Short Course
 Theory and Practice of Risk Measurement

Part 3
Law-determined Risk Measures

Email: wang@uwaterloo.ca

Part 3

- Law-determined risk measures
- Shortfall risk measures
- Comonotonicity
- Distortion risk measures
- Risk measures and risk-aversion

Law-determined Risk Measures

In this part of the lectures, we study an important subclass of "simplified" risk measures. This class of risk measures is determined by the distribution of a random loss.

- Such risk measures are referred to as law-determined risk measures.
- All previous examples are in fact law-determined risk measures.

Law-determined Risk Measures

Formally, the property ${ }^{1}$ is
[LD] law-determination: $\rho(X)=\rho(Y)$ if $X, Y \in \mathcal{X}, X \stackrel{\text { d }}{=} Y$.
Here, we emphasize that the reference (real-world) probability measure \mathbb{P} is important in [LD], since the distributions of X and Y depend on \mathbb{P}.

- In Mathematical Finance this property is often called "law-invariance".

[^0]
Law-determined Risk Measures

Remark: In all previous properties, namely [M], [CI], [SA], [PH], $[C X]$, and $[F P]$, the reference probability measure \mathbb{P} is irrelevant. If we state them under another measure Q which is equivalent to \mathbb{P}, the properties will not change.

Law-determined Risk Measures

Very often from a statistical consideration, we may only know about the distribution of a risk, but not the mapping $X: \Omega \rightarrow \mathbb{R}$.

- law-determined functionals are thereby also often called statistical functionals
- In many practical situations one learns about a risk from simulation instead of probabilistic characteristics
- it significantly reduces the cardinality of the set of risk measures at study:
- The set of risks $\mathcal{X}: \mathcal{F}$-measurable functions: $\Omega \rightarrow \mathbb{R}$
- The set of distributions \mathcal{D} : increasing functions: $\mathbb{R} \rightarrow[0,1]$
- a risk may not be well-described by its law: for instance, lottery vs insurance

Law-determined Risk Measures

- In this part of the lecture, we continue to take $\mathcal{X}=L^{\infty}$ as the standard set of risks to consider.
- It turns out that the class of distortion risk measures, including VaR and ES, is a crucial part in the study of law-determined risk measure.
- VaR and ES are particularly important and they have unique roles to play.

Shortfall Risk Measures

Shortfall risk measures:

$$
\rho(X)=\inf \left\{y \in \mathbb{R}: \mathbb{E}[\ell(X-y)] \leq \ell_{0}\right\}
$$

ℓ : an increasing function, called a loss function. ℓ is typically convex. $\ell_{0} \in \mathbb{R}$ and usually can be taken as $\ell(0)$.

- It is easy to verify that ρ is a monetary risk measure.
- Motivated from indifference pricing: the acceptance set of ρ is

$$
\mathcal{A}_{\rho}=\left\{X \in \mathcal{X}: \mathbb{E}[\ell(X)] \leq \ell_{0}\right\} .
$$

- If ℓ is convex, then ρ is a convex risk measure.

Shortfall Risk Measures

Exercise: verify that $\operatorname{VaR}_{p}, p \in(0,1)$ is a shortfall risk measure with loss function

$$
\ell(x)=I_{\{x>0\}}-(1-p), \quad \ell_{0}=0
$$

Entropic Risk Measures

Take $\ell(x)=e^{\beta x}, \beta>0$ and $\ell_{0}=1$ in a shortfall risk measure, then ρ becomes the entropic risk measure:

$$
\mathrm{ER}_{\beta}(X)=\frac{1}{\beta} \log \mathbb{E}\left[e^{\beta X}\right]
$$

(also known as exponential principle in actuarial science)

- ER_{β} is neither subadditive or positively homogeneous
- It is the only convex (non-coherent) risk measure which has an "explicit" form
- It can also be generated by an exponential utility (cf. Assignment 1)
- $\mathrm{ER}_{\beta}(X) \geq \mathbb{E}[X]$ from Jensen's inequality
- ER_{β} satisfies independent additivity: if X and Y are independent, then $\mathrm{ER}_{\beta}(X+Y)=\mathrm{ER}_{\beta}(X)+\mathrm{ER}_{\beta}(Y)$

Entropic Risk Measures

Entropic risk measure is a convex risk measure

- We can calculate its penalty function:

$$
\begin{aligned}
\alpha^{\min }(Q) & =\sup _{X \in \mathcal{X}}\left\{\mathbb{E}^{Q}[X]-\frac{1}{\beta} \log \mathbb{E}^{\mathbb{P}}\left[e^{\beta X}\right]\right\} \\
& =\frac{1}{\beta} \sup _{X \in \mathcal{X}}\left\{\mathbb{E}^{Q}[X]-\log \mathbb{E}^{\mathbb{P}}\left[e^{X}\right]\right\} \\
& =\frac{1}{\beta} \mathbb{E}^{Q}\left[\log \left(\frac{\mathrm{~d} Q}{\mathrm{dP}}\right)\right]=\frac{1}{\beta} H(Q \mid \mathbb{P}),
\end{aligned}
$$

where $H(Q \mid \mathbb{P})$ is the relative entropy of Q with respect to \mathbb{P}.

- The supremum is attained by $X=\log \left(\frac{d Q}{d P}\right)$; see Lemma 3.29 of Föllmer and Schied (2011).

Entropic Risk Measures

Entropic risk measure has a dual representation

$$
\operatorname{ER}_{\beta}(X)=\sup _{Q \in \mathcal{P}}\left\{\mathbb{E}^{Q}[X]-\frac{1}{\beta} H(Q \mid \mathbb{P})\right\}
$$

- ρ penalizes on the relative entropy of Q, which is a natural consideration.
- By taking $Q=\mathbb{P}$, we can see that $\operatorname{ER}_{\beta}(X) \geq \mathbb{E}[X]$.

Entropic Risk Measures

A coherent risk measure based on the relative entropy is the coherent entropic risk measure:

$$
\operatorname{CER}_{c}(X)=\sup _{Q \in \mathcal{R}_{c}}\left\{\mathbb{E}^{Q}[X]\right\}, \quad X \in \mathcal{X}
$$

where $c>0$ and $\mathcal{R}_{c}=\{Q \in \mathcal{P}: H(Q \mid \mathbb{P}) \leq c\}$.

Entropic Risk Measures

More on CER:

- Only scenarios that are not far away from \mathbb{P} are considered from this point of view, it is similar to an Expected Shortfall one has $\operatorname{CER}_{c_{p}}(X) \geq \operatorname{ES}_{p}(X)$ where $c_{p}=-\log (1-p)$.
Details: Föllmer and Knispel (2011).
- Connection:

$$
\operatorname{CER}_{c}(X)=\min _{\beta>0}\left\{\operatorname{ER}_{\beta}(X)+\frac{c}{\beta}\right\}
$$

- Shortcoming: computationally/statistically not straightforward

Expectiles

Take $\ell(x)=p x_{+}-(1-p) x_{-}, p \in(0,1)$ and $\ell_{0}=0$, then ρ becomes the p-expectile (well-defined on L^{1}):

$$
e_{p}(X)=\min \left\{t \in \mathbb{R}: p \mathbb{E}\left[(X-t)_{+}\right] \leq(1-p) \mathbb{E}\left[(X-t)_{-}\right]\right\}
$$

An alternative formulation is (the following argmin is unique for $X \in L^{2}$):

$$
e_{p}(X)=\underset{t \in \mathbb{R}}{\arg \min }\left\{p \mathbb{E}\left[(X-t)_{+}^{2}\right]+(1-p) \mathbb{E}\left[(X-t)_{-}^{2}\right]\right\}
$$

Expectiles

Let $\Omega(X)=\frac{\mathbb{E}\left[X_{+}\right]}{\mathbb{E}\left[X_{-}\right]}$be the Omega ratio of X, then

$$
e_{p}(X)=\min \left\{t \in \mathbb{R}: \Omega(X-t) \leq \frac{1-p}{p}\right\}
$$

The acceptance set of e_{p} is of this form

$$
\mathcal{A}_{e_{p}}=\left\{X \in \mathcal{X}: \Omega(X) \leq \frac{1-p}{p}\right\}
$$

Expectiles

e_{p} is a coherent risk measure if and only if $p \geq 1 / 2$:

- originally proposed in the statistical literature: Newey and Powell (1987, Econometrika)
- expectiles are the only coherent risk measures which are elicitable: Ziegel (2015, MF), Delbaen et al. (2015, FS)
- representation of expectile: Bellini et al. (2014, IME).
- estimation is straightforward
- problem: interpretation is not easy and computation can be involved

Limit Behavior

Some limit behavior of risk measures: we interpret the parameter values at $0,1, \infty$ in the sense of limit.
(1) $\operatorname{VaR}_{0}(X)=\operatorname{ess-inf}(X), \operatorname{VaR}_{1}(X)=\operatorname{ess-sup}(X)$.
(2) $\mathrm{ES}_{0}(X)=\mathbb{E}[X], \mathrm{ES}_{1}(X)=\operatorname{ess}-\sup (X)$.
(3) $\mathrm{ER}_{0}(X)=\mathbb{E}[X], \mathrm{ER}_{\infty}(X)=\operatorname{ess}-\sup (X)$.
(4) $\operatorname{CER}_{0}(X)=\mathbb{E}[X], \operatorname{CER}_{\infty}(X)=\operatorname{ess}-\sup (X)$.
(5) $e_{0}(X)=\operatorname{ess}-i n f(X), e_{1 / 2}(X)=\mathbb{E}[X], e_{1}(X)=\operatorname{ess-sup}(X)$.

Law-determined Risk Measures

- At this moment, the natural question is to ask: what is a representation theorem for law-determined coherent risk measure ρ ? It must have the form

$$
\rho(X)=\sup _{Q \in \mathcal{R}} \mathbb{E}^{Q}[X]
$$

for some appropriately chosen set \mathcal{R} of probability measures. Note that not all choices of \mathcal{R} would make ρ law-determined.

- Before we answer this question, we first look at some other interesting and relevant mathematical properties here: comotonicity and comonotonic additivity.

Comonotonicity

Definition

A pair of random variables $(X, Y) \in\left(L^{0}\right)^{2}$ is said to be comonotonic if there exists a random variable Z and two increasing functions f, g such that almost surely $X=f(Z)$ and $Y=g(Z)$.

- We also say " X and Y are comonotonic" when there is no confusion
- X and Y move in the same direction. This is a strongest (and simplest) notion of positive dependence.
- Two risks are not a hedge to each other if they are comonotonic
- We use $X / / Y$ to represent that (X, Y) is comonotonic.

Comonotonicity

Some examples of comonotonic random variables:

- a constant and any random variable
- X and X
- X and $\mathrm{I}_{\{X \geq 0\}}$
- In the Black-Scholes framework, the time-t prices of a stock S and a call option on S

Note: in the definition of comonotonicity, the choice of \mathbb{P} is irrelevant.

Comonotonicity

Theorem

The following are equivalent:
(i) X and Y are comonotonic;
(ii) For some strictly increasing functions $f, g, f(X)$ and $g(Y)$ are comonotonic.
(iii) $\mathbb{P}(X \leq x, Y \leq y)=\min \{\mathbb{P}(X \leq x), \mathbb{P}(Y \leq y)\}$ for all $(x, y) \in \mathbb{R}^{2} ;$
(iv) $\left(X(\omega)-X\left(\omega^{\prime}\right)\right)\left(Y(\omega)-Y\left(\omega^{\prime}\right)\right) \geq 0$ for a.s. $\left(\omega, \omega^{\prime}\right) \in \Omega \times \Omega$.

- If one is familiar with the theory of copulas, then two continuous random variables X and Y are comonotonic if and only if the copula of (X, Y) is the Fréchet upper copula.

Comonotonicity

In the following, the four random variables $X, Y, Z, W \in L^{2}$ satisfy
$Z \stackrel{\mathrm{~d}}{=} X$ and $W \stackrel{\mathrm{~d}}{=} Y$.

Proposition

Suppose that X and Y are comonotonic. The following hold:
(i) $\mathbb{P}(X \leq x, Y \leq y) \geq \mathbb{P}(Z \leq x, W \leq y)$ for all $(x, y) \in \mathbb{R}^{2}$;
(ii) $\mathbb{E}[X Y] \geq \mathbb{E}[Z W]$;
(iii) $\operatorname{Corr}(X, Y) \geq \operatorname{Corr}(Z, W)$.

Comonotonic Additivity

One more important property from an economic viewpoint:
[CA] comonotonic additivity: $\rho(X+Y)=\rho(X)+\rho(Y)$ if X and Y are comonotonic.

To interpret this property:

- If $X / / Y$, then they are not a hedge of each other. Therefore, one should not receive any diversification benefit from putting such risks together. This leads to $\rho(X+Y) \geq \rho(X)+\rho(Y)$.
- If one in addition asks for subadditivity, then we must have $\rho(X+Y)=\rho(X)+\rho(Y)$.

Comonotonic Additivity

[CA] is known in economic decision theory as the dual independence axiom (Yaari, 1987).

- Suppose that an investor has a preference (total order) among all risks in \mathcal{X}.
- Assume: if she prefers X over Y, then she should also prefer $X+Z_{X}$ over $Y+Z_{Y}$, where $Z_{X} \stackrel{\mathrm{~d}}{=} Z_{Y}, Z_{X} / / X, Z_{Y} / / Y$. That is, adding identically distributed comonotonic partners to two risks respectively does not change the preference between them.

Comonotonic Additivity

If this investor use a law-determined risk measure ρ to rank risks, we can write the dual independence axiom as a formal property of ρ :
[DI] If $\rho(X) \leq \rho(Y)$, then $\rho\left(X+Z_{X}\right) \leq \rho\left(Y+Z_{Y}\right)$ for $Z_{X} \stackrel{\text { d }}{=} Z_{Y}$, $Z_{X} / / X, Z_{Y} / / Y$.

Proposition (*)

For a law-determined monetary risk measure ρ with $\rho(0)=0,[C A]$ and [DI] are equivalent.

Comonotonic Additivity

Historical remark:

- In Mathematical Finance, Analytical study of comonotonic additive risk measures started around 2000: Kusuoka (2001).
- In Actuarial Science, insurance premium principles with comonotonic additivity was studied since 1995: Wang, Young and Panjer (1997).
- In Economic Decision Theory, the dual independence axiom and its equivalent forms have been studied since the 1980s: Schmeidler (1986, 1989), Yaari (1987), Denneberg (1990, 1994 book).

Comonotonic Additivity

In general, [CA] is a very strong property.

Proposition (*)

For a monetary risk measure ρ, [CA] implies $[P H]$.
Examples:

- $\mathrm{VaR}_{p}, p \in(0,1)$ is comonotonic additive.
- $\mathrm{ES}_{p}, p \in(0,1)$ is comonotonic additive.
- $\mathrm{ER}_{\beta}, \beta \in(0, \infty)$ is not comonotonic additive.
- $e_{p}, p \in(0,1) \backslash\{1 / 2\}$ is not comonotonic additive. (Hence, the converse of the proposition is not true.)

Comonotonic Additivity

Exercise. For $p \geq 1 / 2$, take a $\mathrm{U}[0,1]$ random variable U, $X=I_{\{U \geq 1 / 2\}}$ and $Y=I_{\{U \geq p\}}$.

- Observe that X and Y are comonotonic.
- Calculate the value of $e_{p}(X), e_{p}(Y)$ and $e_{p}(X+Y)$.
- Show that $e_{p}(X+Y)=e_{p}(X)+e_{p}(Y)$ if and only if $p=1 / 2$.

Hence, $e_{p}, p>1 / 2$ is not comonotonic additive.

- From this exercise we may also notice how unfriendly the calculation of $e_{p}(X)$ is even for some simplest distributions.

Distortion Risk Measures

Theorem: Yaari, 1987; Wang, Young and Panjer, 1997

A law-determined and comonotonic additive monetary risk measure ρ has the following representation:

$$
\rho(X)=\rho_{h}(X):=\int_{\mathbb{R}} x \operatorname{dh}(F(x)), X \in \mathcal{X}, X \sim F
$$

where h is an increasing function on $[0,1]$ with $h(0)=0$ and $h(1)=1$.
ρ_{h} is called a distortion risk measure (DRM). h is the distortion function of ρ_{h}.

- ES and VaR are special cases of distortion risk measures.
- The proof is a standard property of Choquet integrals.

Distortion Risk Measures

Alternative representation

If $X \sim F$ and F^{-1} is a continuous function on $[0,1]$, then a distortion risk measure ρ_{h} can be written as

$$
\rho_{h}(X)=\int_{0}^{1} \operatorname{VaR}_{p}(X) \mathrm{d} h(p)
$$

where h is a distribution function on $[0,1]$.

- $\mathrm{VaR}_{p}: h$ is a point mass at p
- ES_{p} : h is the uniform distribution over $[p, 1]$
- We will work with this representation for simplicity

Distortion Risk Measures

Distortion risk measures are very popular due to its advantages in

- comonotonic additivity
- economic interpretations
- estimation
- computation

Distortion Risk Measures

For a continuous and strictly increasing utility function u and a distortion function h, the rank-dependent expected utility (RDEU) is defined as

$$
U_{u, h}(X)=\rho_{h}(u(X))
$$

- RDEU theory is one of the most popular generalizations of the expected utility theory, and could explain the Allais paradox.
- See Quiggin $(1982,1993)$.

Distortion Risk Measures

Proposition

(a) For a distortion risk measure ρ_{h} and $X \in L^{\infty}, X \sim F$ where F^{-1} is continuous,

$$
\rho_{h}\left(X_{F}\right)=F^{-1}(0)+\int_{0}^{1}(1-h(t)) \mathrm{d} F^{-1}(t) .
$$

(b) For two distortion risk measures $\rho_{h_{1}}, \rho_{h_{2}}$,

$$
h_{1}(t) \leq h_{2}(t) \quad \forall t \in[0,1] \quad \Leftrightarrow \quad \rho_{h_{1}}(X) \geq \rho_{h_{2}}(X) \forall X \in L^{\infty} .
$$

Coherent Distortion Risk Measures

- A distortion risk measure is always positively homogeneous.
- It is not necessarily convex or subadditive (VaR for instance).
- It needs convexity or subadditivity to be a coherent risk measure.
- The next question is: what distortion function h would give a subadditive (coherent) distortion risk measure.

Coherent Distortion Risk Measures

Theorem: Kuosuka, 2001

A law-invariant and comonotonic additive coherent risk measure ρ (with the Fatou property) has the following two representations:
(i) $\rho(X)=\rho_{g}(X)=\int_{0}^{1} \operatorname{VaR}_{p}(X) \mathrm{d} g(p), \quad X \in \mathcal{X}$, where g is a convex distribution function on $[0,1]$;
(ii) $\rho(X)=\rho_{h}^{*}(X):=\int_{0}^{1} \mathrm{ES}_{p}(X) \mathrm{d} h(p), X \in \mathcal{X}$,
where h is a distribution function on $[0,1]$.
To connect them, one has

$$
g^{\prime}(q)=\int_{0}^{q} \frac{1}{1-p} \mathrm{~d} h(p)
$$

Coherent Distortion Risk Measures

- In different context, under different conditions, with different focuses, the previous theorem and some similar forms can be found in Schmeidler (1986); Denneberg (1994); Wang (1996); Kusuoka (2001); Acerbi (2002).

Law-determined Coherent Risk Measures

Theorem: Kusuoka, 2001*

A law-determined coherent risk measure (with the Fatou property) has the following representation:

$$
\rho(X)=\sup _{h \in \mathcal{R}_{1}} \int_{0}^{1} \mathrm{ES}_{p}(X) \mathrm{d} h(p), \quad X \in \mathcal{X}
$$

where $\mathcal{R}_{/}$is a collection of probability measures on $[0,1]$.

- That is, ρ is the supremum of a class of coherent distortion risk measures.
- This result is called Kusuoka's representation.

Law-determined Convex Risk Measures

Theorem: Frittelli-Rosazza Gianin, 2005, AME

A law-determined convex risk measure (with the Fatou property) has the following representation

$$
\rho(X)=\sup _{h \in \mathcal{P}_{I}}\left\{\int \operatorname{ES}_{p}(X) \mathrm{d} h(p)-\alpha(h)\right\}, X \in \mathcal{X}
$$

where $\mathcal{P}_{\text {l }}$ is the set of probability measures on $[0,1]$, and $\alpha: \mathcal{P}_{\boldsymbol{I}} \rightarrow(-\infty, \infty]$ is a penalty function.

- This is very similar to Kusuoka's representation of law-determined coherent risk measures.

Fatou Property

Theorem: Jouini-Schachermayer-Touzi, 2006, AME
 A law-determined convex risk measure on L^{∞} has the Fatou property.

- Same conclusion holds true for risk measures on L^{q}, $q \in[1, \infty)$ which takes values in \mathbb{R}, although we have not formally defined the Fatou's property on L^{q}
- Extension to L^{q} : Kaina and Rüschendorf (2009, MMOR) and Filipović and Svindland (2012, MF).
- We may remove "(with the Fatou property)" in the previous few theorems.

Convex Order

In the next, we consider the relationship between risk measures and the notion of risk-aversion.

Definition (Convex order)

For $X, Y \in L^{1}, X$ is smaller than Y in (resp. increasing) convex order, denoted as $X \prec_{\text {cx }} Y$ (resp. $X \prec_{\text {icx }} Y$), if $\mathbb{E}[f(X)] \leq \mathbb{E}[f(Y)]$ for all (resp. increasing) convex functions f such that the expectations exist.

Convex Order

- Increasing convex order describes a preference among risks for risk-averse investors (called second-order stochastic dominance (SSD) in decision theory)
- a risk-averse investor prefers a risk with less variability (uncertainty) against one with larger variability, and she prefers a risk with a certainly smaller loss against a risk with a larger loss
- convex order and increasing convex order are based on the law of random variables

Convex Order

Some examples and properties (all random variables are in L^{1}):

- $X \prec_{\text {cx }} Y$ implies $X \prec_{\text {icx }} Y$.
- $X \leq Y$ a.s. implies $X \prec_{\text {icx }} Y$.
- $\mathbb{E}[X \mid \mathcal{G}] \prec_{\mathrm{cx}} X$ for any σ-field \mathcal{G}. In particular, $\mathbb{E}[X] \prec_{\mathrm{cx}} X$.
- If $\mathbb{E}[X]=\mathbb{E}[Y]=0$, and $X=a Y, a>1$, then $Y \prec_{c x} X$.
- If $X \prec_{\text {icx }} Y, Y \prec_{\text {icx }} Z$, then $X \prec_{\text {icx }} Z$.
- If $X \prec_{\text {icx }} Y$, then $f(X) \prec_{\text {icx }} f(Y)$ for any increasing function f.
- If $X \stackrel{\mathrm{~d}}{=} Z, Y \stackrel{\mathrm{~d}}{=} W, X / / Y$, then $Z+W \prec_{\mathrm{cx}} X+Y$.
- $X \prec_{\mathrm{cx}} Y$ if and only if $\mathrm{ES}_{p}(X) \leq \mathrm{ES}_{p}(Y)$ for all $p \in(0,1)$.

Risk Aversion in Risk Measures

We will focus on the following property:
[SC] SSD consistentcy: $\rho(X) \leq \rho(Y)$ if $X \leq$ icx $Y, X, Y \in \mathcal{X}$.
Similar properties:
[CC] Convex order consistency: $\rho(X) \leq \rho(Y)$ if $X \prec_{\text {cx }} Y$, $X, Y \in \mathcal{X}$.
[DM] Dilatation monotonicity: $\rho(X) \leq \rho(Y)$ if $(X, Y) \in \mathcal{X}^{2}$ is a martingale.
[DC] Diversification consistency: $\rho(X+Y) \leq \rho\left(X^{c}+Y^{c}\right)$ if $X, Y, X^{c}, Y^{c} \in \mathcal{X}, X \stackrel{\mathrm{~d}}{=} X^{c}, Y \stackrel{\mathrm{~d}}{=} Y^{c}$, and $X^{c} / / Y^{c}$.

Risk Aversion in Risk Measures

[SC] is sometimes called strong risk aversion in economic decision theory.

- $[\mathrm{SC}]$ is consistent with an aversion to mean-preserving spreads, and it implies that $\rho(\mathbb{E}[X]) \leq \rho(X)$ for all $X \in \mathcal{X}$.
- It is natural to require $[\mathrm{SC}]$ for a risk measure implemented in regulation, as this will encourage financial institutions to make decisions consistent with the common notion of risk aversion.
- [DC] implies that the undiversified portfolio has a larger capital requirement. This represents the third notion of diversification benefit in addition to subadditivity and convexity (cf. Part II).

Risk Aversion in Risk Measures

In fact [CC], [SC], [DM] and [DC] are equivalent for law-determined risk measures on L^{∞}.

Proposition (Mao-Wang, 2016)

For a risk measure ρ on L^{∞}, the following are equivalent:
(a) ρ satisfies $[C I]$ and $[S C]$;
(b) ρ satisfies $[\mathrm{M}],[C I]$ and $[C C]$;
(c) ρ satisfies $[\mathrm{M}],[\mathrm{CI}]$ and [DM];
(d) ρ satisfies $[M],[C I]$ and $[D C]$.

Moreover, each case implies that ρ satisfies [LD].

- The implication $[\mathrm{DM}] \Rightarrow[\mathrm{LD}]$ is very tricky. See Cherny and Grigoriev (2007, FS).

Risk Aversion in Risk Measures

Since [SC] is consistent with the use of concave utility function, one may expect that convex risk measures have the same property. This is indeed true.

Theorem (*)

A law-determined convex risk measure on L^{∞} with the Fatou property satisfies [SC].

- This result (when $\mathcal{X}=L^{\infty}$) is first given in the 2004 version of Föllmer and Schied (2011). Generalizations to L^{q} can be found in Svindland (2008).

Risk Aversion in Risk Measures

Recently we are able to characterize all risk measures that satisfies [SC].

Theorem: Mao-Wang, 2016
A monetary risk measure ρ on L^{∞} satisfies [SC] if and only if it has the following representation:

$$
\rho(X)=\inf _{\tau \in \mathcal{C}} \tau(X)
$$

where \mathcal{C} is a collection of law-determined convex risk measures.

Risk Aversion in Risk Measures

Finally, the following representation is available.

Theorem: Mao-Wang 2016

A monetary risk measure ρ on L^{∞} satisfies [SC] if and only if it has the following representation

$$
\begin{equation*}
\rho(X)=\inf _{g \in G} \sup _{\alpha \in[0,1]}\left\{\operatorname{ES}_{\alpha}(X)-g(\alpha)\right\}, \quad X \in L^{\infty}, \tag{1}
\end{equation*}
$$

where G is a set of functions mapping $[0,1]$ to \mathbb{R}. Moreover, a risk measure ρ is a law-determined convex (coherent) risk measure if and only if it has a representation (1) in which G is a convex set (cone).

Kusuoka representations

A risk measure ρ on L^{∞} :

$$
\begin{array}{rlr}
{[\mathrm{TI}]+[\mathrm{SC}]} & =\inf _{\alpha \in \mathcal{V}} \sup _{h \in \mathcal{P}_{1}}\left\{\int_{0}^{1} \operatorname{ES}_{p} \mathrm{~d} h(p)-\alpha(h)\right\} & \text { for some set } \mathcal{V} \\
& \xrightarrow{+[\mathrm{CX}]} \sup _{h \in \mathcal{P}_{1}}\left\{\int_{0}^{1} \operatorname{ES}_{p} \mathrm{~d} h(p)-\alpha(\mu)\right\} & \text { for some function } \alpha \\
& \xrightarrow{+[\mathrm{PH}]} \sup _{h \in \mathcal{R}_{1}}\left\{\int_{0}^{1} \operatorname{ES}_{p} \mathrm{~d} h(p)\right\} & \text { for some set } \mathcal{R}_{I} \subset \mathcal{P}_{1} \\
& \xrightarrow{[\mathrm{CA}]} \int_{0}^{1} \operatorname{ES}_{p} \mathrm{~d} h(p) & \text { for some } h \in \mathcal{P}_{1 .} .
\end{array}
$$

Remark: $[\mathrm{TI}]+[\mathrm{SC}]+[\mathrm{CA}]$ is sufficient for the last representation

[^0]: ${ }^{1}$ We use $X \stackrel{\text { d }}{=} Y$ to indicate that the distribution functions $\mathbb{P}(X \leq \cdot)$ and $\mathbb{P}(Y \leq \cdot)$ are identical.

