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Risk Sharing

General setup

n agents sharing a total risk (or asset) X ∈ X

ρ1, . . . , ρn: underlying risk measures

Target: for X ∈ X ,

minimize
n∑

i=1

ρi (Xi ) subject to X1 + · · ·+ Xn = X , (1)

and find an optimal allocation of X : a solution to (1) (if it exists)

We consider arbitrary allocations
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Risk Sharing

Some interpretations

Regulatory capital reduction within a single firm

Regulatory capital reduction for a group of firms

Insurance-reinsurance contracts and risk-transfer

Risk redistribution among agents
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Risk Sharing

Some classic references in the mathematical finance and insurance

literature

Barrieu-El Karoui (2005 FS)

Jouini-Schachermayer-Touzi (2008 MF)

Filipovic-Svindland (2008 FS)

Cui-Yang-Wu (2013 IME)

Delbaen (2012)
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Inf-convolution

The set of allocations of X ∈ X :

An(X ) =

{
(X1, . . . ,Xn) ∈ X n :

n∑
i=1

Xi = X

}
.

The inf-convolution of n risk measures is a functional �n
i=1 ρi

mapping X to [−∞,∞]:

n
�
i=1

ρi (X ) = inf

{
n∑

i=1

ρi (Xi ) : (X1, . . . ,Xn) ∈ An(X )

}
.
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Optimal Allocations

Definition

For monetary risk measures ρ1, . . . , ρn,

(i) (X1, . . . ,Xn) ∈ An(X ) is an optimal allocation if∑n
i=1 ρi (Xi ) ≤

∑n
i=1 ρi (Yi ) for all (Y1, . . . ,Yn) ∈ An(X ).

(ii) (X1, . . . ,Xn) ∈ An(X ) is a Pareto-optimal allocation if for all

(Y1, . . . ,Yn) ∈ An(X ), ρi (Yi ) ≤ ρi (Xi ) for all i = 1, . . . , n

implies that ρi (Yi ) = ρi (Xi ) for all i = 1, . . . , n.

Obviously, an allocation (X ∗1 , . . . ,X
∗
n ) of X is optimal if and only if

n∑
i=1

ρi (X
∗
i ) =

n
�
i=1

ρi (X ).
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Optimal Allocations

Proposition (*)

For monetary risk measures, an allocation is optimal if and only if

it is Pareto-optimal.
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Inf-convolution

Proposition (*)

Suppose that ρ1, . . . , ρn are monetary risk measures and

�n
i=1 ρi > −∞ on X .

(i) �n
i=1 ρi is a monetary risk measure.

(ii) If ρ1, . . . , ρn are convex, then �n
i=1 ρi is a convex risk

measure.

(iii) If ρ1, . . . , ρn are coherent, then �n
i=1 ρi is a coherent risk

measure.
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Inf-convolution

Theorem (*)

For monetary risk measures ρ1, . . . , ρn with respective acceptance

set A1, . . . ,An, the acceptance set of �n
i=1 ρi is

∑n
i=1Ai .

Theorem (Barrieu-El Karoui 2005 FS*)

For convex risk measures ρ1, . . . , ρn with respective minimum

penalty functions α1, . . . , αn, the minimum penalty function of

�n
i=1 ρi is

∑n
i=1 αi .
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Regulatory Arbitrage

A firm may have an incentive to split its total business into n

subsidies to reduce its regulatory capital

Write X =
∑n

i=1 Xi and measure each Xi with ρ

Compare ρ(X ) and
∑n

i=1 ρ(Xi )

Make
∑n

i=1 ρ(Xi ) small

Regulatory arbitrage: ρ(X )−
∑n

i=1 ρ(Xi )
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Example of VaR

An example of VaRp, p ∈ (0, 1): for any risk X > 0 and

n > 1/(1− p), we can build

Xi = X IAi
, i = 1, · · · , n

where {Ai , i = 1, . . . , n} is a partition of Ω and

VaRp(Ai ) < 1− p. Then VaRp(Xi ) = 0. Therefore

n∑
i=1

Xi = X

and
n∑

i=1

VaRp(Xi ) = 0.
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Regulatory Arbitrage

Define, for X ∈ X ,

Ψρ(X ) = inf

{
n∑

i=1

ρ(Xi ) : n ∈ N, (X1, . . . ,Xn) ∈ An(X )

}
.

Ψρ(X ) is the least amount of capital requirement according to

ρ if the risk X can be divided arbitrarily.

Ψρ ≤ ρ.

Ψρ = ρ if and only if ρ is subadditive.

Regulatory arbitrage of ρ: Φρ(X ) = ρ(X )−Ψρ(X ).
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Regulatory Arbitrage

We may categorize risk measures into four cases:

Definition (Wang, 2016 QF)

A risk measure ρ is

(i) free of regulatory arbitrage if Φρ(X ) = 0 for all X ∈ X ,

(ii) of limited regulatory arbitrage if Φρ(X ) <∞ for all X ∈ X ,

(iii) of unlimited regulatory arbitrage if Φρ(X ) =∞ for some

X ∈ X ,

(iv) of infinite regulatory arbitrage if Φρ(X ) =∞ for all X ∈ X .
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Regulatory Arbitrage of VaR

Theorem: Wang, 2016 QF

For p ∈ (0, 1), VaRp is of infinite regulatory arbitrage. That is,

ΦVaRp(X ) =∞ for all X ∈ X .

VaR is vulnerable to manipulation of risks.
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Regulatory Arbitrage of General Risk Measures

Theorem: Wang, 2016 QF

The following hold:

(i) If ρ is a distortion risk measure, then ρ is of limited regulatory

arbitrage if and only if ρ(X ) ≥ E[X ] for all X ∈ X .

(ii) If ρ is a law-determined convex risk measure, then ρ is of

limited regulatory arbitrage.

In either case, Ψρ is a coherent risk measure; thus, ρ is free of

regulatory arbitrage if and only if it is coherent.

In either case, Ψρ is the largest coherent risk measure

dominated by ρ.
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Backtesting

Recall from R1, Page 41, Question 8

”. . . robust backtesting . . .”

Backtesting

(i) estimate a risk measure from past observations;

(ii) test whether (i) is appropriate using future observations;

(iii) purpose: monitor, test or update risk measure forecasts;

(iv) particularly relevant for market risk (daily forecasts).
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Backtesting

For VaR, a simple procedure is available.

VaR backtesting:

Suppose that you have iid risks Xt , t ≥ 0;

(1) suppose the estimated/modeled VaRp(Xt+1) is Vt+1 at time t;

(2) consider random variables At = I{Xt>Vt}, t > 0;

(3) standard hypothesis testing methods for H0: At are iid

Bernoulli(1− p) random variables.

For ES, a simple and intuitive procedure does not exist. Why?
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Backtesting

Not all risk measures can be backtested, and it is not easy to

say which ones can

VaR: just test whether losses exceed VaRp p% of the times

(model independent). Such good property is rare for risk

measures.

ES: backtesting procedures are model dependent

Mode: probably impossible to backtest
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Elicitability

In 2011, a notion is proposed for comparing risk measure

forecasts: elicitability, Gneiting (2011, JASA).

Quoting Acerbi and Szekely (2014 Risk):

‘’Eliciwhat?”

Risk professionals had never heard of elicitability until 2011, when

Gneiting proved that ES is not elicitable as opposed to VaR. This

result sparked a confusing debate.
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Elicitability

Elicitability

Roughly speaking, a law-determined risk measure (statistical

functional) is elicitable if ρ is the unique solution to the

following equation:

ρ(X ) = argmin
x∈R

E[s(x ,X )], X ∈ X

where

s : R2 → [0,∞) is a strictly consistent scoring function (that

is, s(x , y) = 0 if and only if x = y);

clearly, elicitability requires ρ(c) = c , c ∈ R (standardization);

in the following, we always assume this.
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Elicitability

Examples (assuming all integrals are finite):

the mean is elicitable with

s(x ,X ) = (x − X )2.

the median is elicitable with

s(x ,X ) = |x − X |.

VaRp is elicitable with

s(x ,X ) = (1− p)(x − X )+ + p(X − x)+

if X has continuous inverse cdf at p.

ep is elicitable with

s(x ,X ) = (1− p)(x − X )2+ + p(X − x)2+.
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Perspective of a Risk Analyst

Elicitability and comparison

Suppose observations are iid

The estimated/modeled value of ρ is ρ0 at t = 0;

based on new iid observations Xt , t > 0, consider the

statistics s(ρ0,Xt); for instance, test statistic can typically be

chosen as Tn(ρ0) = 1
n

∑n
t=1 s(ρ0,Xt);

Tn(ρ0): a statistic which indicates the goodness of forecasts.

updating ρ: look at a minimizer for Tn(ρ);

the above procedure is model-independent.

Estimation procedures of an elicitable risk measure are

straightforward to compare.
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Perspective of a Regulator

Elicitability and regulation

A value of risk measure ρ0 is reported by a financial

institution based on internal models.

A regulator does not have access to the internal model, and

she does not know whether ρ0 is calculated honestly.

She applies s(ρ0,Xt) as a daily penalty function for the

financial institution. She may also compare it with a standard

model chosen by the regulator.

If the institution likes to minimize this penalty, it has to report

the true value of ρ and use the most realistic model.

the above procedure is model-independent.
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Elicitability

VaR vs ES: elicitability

Theorem: Gneiting, 2011, JASA

Under some regularity conditions,

VaR is elicitable;

ES is not elicitable.
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Backtestability

The unpublished idea was presented by Carlo Acerbi (MSCI). It is

slightly modified.

Definition

A risk measure ρ is backtestable if there exists a function

Z : R2 → R such that for each X ∈ X ,

x 7→ E[Z (x ,X )] is increasing, and

E[Z (x ,X )] < 0 for x < ρ(X ) and E[Z (x ,X )] > 0 for x > ρ(X ).

That is, zero can be used as a benchmark to distinguish whether a

risk measure is underestimated. This is because a regulator is

mainly concerned about underestimation.
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Backtestability

Again we assume all integrals are finite in the following.

Proposition (*)

Suppose that a standardized risk measure ρ is backtestable, then it

is elicitable with a score function convex in its first argument.

One can always choose

s(x , y) =

∫ x

y
Z (t, y)dt.

Equivalently, ∂s(x , y)/∂x = Z (x , y).

Assuming X is has continuous cdf at p, VaRp is backtestable

with

Z (x , y) = −I{x<y}p + I{x>y}(1− p).
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Elicitability

Remarks: the relevance of elicitability for risk management

purposes is heavily contested:

McNeil, Frey and Embrechts (2005): backtesting of ES is

possible (semi-parametric EVT models)

Emmer, Kratz and Tasche (2014): alternative method for

backtesting ES

Davis (2016): backtesting based on prequential principle
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Shortfall Risk Measures

Recall the definition of shortfall risk measures:

ρ(X ) = inf{x ∈ R : E[`(X − x)] ≤ `0}.

`: an increasing function, called a loss function. ρ is a convex risk

measure if and only if ` is convex. We assume ` to be strictly

increasing.

Proposition (*)

A shortfall risk measure is always elicitable and backtestable.

Take Z (x , y) = `0 − `(y − x).
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Convex level set

An interesting related property for law-determined risk measures is

having convex level sets. Let FX be the distribution function of

X ∈ X .

[CL] Convex level sets: If ρ(X ) = ρ(Y ), then ρ(Z ) = ρ(X ) = ρ(Y )

for all λ ∈ [0, 1] and FZ = λFX + (1− λ)FY .

Proposition (*)

An elicitable risk measure always has convex level sets.

Corollary

A shortfall risk measure always has convex level sets.
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Convex level set

Eventually, it was established that among convex risk measures,

[CL] characterizes convex shortfall risk measures.

Theorem (Delbaen-Bellini-Bignozzi-Ziegel 2016 FS)

A law-determined convex risk measure on L∞ satisfies [CL] if and

only if it is a convex shortfall risk measure.

Ruodu Wang Peking University 2016



Elicitable Risk Measures

Some results

if ρ is coherent, comonotonic additive and elicitable, then ρ is

the mean (Ziegel, 2015);

if ρ is comonotonic additive and elicitable, then ρ is a VaR or

the mean (Kou and Peng, 2014; Wang and Ziegel, 2015);

if ρ is coherent and elicitable, then ρ is an expectile (Delbaen,

Bellini, Bignozzi and Ziegel, 2016);

if ρ is convex and elicitable, then ρ is a convex shortfall risk

measure (Delbaen, Bignozzi, Bellini and Ziegel, 2016).
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Triangle of Risk Measures

comonotonic
additivity

elicitability

coherence

ES Expectile

VaR

mean
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Change of Currency

There are two currencies (domestic and foreign).

The exchange rate at future time T from the domestic

currency to the foreign currency is denoted by RT .

In practice, RT is random.

Suppose that the random loss/profit at time T of a financial

institution is X (in domestic currency).
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Change of Currency

Let ρ be a monetary risk measure.

A regulator uses an acceptance set Aρ to determine the

solvency of this financial institution.

The institution is solvent if X ∈ Aρ.

Another regulator uses the same acceptance set Aρ, but it is

calculated based on the foreign currency.

The institution is solvent if RT

R0
X ∈ Aρ.

Both solvency criteria should be equivalent; that is, for

R = RT/R0, one should have X ∈ Aρ ⇒ RX ∈ Aρ.
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Change of Currency

For a risk measure ρ:

[EI] Exchange-invariance: for X ∈ X , if ρ(X ) ≤ 0, then

ρ(RX ) ≤ 0 for all positive random variables R ∈ X .

Proposition (*)

If a monetary risk measure satisfies [EI], then it satisfies [PH].

[EI] is a very strong property.
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Change of Currency

Some simple results:

Theorem (Koch-Medina-Munari 2016 JBF*)

For p ∈ (0, 1), VaRp satisfies [EI] and ESp does not satisfy [EI].

ES has currency issues as a global regulatory risk measure.
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Robust Statistics

Robustness addresses the question of “what if the data is

compromised with small error?” (e.g. outlier)

Originally robustness was defined on estimators (of a quantity

T )

Would the estimation be ruined if an outlier is added to the

sample?

Think about VaR and ES non-parametric estimates
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VaR and ES Robustness
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VaR and ES Robustness

Non-robustness of VaRp only happens if the quantile has a

gap at p

Is this situation relevant for risk management practice?
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Robust Statistics

Classic qualitative robustness:

Hampel (1971 AoMS): the robustness of an estimator of T is

equivalent to the continuity of T with respect to underlying

distributions (both with respect to the same metric)

When we talk about the robustness of a statistical functional,

(Huber-Hampel’s) robustness typically refers to continuity with

respect to some metric.

General reference: Huber and Ronchetti, 2007 book
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Robustness of Risk Measures

Consider the continuity of ρ : X → R.

The strongest sense of continuity is w.r.t. weak convergence.

Xn → X weakly, then ρ(Xn)→ ρ(X ).

Quite restrictive

Practitioners like weak convergence

In Part II, we have seen a few different types of continuity for risk

measures.
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Robustness of Risk Measures

With respect to weak convergence:

VaRp is continuous at distributions whose quantile is

continuous at p. VaRp is argued as being almost robust.

ESp is not continuous for any X ⊃ L∞

ESp is continuous w.r.t. some other (stronger) metric, e.g. Lq,

q ≥ 1 metric (or the Wasserstein-Lp metric)
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Robustness of Risk Measures

Take X = L∞. From weak to strong:

Continuity w.r.t. L∞ convergence: all monetary risk measures

Continuity w.r.t. Lq, q ≥ 1 convergence: e.g. ESp, p ∈ (0, 1)

Continuity w.r.t. weak convergence (a.s. or in probability):

(almost) VaRp, p ∈ (0, 1). A convex risk measure cannot be

continuous with respect to a.s., P or weak convergence.

For distortion risk measures:

A distortion risk measure is continuous on L∞ iff its distortion

function h has a (left and right) derivative which vanishes at

neighbourhoods of 0 and 1 (classic property of L-statistics;

see Cont-Deguest-Scandolo 2010 QF).
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Robustness of Risk Measures

Some references and related papers:

Bäuerle-Müller (2006 IME)

Stahl-Zheng-Kiesel-Rühlicke (2012 SSRN)

Krätschmer-Schied-Zähle (2012 JMVA, 2014 FS, 2015 arXiv)

Embrechts-Wang-Wang (2015 FS)

Cambou-Filipović (2016+ MF)

Dańıelsson-Zhou (2015 SSRN)
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Example

Example: different internal models

Same data set, two different parametric models (e.g. normal

vs student-t).

Estimation of parameters, and compare the VaR and ES for

two models.

VaR is more robust in this setting, since it does not take the

tail behavior into account (normal and student-t do not make

a big difference).

ES is less robust (heavy reliance on the model’s tail behavior).

Capital requirements: heavily depends on the internal models.
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End of Lecture Note

The field of risk measures is developing really fast in both

academia and industry.

No grand conclusion can be made at this moment.

Different situations require different principles, and judgement

should always be made with caution.

Uncertainty always exists.

Thank you for attending the lectures!
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