
X
i2s

��1i

� bGn(�i) �GN (�i) + GN (�̂i + dn) + un(�i) + un(�i + dn)
	�

= bFd(t;�; �) + 1

N

NX
j=1

fGN (�̂j + dn)� GN (�j)g

� 1

N

X
i2s

��1i fGN (�̂i + dn)�GN (�i)g+ op

�
1p
n

�
:

Under condition C4,̂�j � �j + dn = (~� � �)(cn � xj) = Op(n�q). From condition C2,

GN (�̂j + dn)� GN (�j) = (~� � �)(cn � xj)fgN (�j) + rN�jg;

wherejrN�j j < Op(n
�q), uniformly over�j . Therefore, we have the following expansion,

bFd(t; ~�; ~�) = bFd(t;�; �) + (~� � �)�N (�; �) + op

�
1p
n

�
; (20)

where

�N (�; �) =
1

N

NX
j=1

(cn � xj)gN (�j)� 1

N

X
i2s

��1i (cn � xi)gN (�i):

It is interesting to notice that~� does not appear in the right-hand side of (20) explicitly. In
fact, bFd(t; ~�; ~�) contains no~� at all. If all the finite population moments involved in�N (�; �)
are bounded (similar to those assumed in A4), we immediately conclude that�N (�; �) = op(1),
that is, bFd(t; ~�; ~�) = bFd(t;�; �) + op(n�1=2), which implies (12).

For stratified multi-stage sampling with first-stage clusters sampled with replacement, the
above development is similar, except that condition C1 needs to be re-formulated (cf. Shao &
Rao 1993, for the exact formulation) and the triple index(hij) should be used in place ofi
throughout.
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