Short Course

Theory and Practice of Risk Measurement

Part 4

Selected Topics and Recent Developments on Risk Measures

Ruodu Wang

Department of Statistics and Actuarial Science

University of Waterloo, Canada

Email: wang@uwaterloo.ca

- Risk sharing
- Regulatory arbitrage
- Elicitability and convex level set
- Change of currency
- Robustness
- Summary

General setup

- *n* agents sharing a total risk (or asset) $X \in \mathcal{X}$
- ρ_1, \ldots, ρ_n : underlying risk measures
- Target: for $X \in \mathcal{X}$,

minimize
$$\sum_{i=1}^{n} \rho_i(X_i)$$
 subject to $X_1 + \dots + X_n = X$, (1)

and find an optimal allocation of X: a solution to (1) (if it exists)

• We consider arbitrary allocations

Some interpretations

- Regulatory capital reduction within a single firm
- Regulatory capital reduction for a group of firms
- Insurance-reinsurance contracts and risk-transfer
- Risk redistribution among agents

Some classic references in the mathematical finance and insurance literature

- Barrieu-El Karoui (2005 FS)
- Jouini-Schachermayer-Touzi (2008 MF)
- Filipovic-Svindland (2008 FS)
- Cui-Yang-Wu (2013 IME)
- Delbaen (2012)

The set of allocations of $X \in \mathcal{X}$:

$$\mathbb{A}_n(X) = \left\{ (X_1, \ldots, X_n) \in \mathcal{X}^n : \sum_{i=1}^n X_i = X \right\}.$$

The inf-convolution of *n* risk measures is a functional $\Box_{i=1}^{n} \rho_i$ mapping \mathcal{X} to $[-\infty, \infty]$:

$$\prod_{i=1}^n \rho_i(X) = \inf \left\{ \sum_{i=1}^n \rho_i(X_i) : (X_1, \ldots, X_n) \in \mathbb{A}_n(X) \right\}.$$

Optimal Allocations

Definition

For monetary risk measures ρ_1, \ldots, ρ_n ,

Obviously, an allocation (X_1^*, \ldots, X_n^*) of X is optimal if and only if

$$\sum_{i=1}^n \rho_i(X_i^*) = \bigsqcup_{i=1}^n \rho_i(X).$$

/⊒ ▶ < ∃ ▶ <

Proposition (*)

For monetary risk measures, an allocation is optimal if and only if it is Pareto-optimal.

Proposition (*)

Suppose that ρ₁,..., ρ_n are monetary risk measures and □ⁿ_{i=1} ρ_i > -∞ on X.
(i) □ⁿ_{i=1} ρ_i is a monetary risk measure.
(ii) If ρ₁,..., ρ_n are convex, then □ⁿ_{i=1} ρ_i is a convex risk measure.
(iii) If ρ₁,..., ρ_n are coherent, then □ⁿ_{i=1} ρ_i is a coherent risk

measure.

御 と く き と く き と …

Theorem (*)

For monetary risk measures ρ_1, \ldots, ρ_n with respective acceptance set A_1, \ldots, A_n , the acceptance set of $\Box_{i=1}^n \rho_i$ is $\sum_{i=1}^n A_i$.

Theorem (Barrieu-El Karoui 2005 FS*)

For convex risk measures ρ_1, \ldots, ρ_n with respective minimum penalty functions $\alpha_1, \ldots, \alpha_n$, the minimum penalty function of $\Box_{i=1}^n \rho_i$ is $\sum_{i=1}^n \alpha_i$.

A firm may have an incentive to split its total business into n subsidies to reduce its regulatory capital

- Write $X = \sum_{i=1}^{n} X_i$ and measure each X_i with ρ
- Compare $\rho(X)$ and $\sum_{i=1}^{n} \rho(X_i)$
- Make $\sum_{i=1}^{n} \rho(X_i)$ small
- Regulatory arbitrage: $\rho(X) \sum_{i=1}^{n} \rho(X_i)$

Example of VaR

An example of VaR_p , $p \in (0, 1)$: for any risk X > 0 and n > 1/(1-p), we can build

$$X_i = XI_{A_i}, i = 1, \cdots, n$$

where $\{A_i, i = 1, ..., n\}$ is a partition of Ω and $\operatorname{VaR}_p(A_i) < 1 - p$. Then $\operatorname{VaR}_p(X_i) = 0$. Therefore

$$\sum_{i=1}^n X_i = X$$

and

$$\sum_{i=1}^n \operatorname{VaR}_p(X_i) = 0.$$

白マ イヨマ イヨマ

Regulatory Arbitrage

Define, for $X \in \mathcal{X}$,

$$\Psi_{\rho}(X) = \inf \left\{ \sum_{i=1}^{n} \rho(X_i) : n \in \mathbb{N}, \ (X_1, \dots, X_n) \in \mathbb{A}_n(X)
ight\}.$$

- $\Psi_{\rho}(X)$ is the least amount of capital requirement according to ρ if the risk X can be divided arbitrarily.
- $\Psi_{\rho} \leq \rho$.
- $\Psi_{\rho} = \rho$ if and only if ρ is subadditive.
- Regulatory arbitrage of ρ : $\Phi_{\rho}(X) = \rho(X) \Psi_{\rho}(X)$.

ゆ ト イヨ ト イヨト

We may categorize risk measures into four cases:

- Definition (Wang, 2016 QF)
- A risk measure ρ is
 - (i) free of regulatory arbitrage if $\Phi_{\rho}(X) = 0$ for all $X \in \mathcal{X}$,
 - (ii) of limited regulatory arbitrage if $\Phi_{\rho}(X) < \infty$ for all $X \in \mathcal{X}$,
- (iii) of unlimited regulatory arbitrage if $\Phi_{
 ho}(X) = \infty$ for some $X \in \mathcal{X}$,
- (iv) of infinite regulatory arbitrage if $\Phi_{\rho}(X) = \infty$ for all $X \in \mathcal{X}$.

Theorem: Wang, 2016 QF

For $p \in (0, 1)$, VaR_p is of infinite regulatory arbitrage. That is, $\Phi_{\operatorname{VaR}_p}(X) = \infty$ for all $X \in \mathcal{X}$.

• VaR is vulnerable to manipulation of risks.

Theorem: Wang, 2016 QF

The following hold:

- (i) If ρ is a distortion risk measure, then ρ is of limited regulatory arbitrage if and only if $\rho(X) \ge \mathbb{E}[X]$ for all $X \in \mathcal{X}$.
- (ii) If ρ is a law-determined convex risk measure, then ρ is of limited regulatory arbitrage.

In either case, Ψ_{ρ} is a coherent risk measure; thus, ρ is free of regulatory arbitrage if and only if it is coherent.

• In either case, Ψ_{ρ} is the largest coherent risk measure dominated by ρ .

Recall from R1, Page 41, Question 8

"... robust backtesting ..."

Backtesting

- (i) estimate a risk measure from past observations;
- (ii) test whether (i) is appropriate using future observations;
- (iii) purpose: monitor, test or update risk measure forecasts;
- (iv) particularly relevant for market risk (daily forecasts).

For VaR, a simple procedure is available.

VaR backtesting:

Suppose that you have iid risks X_t , $t \ge 0$;

- (1) suppose the estimated/modeled $\operatorname{VaR}_p(X_{t+1})$ is V_{t+1} at time t;
- (2) consider random variables $A_t = I_{\{X_t > V_t\}}, t > 0$;
- (3) standard hypothesis testing methods for H_0 : A_t are iid Bernoulli(1 p) random variables.

For ES, a simple and intuitive procedure does not exist. Why?

- Not all risk measures can be backtested, and it is not easy to say which ones can
- VaR: just test whether losses exceed VaR_p p% of the times (model independent). Such good property is rare for risk measures.
- ES: backtesting procedures are model dependent
- Mode: probably impossible to backtest

• In 2011, a notion is proposed for comparing risk measure forecasts: elicitability, Gneiting (2011, JASA).

Quoting Acerbi and Szekely (2014 Risk):

''Eliciwhat?''

Risk professionals had never heard of elicitability until 2011, when Gneiting proved that ES is not elicitable as opposed to VaR. This result sparked a confusing debate.

Elicitability

 Roughly speaking, a law-determined risk measure (statistical functional) is elicitable if ρ is the unique solution to the following equation:

$$\rho(X) = \underset{x \in \mathbb{R}}{\operatorname{argmin}} \mathbb{E}[s(x, X)], \ X \in \mathcal{X}$$

where

- s: ℝ² → [0,∞) is a strictly consistent scoring function (that is, s(x, y) = 0 if and only if x = y);
- clearly, elicitability requires ρ(c) = c, c ∈ ℝ (standardization); in the following, we always assume this.

Elicitability

Examples (assuming all integrals are finite):

• the mean is elicitable with

$$s(x,X)=(x-X)^2.$$

• the median is elicitable with

$$s(x,X)=|x-X|.$$

• VaR_p is elicitable with

$$s(x,X) = (1-p)(x-X)_+ + p(X-x)_+$$

if X has continuous inverse cdf at p.

• ep is elicitable with

$$s(x, X) = (1 - p)(x - X)^2_+ + p(X - x)^2_+$$

Elicitability and comparison

- Suppose observations are iid
- The estimated/modeled value of ρ is ρ_0 at t = 0;
- based on new iid observations X_t, t > 0, consider the statistics s(ρ₀, X_t); for instance, test statistic can typically be chosen as T_n(ρ₀) = ¹/_n Σⁿ_{t=1} s(ρ₀, X_t);
- $T_n(\rho_0)$: a statistic which indicates the goodness of forecasts.
- updating ρ : look at a minimizer for $T_n(\rho)$;
- the above procedure is model-independent.

Estimation procedures of an elicitable risk measure are straightforward to compare.

Elicitability and regulation

- A value of risk measure ρ₀ is reported by a financial institution based on internal models.
- A regulator does not have access to the internal model, and she does not know whether ρ₀ is calculated honestly.
- She applies s(ρ₀, X_t) as a daily penalty function for the financial institution. She may also compare it with a standard model chosen by the regulator.
- If the institution likes to minimize this penalty, it has to report the true value of ρ and use the most realistic model.
- the above procedure is model-independent.

VaR vs ES: elicitability

Theorem: Gneiting, 2011, JASA

Under some regularity conditions,

- VaR is elicitable;
- ES is not elicitable.

The unpublished idea was presented by Carlo Acerbi (MSCI). It is slightly modified.

Definition

A risk measure ρ is backtestable if there exists a function $Z : \mathbb{R}^2 \to \mathbb{R}$ such that for each $X \in \mathcal{X}$,

 $x \mapsto \mathbb{E}[Z(x, X)]$ is increasing, and

 $\mathbb{E}[Z(x,X)] < 0 \text{ for } x < \rho(X) \text{ and } \mathbb{E}[Z(x,X)] > 0 \text{ for } x > \rho(X).$

That is, zero can be used as a benchmark to distinguish whether a risk measure is **underestimated**. This is because a regulator is mainly concerned about underestimation.

Backtestability

Again we assume all integrals are finite in the following.

Proposition (*)

Suppose that a standardized risk measure ρ is backtestable, then it is elicitable with a score function convex in its first argument.

• One can always choose

$$s(x,y) = \int_y^x Z(t,y) \mathrm{d}t.$$

Equivalently, $\partial s(x, y) / \partial x = Z(x, y)$.

 Assuming X is has continuous cdf at p, VaR_p is backtestable with

$$Z(x,y) = -I_{\{x < y\}}p + I_{\{x > y\}}(1-p).$$

Remarks: the relevance of elicitability for risk management purposes is heavily contested:

- McNeil, Frey and Embrechts (2005): backtesting of ES is possible (semi-parametric EVT models)
- Emmer, Kratz and Tasche (2014): alternative method for backtesting ES
- Davis (2016): backtesting based on prequential principle

Recall the definition of shortfall risk measures:

$$\rho(X) = \inf\{x \in \mathbb{R} : \mathbb{E}[\ell(X - x)] \le \ell_0\}.$$

 ℓ : an increasing function, called a loss function. ρ is a convex risk measure if and only if ℓ is convex. We assume ℓ to be strictly increasing.

Proposition (*)

A shortfall risk measure is always elicitable and backtestable.

• Take
$$Z(x, y) = \ell_0 - \ell(y - x)$$
.

An interesting related property for law-determined risk measures is having convex level sets. Let F_X be the distribution function of $X \in \mathcal{X}$.

[CL] Convex level sets: If $\rho(X) = \rho(Y)$, then $\rho(Z) = \rho(X) = \rho(Y)$ for all $\lambda \in [0, 1]$ and $F_Z = \lambda F_X + (1 - \lambda)F_Y$.

Proposition (*)

An elicitable risk measure always has convex level sets.

Corollary

A shortfall risk measure always has convex level sets.

Eventually, it was established that among convex risk measures, [CL] characterizes convex shortfall risk measures.

Theorem (Delbaen-Bellini-Bignozzi-Ziegel 2016 FS)

A law-determined convex risk measure on L^{∞} satisfies [CL] if and only if it is a convex shortfall risk measure.

Some results

- if ρ is coherent, comonotonic additive and elicitable, then ρ is the mean (Ziegel, 2015);
- if ρ is comonotonic additive and elicitable, then ρ is a VaR or the mean (Kou and Peng, 2014; Wang and Ziegel, 2015);
- if ρ is coherent and elicitable, then ρ is an expectile (Delbaen, Bellini, Bignozzi and Ziegel, 2016);
- if ρ is convex and elicitable, then ρ is a convex shortfall risk measure (Delbaen, Bignozzi, Bellini and Ziegel, 2016).

Triangle of Risk Measures

æ

< 一□ > <

- There are two currencies (domestic and foreign).
- The exchange rate at future time T from the domestic currency to the foreign currency is denoted by R_T.
- In practice, R_T is random.
- Suppose that the random loss/profit at time *T* of a financial institution is *X* (in domestic currency).

Let ρ be a monetary risk measure.

- A regulator uses an acceptance set A_ρ to determine the solvency of this financial institution.
 - The institution is solvent if $X \in \mathcal{A}_{\rho}$.
- Another regulator uses the same acceptance set A_ρ, but it is calculated based on the foreign currency.
 - The institution is solvent if $\frac{R_T}{R_0}X \in \mathcal{A}_{\rho}$.
- Both solvency criteria should be equivalent; that is, for $R = R_T/R_0$, one should have $X \in A_\rho \Rightarrow RX \in A_\rho$.

For a risk measure ρ :

[EI] Exchange-invariance: for $X \in \mathcal{X}$, if $\rho(X) \leq 0$, then $\rho(RX) \leq 0$ for all positive random variables $R \in \mathcal{X}$.

Proposition (*)

If a monetary risk measure satisfies [EI], then it satisfies [PH].

• [EI] is a very strong property.

Some simple results:

Theorem (Koch-Medina-Munari 2016 JBF*)

For $p \in (0,1)$, VaR_p satisfies [EI] and ES_p does not satisfy [EI].

• ES has currency issues as a global regulatory risk measure.

Robustness addresses the question of "what if the data is compromised with small error?" (e.g. outlier)

- Originally robustness was defined on estimators (of a quantity T)
- Would the estimation be ruined if an outlier is added to the sample?
 - Think about VaR and ES non-parametric estimates

VaR and ES Robustness

・ロッ ・ 一 ・ ・ ・ ・

VaR and ES Robustness

- Non-robustness of VaR_p only happens if the quantile has a gap at p
- Is this situation relevant for risk management practice?

A > 4 B

Classic qualitative robustness:

• Hampel (1971 AoMS): the robustness of an estimator of T is equivalent to the continuity of T with respect to underlying distributions (both with respect to the same metric)

When we talk about the robustness of a statistical functional, (Huber-Hampel's) robustness typically refers to continuity with respect to some metric.

General reference: Huber and Ronchetti, 2007 book

Consider the continuity of $\rho : \mathcal{X} \to \mathbb{R}$.

- The strongest sense of continuity is w.r.t. weak convergence.
 - $X_n \to X$ weakly, then $\rho(X_n) \to \rho(X)$.
- Quite restrictive
- Practitioners like weak convergence

In Part II, we have seen a few different types of continuity for risk measures.

With respect to weak convergence:

- VaR_p is continuous at distributions whose quantile is continuous at p. VaR_p is argued as being almost robust.
- ES_p is not continuous for any $\mathcal{X} \supset L^\infty$
- ES_p is continuous w.r.t. some other (stronger) metric, e.g. L^q , $q \ge 1$ metric (or the Wasserstein- L^p metric)

Take $\mathcal{X} = L^{\infty}$. From weak to strong:

- Continuity w.r.t. L^{∞} convergence: all monetary risk measures
- Continuity w.r.t. $L^q, \ q \geq 1$ convergence: e.g. $\mathrm{ES}_p, \ p \in (0,1)$
- Continuity w.r.t. weak convergence (a.s. or in probability): (almost) VaR_p, p ∈ (0,1). A convex risk measure cannot be continuous with respect to a.s., P or weak convergence.

For distortion risk measures:

 A distortion risk measure is continuous on L[∞] iff its distortion function h has a (left and right) derivative which vanishes at neighbourhoods of 0 and 1 (classic property of L-statistics; see Cont-Deguest-Scandolo 2010 QF). Some references and related papers:

- Bäuerle-Müller (2006 IME)
- Stahl-Zheng-Kiesel-Rühlicke (2012 SSRN)
- Krätschmer-Schied-Zähle (2012 JMVA, 2014 FS, 2015 arXiv)
- Embrechts-Wang-Wang (2015 FS)
- Cambou-Filipović (2016+ MF)
- Daníelsson-Zhou (2015 SSRN)

Example: different internal models

- Same data set, two different parametric models (e.g. normal vs student-t).
- Estimation of parameters, and compare the VaR and ES for two models.
- VaR is more robust in this setting, since it does not take the tail behavior into account (normal and student-t do not make a big difference).
- ES is less robust (heavy reliance on the model's tail behavior).
- Capital requirements: heavily depends on the internal models.

- The field of risk measures is developing really fast in both academia and industry.
- No grand conclusion can be made at this moment.
- Different situations require different principles, and judgement should always be made with caution.
- Uncertainty always exists.

Thank you for attending the lectures!