1 Landmark MDS:

Landmark MDS is based on the MDS algorithm. We can first have a quick look at how MDS works. For a given distance matrix $D^{(x)}$ we need to find $k = -\frac{1}{2}HD^XH$ where $H = I - \frac{1}{n}ee^T$. From this we can find that $K = X^TX = V\Lambda V^T$. The low-dimensional map of Y will be:

$$Y = \Lambda_d^{1/2}V_d$$

The problem with the MDS algorithm is that the matrices D^X and K are not sparse. It is therefore expensive to compute eigen-decompositions. To reduce the computational work required we can use Landmark MDS which is equivalent to the Nyström approximation.

2 Nyström Approximation

Suppose we have n data points from which we can choose m data points randomly from the sets D^X and K. Without loss of generality we can permute these points so that they represent the first m points in D^X and K.

Consider the matrices:

\[K = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \]

\[D^X = \begin{pmatrix} E & F \\ F^T & G \end{pmatrix} \]

Where \(A \) is a known \(m \) by \(m \) matrix and \(B \) is a known \(m \) by \(n - m \) matrix. The idea is to estimate the unknown \(n - m \) by \(n - m \) matrix \(C \). If \(K \) is a positive semi-definite matrix then it is a Gram matrix. It can then be expressed as an inner product:

\[K = X^T X = V \Lambda V^T \]

Initially \(A = R^T R \). After we apply MDS we get \(R = \Gamma^{1/2} U^T \). Also, \(B = R^T S \). After we apply MDS we get \(S = R^{-T} B \). We can rewrite the equation for \(R \) as:

\[R^T = U \Gamma^{1/2} \]

And then:

\[R^{-T} = \Gamma^{-1/2} U^T \]

Then we can substitute that back into the earlier equation for:

\[S = \Gamma^{-1/2} U^T B \]

To estimate \(C \) we need to recognize that \(C = S^T S \). So from the above equation for \(S \) we
get an expression for an estimate for C:

$$
C = S^T S
= B^T U \Gamma^{-1/2} \Gamma^{-1/2} U^T B
= B^T R^{-1} R^{-T} B
= B^T A^{-1} B
$$

So then we can estimate C by first finding A and B and then we can complete the matrix in the following way. Nyström approximation approximate K as:

$$
\hat{K} = \begin{pmatrix}
A & B \\
B^T & B^T A^{-1} B
\end{pmatrix}
$$