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Axiomatic Theory of Risk Measures

In this part of the lectures, we study some properties of a

“desirable” risk measure.

Of course, desirability is very subjective. We stand mainly

from a regulator’s point of view to determine capital

requirement for random losses.

Such properties are often called axioms in the literature. The main

interest of study is

What characterizes the risk measures satisfying certain axioms?

We assume X = L∞ unless otherwise specified.

We allow random variables to take negative values - i.e. profits

Recall that we use (Ω,F ,P) for an atomless probability space.
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Monetary Risk Measures

Two basic properties

[CI] cash-invariance: ρ(X + c) = ρ(X ) + c , c ∈ R;

[M] monotonicity: ρ(X ) ≤ ρ(Y ) if X ≤ Y .

These two properties are widely accepted.

Here, risk-free interest rate is assumed to be 0 (or we can

interpret everything as discounted).

Recall that we treat a.s. equal random variables identical.
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Monetary Risk Measures

The property [CI]:

By adding or subtracting a deterministic quantity c to a

position leading to the loss X the capital requirement is

altered by exactly that amount of c .

Loss X with ρ(X ) > 0: Adding the amount of capital ρ(X ) to

the position leads to the adjusted loss X̃ = X − ρ(X ), which is

ρ(X̃ ) = ρ(X − ρ(X )) = 0,

so that the position X̃ is acceptable without further injection

of capital.

The property [M]:

Positions that lead to higher losses with certainty require more

risk capital.
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Monetary Risk Measures

Definition

A monetary risk measure is a risk measure which is cash-invariant

and monotone.

Monetary risk measures serve as the basic of any future study of

risk measures.
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Monetary Risk Measures

Examples:

VaRp, p ∈ (0, 1) is monetary;

ESp, p ∈ (0, 1) is monetary;

SDb, b > 0 is cash-invariant, but not monotone*.
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Monetary Risk Measures

Lemma (*)

Any monetary risk measure is Lipschitz continuous with respect to

|| · ||∞:

|ρ(X )− ρ(Y )| ≤ ||X − Y ||∞, X ,Y ∈ X .

L∞ norm:

||X ||∞ = ess-sup(|X |) = inf{x ∈ R : P(|X | ≤ x) = 1}

= VaR1(|X |) = ES1(|X |).

|| · ||∞-continuity is a basic property for all monetary risk

measures
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Acceptance Sets

Definition

The acceptance set of a risk measure ρ is defined as

Aρ := {X ∈ X : ρ(X ) ≤ 0}.

Example: AVaRp = {X ∈ X : P(X ≤ 0) ≥ p}.

Example: AESp = {X ∈ X : ESp(X ) ≤ 0}.

Financial interpretation: the set of risks that are considered

acceptable by a regulator or manager.

A cash-invariant risk measure ρ is fully characterized by its

acceptance set.
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Acceptance Sets

Proposition (*)

Suppose that ρ is a monetary risk measure with acceptance set

Aρ. Then

(i) Aρ is not empty;

(ii) Aρ is closed with respect to the L∞ norm || · ||∞;

(iii) sup{m ∈ R : m ∈ Aρ} <∞;

(iv) Aρ is a lower-set: i.e. X ∈ Aρ, Y ∈ X and Y ≤ X =⇒
Y ∈ Aρ.
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Acceptance Sets

Theorem (Duality*)

Let A be any lower-subset of X containing at least a constant.

Then

ρA(X ) := inf{m ∈ R : X −m ∈ A}

is a monetary risk measure. Moreover,

(i) for any monetary risk measure ρ,

ρ(X ) = ρAρ(X );

(ii) A is a subset of AρA , and A = AρA if and only if A is

|| · ||∞-closed.
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Acceptance Sets

About the duality:

First version established in Artzner, Delbaen, Eber and Heath

(ADEH, 1999, MF) in finite (discrete) probability spaces.

Financial interpretation: ρA(X ) is the least amount of money

required to make X acceptable.

It is indeed to model a regulator’s mindset: s/he only need to

consider whether to accept a risk rather than to evaluate a

risk.
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Relation to Mathematical Finance

Instead of a zero-interest bond, one may think about a general

security S with S0 = 1. Let A be a lower-subset of X , and T be

the time horizon of risks at consideration.

A risk measure can be defined as

ρA(X ) = inf{m ∈ R : X −mST ∈ A}.
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Relation to Mathematical Finance

We may have multiple securities in a financial market.

A risk measure can be defined as

ρA(X ) = inf{m : X − πT ∈ A, π ∈ Π, π0 = m}.

where Π is the set of admissible self-financing portfolios.

Example: A = {X ∈ X : X ≤ 0 P-a.s.}.
This means the regulator only accepts profit, not any loss.

ρA(X ) is the superhedging price of X .

In a complete market, it is the arbitrage-free price of X .

If only a zero-interest bond is available (original setting), then

ρA(X ) = ess-sup(X ) = VaR1(X ).
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Subadditivity and Positive Homogeneity

Two additional properties:

[PH] positive homogeneity: ρ(λX ) = λρ(X ), λ ∈ (0,∞);

[SA] subadditivity: ρ(X + Y ) ≤ ρ(X ) + ρ(Y ).

Simple fact

If a risk measure ρ is positive homogeneous, then ρ(0) = 0.
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Coherent Risk Measures

Definition (Coherent risk measures)

A coherent risk measure is a risk measure which is cash-invariant,

monotone, positive homogeneous, and subadditive.

Representation theory established in ADEH (1999), in finite

probability spaces.

Established in Delbaen (2000) on general probability spaces

and X = L∞.

Generalization studies on X = Lp, p ≥ 1, can be found in

Kaina and Rüschendorf (2009), Filipović and Svindland

(2012).

Recall that Lp is the set of random variables with finite p-th

moment
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Diversification

Subadditivity is the closely related to the idea of diversification

benefit: putting different risks in a portfolio to reduce the total

risk.

Very common practice in finance

Example: standard deviation (volatility)
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Subadditivity

Subadditivity advantages:

diversification benefit - “a merger does not create extra risk”;

regulatory arbitrage: divide X into Y + Z if

ρ(X ) > ρ(Y ) + ρ(Z );

capturing “the tail risk”;

consistency with risk preference (second order stochastic

dominance);

convex optimization and capital allocation.
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Subadditivity

Subadditivity is contested from different perspectives:

aggregation penalty - convex risk measures;

statistical inference - estimation/robustness/backtesting;

financial practice - “a merger creates extra risk”;

legal consideration - “an institution has limited liability”.
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Positive Homogeneity

Positive homogeneity advantages:

A change in units of measurement (e.g. currency) should not

result in a change in capital requirements.

Subadditivity implies that, a for positive integer n,

ρ(nX ) = ρ(X + · · ·+ X ) ≤ nρ(X ).

Since there is no diversification between the losses in this

portfolio, it is natural to require the equality to hold, which

leads to the property of positive homogeneity.

Easy to implement: almost all practical risk measures are

positive homogeneous.
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Positive Homogeneity

Positive homogeneity criticism:

PH does not account for liquidity risk: [PH] does not acknowledge

that very large portfolios of risks might produce very high

losses that in turn can make it difficult for the holder of the

portfolio to raise enough cash in order to meet his obligations.
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Coherent Risk Measures

With subadditivity and positive homogeneity, one may reduce

cash-invariance and monotonicity to the following standardization

and relevance properties:

[ST] standardization: ρ(c) = c for all c ∈ R.

[R] relevance: ρ(X ) ≤ 0 for all X ≤ 0.

Proposition (*)

If a risk measure ρ is subadditive and positive homogeneous, then

[ST] is equivalent to [CI], and [R] is equivalent to [M].

In some literature, a coherent risk measure is (equivalently)

defined as a risk measure satisfying [ST], [R], [SA] and [PH].
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ES and VaR: subadditivity

The following two lemmas will be used repeatedly in the future.

Lemma (*)

For any random variable X , denote its distribution by F . There

exists a U[0, 1] random variable UX such that X = F−1(UX ) a.s.

Recall that F−1(t) = VaRt(X ) = inf{x ∈ R : F (x) ≥ t},
t ∈ (0, 1].

When F is continuous, one can take UX = F (X ).

One has I{UX≤F (x)} = I{F−1(UX )≤x} a.s.

Throughout the lectures, for any random variable X , let UX be

U[0, 1]-distributed such that X = F−1(UX ) a.s.
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ES and VaR: subadditivity

Lemma (*)

For any random variable X , p ∈ [0, 1] and any random variable B

with 0 ≤ B ≤ 1 and E[B] = 1− p, we have E[X I{UX≥p}] ≥ E[XB].

Theorem (Subadditivity of ES*)

On any choice of set of risks X ⊃ L∞, and any p ∈ (0, 1), VaRp is

not subadditive and ESp is subadditive.

VaR will have serious issues with aggregation and

diversification.
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ES and VaR: subadditivity

Theorem (VaR is subadditive for elliptical risks)

Suppose that (X ,Y ) follows a two-dimensional elliptical

distribution. Then for p ∈ [1/2, 1),

VaRp(X + Y ) ≤ VaRp(X ) + VaRp(Y ).

Elliptical distributions include Normal and t- distributions

Reference on elliptical distributions: Fang-Kotz-Ng 1990
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Examples

SDb, b > 0 is positive homogeneous;

Var(·) is not positive homogeneous;

E[·] is positive homogeneous;

ess-sup(·) is positive homogeneous;

VaRp, p ∈ (0, 1) is positive homogeneous;

ESp, p ∈ (0, 1) is positive homogeneous.
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Examples

SDb, b > 0 is subadditive;

Var(·) is not subadditive;

E[·] is subadditive (in fact, it is linear);

ess-sup(·) is subadditive;

VaRp, p ∈ (0, 1) is not subadditive;

ESp, p ∈ (0, 1) is subadditive.
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Examples

E[·] is a coherent risk measure;

ess-sup(·) is a coherent risk measure;

ESp, p ∈ [0, 1], is a coherent risk measure; it includes the

above two special cases;

VaRp, p ∈ (0, 1) is not a coherent risk measure .
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Convexity

Convexity is introduced to relax [SA] and [PH] which can reflect

liquidity risk. It also represents diversification benefit.

[CX] Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ),

λ ∈ [0, 1].

Proposition (*)

If ρ(0) = 0, then [CX] implies

ρ(tX ) ≥ tρ(X ) for t ≥ 1,

and

ρ(tX ) ≤ tρ(X ) for t < 1.

This reflects aggregation penalty (liquidity risk).

Ruodu Wang Peking University 2016



Convexity

What is a proper diversification benefit? There are three basic

ideas:

To compare ρ(X + Y ) with ρ(X ) + ρ(Y ): this leads to

subadditivity

To compare ρ(λX + (1− λ)Y ) with λρ(X ) + (1− λ)ρ(Y ):

this leads to convexity

To compare ρ(X + Y ) with ρ(X c + Y c) where X c and Y c are

“non-diversified version of X and Y ”: this leads to

convex-order consistency (we will study this later)
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Convexity

Interesting connection:

Proposition (*)

If a monetary risk measure satisfies two of [CX], [PH] and [SA],

then it satisfies all of them.

This result dates back to Deprez and Gerber (1985)

Coherent risk measures are convex.
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Convex Risk Measures

Definition (Convex risk measures)

A convex risk measure is a risk measure which is cash-invariant,

monotone, and convex.

Representation theory established in Föllmer and Schied

(2002, FS) and Fritteli and Rossaza Gianin (2002, JBF). Both

papers acknowledged that the idea came from a talk given by

David Heath in 2000.

More examples of coherent and convex risk measures will be

studied in Part III of the lectures.
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Examples

SDb, b > 0 is convex;

Var(·) is convex*;

E[·] is convex;

ess-sup(·) is convex;

VaRp, p ∈ (0, 1) is not convex;

ESp, p ∈ (0, 1) is convex.
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Convex Risk Measures

Simple fact

If ρ is a convex risk measure, then ρ̂(·) = ρ(·)− c for some c ∈ R
is also a convex risk measure. In particular, ρ̂(·) = ρ(·)− ρ(0) is a

risk measure satisfying ρ̂(0) = 0.

With out loss of generality, we can assume that ρ(0) = 0

when we study convex risk measures.
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Acceptance Sets of Coherent and Convex Risk Measures

Theorem: ADEH, 1999*

A monetary risk measure is coherent if and only if its acceptance

set is a convex cone.

Theorem: Föllmer and Schied, 2002*

A monetary risk measure is convex if and only if its acceptance set

is convex.
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Representation Theorems of Risk Measures

In the next we will look at representation theorems of risk

measures:

Given that a risk measure ρ satisfies some properties,

what should ρ look like?
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Linearity and Sublinearity

We review some basic facts about linearity and sublinearity.

A functional ρ is sublinear if it satisfies [SA] and [PH].

A functional ρ is linear if it satisfies ρ(X + Y ) = ρ(X ) + ρ(Y )

and [PH].

Linearity is too restrictive for risk measures:

we are not promoting the use of a linear risk measure - it

serves as a technical tool to understand coherent risk measures

in the next we will see that basically only expectations satisfy

linearity: EQ [·] for some (finitely additive measure) Q
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Finitely Additive Measures

Recall some definitions:

A set function Q : F → [0,∞) is a finitely additive measure if

(i) Q(∅) = 0

(ii) for all finite collection {Ei}i=1,...,n of disjoint sets, it holds that

Q

(
n⋃

i=1

Ei

)
=

n∑
i=1

Q(Ei ).

A finitely additive measure Q is a probability measure if

(iii) Q(Ω) = 1

(iv) for all countable collection {Ei}i∈N of disjoint sets, it holds

that

Q

(⋃
i∈N

Ei

)
=
∑
i∈N

Q(Ei ).
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Linearity and Sublinearity

Proposition (*)

If a monetary risk measure ρ on L∞ is linear, then there exists a

finitely additive measure Q absolutely continuous w.r.t. P,

Q(Ω) = 1, such that

ρ(X ) = EQ [X ], X ∈ X .

In most cases, one takes Q as a probability measure

if Ω is finite, then F is finite, and hence Q is a probability

measure
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Finitely Additive Measures

Finitely additive measures that are not σ-additive are very rare

explicit example of finitely additive measure on a σ-field is

impossible to construct; see Lauwers (2010)

an (implicit) example is given on page 507, Example A.53 of

Föllmer and Schied (2011).
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Linearity and Sublinearity

Simple fact

A monetary risk measure is linear if and only if its acceptance set is

half-space.

Proposition (*)

A sublinear functional satisfies ρ(λX ) ≥ λρ(X ) for λ < 0,

X ∈ X .

A linear functional satisfies ρ(λX ) = λρ(X ) for λ ∈ R,

X ∈ X .

If ρθ, θ ∈ Θ are linear functionals, then ρ = supθ∈Θ ρθ is a

sublinear functional.
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Representation Theorem of Coherent Risk Measures

Now suppose that Ω is a finite set and X consists of all random

variables in this probability space.

Theorem: ADEH, 1999; Huber, 1980

A risk ρ is a coherent risk measure if and only if it has the

following representation:

ρ(X ) = sup
Q∈R

EQ [X ], X ∈ X

where R is a collection of probability measures absolutely

continuous w.r.t. P.

The finiteness of Ω serves to unify finitely additive measures

and probability measures.
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Representation Theorem of Coherent Risk Measures

Now suppose Ω is general and X = L∞ (throughout the rest of

this lecture). Let M be the set of finitely additive measures

Q : F → [0, 1] with Q(Ω) = 1, Q ∈M.

Theorem: Delbaen, 2000*

A coherent risk measure ρ has the following representation:

ρ(X ) = sup
Q∈R

EQ [X ], X ∈ X

where R is a subset of M.

M = {Q ∈ Ba : Q(Ω) = 1, Q ≥ 0}, where Ba is the dual

space of L∞ (equipped with the norm || · ||∞)

The same form appears in non-linear expectations: see Peng

(2010).
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Hahn-Banach Theorem

The proof of the previous theorem involves the very well-known

Hahn-Banach Theorem, which has many versions. We use the

following version on real linear space.

Hahn-Banach Theorem

Let V be a real linear space and U be a subspace of V . Suppose

that F : V → R is a sublinear functional, g : U → R is a linear

functional, and g ≤ F on U. Then there exists a linear functional

G : V → R such that G ≤ F on V and G = g on U.
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Expected Shortfall

Representation of Expected Shortfall*

For p ∈ (0, 1),

ESp(X ) = sup
Q∈R

EQ [X ], X ∈ X ,

where R = {Q is a probability measure : dQ/dP ≤ 1/(1− p)}.
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Mean and Essential Supremum

Representations of Mean and Essential Supremum

The following representations hold:

E[X ] = sup
Q∈{P}

EQ [X ], X ∈ X ,

and

ess-sup(X ) = sup
Q∈R

EQ [X ], X ∈ X ,

where

R = {all probability measures absolutely continuous w.r.t. P}.

Both the mean and the essential supremum are special cases

of ES (p = 0 and p = 1).
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Representation Theorem of Coherent Risk Measures

To interpret the representation

ρ(X ) = sup
Q∈R

EQ [X ], X ∈ X :

not only the distribution of X under P matters - the nature of

the risk may not be described by its statistical performance

R can be seen as a set of scenarios, called a generalized

scenario - this is in line with risk management practice; for

instance Chicago Mercantile Exchange (CME) uses a

scenario-based approach

it provides complementary information to measures based on

statistics of the loss distribution

choice of the set of scenarios is a complicated task
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Representation Theorem of Coherent Risk Measures

Quoting ADEH (1999):

“Model risk can be taken into account by including in the set R a

family of distributions for the future prices, possibly arising from

other models.”

Quoting ADEH (1999):

“It is important to distinguish between a point mass scenario and a

simulation trial: the first is chosen by the investor or the

supervisor, the second is chosen randomly according to a

distribution they have prescribed beforehand.”
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Representation Theorem of Coherent Risk Measures

Quoting ADEH (1999):

“Any coherent risk measure appears therefore as given by a worst

case method in a framework of generalized scenarios. At this point

we emphasize that scenarios should be announced to all traders

within the firm (by the manager) or to all firms (by the regulator).

[...] As for the regulation case we allow ourselves to interpret a

sentence from Stulz (1996): ‘regulators like Value at Risk, because

they can regulate it’ as pointing to the formidable task of building

and announcing a reasonable set of scenarios.”
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Representation Theorem of Coherent Risk Measures

The expectation under the worst scenario becomes the risk

measure

E[·] only concerns the actual probability measure P

ess-sup(·) concerns the all possibility measures

ESp, p ∈ (0, 1) concerns the scenarios which are not “too

unrealistic” with respect to P

Uncertainty at two levels

epistemological uncertainty: what if P is inaccurate?

addressed

ontological uncertainty: what if P is wrong? not addressed
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Representation Theorem of Coherent Risk Measures

Remark

The supremum over supremum is still a supremum: for instance,

one may think about

ρ(X ) = sup
Q∈R

ESQp (X )

where ESQp (X ) is the p-Expected Shortfall of X under Q. This ρ is

still a coherent risk measure and admits the same type of dual

representation.
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Continuity of Risk Measures

In the representation

ρ(X ) = sup
Q∈R

EQ [X ], X ∈ X ,

one naturally asks “when can we make sure that R is as subset of

the set of probability measures, like in the finite-Ω case?”

This requires some continuity on the risk measure ρ.
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Continuity of Risk Measures

When one considers continuity of risk measures, one may look for

continuity with respect to weak, P- or a.s. convergence. However,

this is not possible for convex risk measures.

Toy example: Let Xn = n2I{U≥1/n} for some U[0,1] random

variable U. Then Xn → 0 a.s. but Xn is getting more

“dangerous” in many senses. If a risk measure preserves this

kind of convergence, it might not be a good thing.

Proposition (*)

There is no coherent or convex risk measure that is continuous

w.r.t. a.s. convergence in L∞.
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Fatou Property

The Fatou property is an alternative requirement of

continuity/regularity for risk measures

Fatou property

(FP) Fatou property: If X ,X1,X2, · · · ∈ X = L∞,

supk∈N ||Xk ||∞ <∞ and Xk → X a.s., then

lim inf
k→∞

ρ(Xk) ≥ ρ(X ).

Think about Fatou’s Lemma: if {Xk , k = 1, . . . } is bounded

below, then

lim inf
k→∞

E[Xk ] ≥ E[lim inf
k→∞

X ].
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Fatou Property

Lemma (*)

For a monetary risk measure ρ, the following statements are

equivalent:

(i) ρ has the Fatou property;

(ii) ρ is continuous from below (a.s. or P convergence):

Xk ↑ X ⇒ ρ(Xk) ↑ ρ(X );

(iii) Aρ is closed under the weak* topology σ(L∞, L1).

The proof of part (iii) will not be covered in this lecture
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Examples

SDb, b > 0 has the Fatou property;

Var(·) has the Fatou property;

E[·] has the Fatou property;

ess-sup(·) has the Fatou property;

VaRp, p ∈ (0, 1) has the Fatou property;

ESp, p ∈ (0, 1) has the Fatou property.

Later on in this lecture, we will not verify the Fatou property, while

all risk measures we will encounter have this property.
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Representation Theorem of Coherent Risk Measures

The most popular result on coherent risk measures:

Theorem: Delbaen, 2000

A coherent risk measure ρ with the Fatou property has the

following representation:

ρ(X ) = sup
Q∈R

EQ [X ], X ∈ X

where R is a collection of probability measures absolutely

continuous w.r.t. P.

The proof is skipped in this lecture
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Representation Theorem of Convex Risk Measures

On the representation of a coherent risk measure:

all scenarios are considered equally, and then take the

supremum

in practice, scenarios are not equally likely; some should have

less weights

in economic decision theory (Maccheroni-Marinacci-Rustichini

2006 Econometrika), the study of a decision Y with ambiguity

often concerns the robust utility

inf
Q∈P
{vQ(Y ) + α(Q)}

where vQ is a utility function under scenario Q (often taken

as EQ [u(Y )] for a real utility function u), and α is a function

measuring the likelihood of a scenario Q.
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Representation Theorem of Convex Risk Measures

Let P be the set of probability measures absolutely continuous

w.r.t. P.

A natural idea is to distinguish different scenarios putting penalty

on (un)likelihood or (un)desirability of the sceanrio.

This leads to a risk measure of the following kind:

ρ(X ) = sup
Q∈P
{EQ [X ]− α(Q)}, X ∈ X ,

where α : P → (−∞,∞] is a function.

It is easy to verify that the above ρ is a convex risk measure

(with the Fatou property).
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Representation Theorem of Convex Risk Measures

Theorem: Föllmer-Schied 2002; Frittelli-Rosazza Gianin 2002*

A convex risk measure ρ with the Fatou property has the following

representation:

ρ(X ) = sup
Q∈P
{EQ [X ]− α(Q)}, X ∈ X

where α : P → (−∞,∞] is called a penalty function.

Interpretation: put a penalty on each scenario - robust

generalized scenario.
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Representation Theorem of Convex Risk Measures

The penalty function α : P → (−∞,∞] can be taken as the

minimum penalty:

αmin(Q) = sup{EQ [X ]− ρ(X ) : X ∈ X}

= sup{EQ [X ] : X ∈ Aρ}.

(αmin is the Fenchel-Legendre transform of ρ.)

For any α in the representation, it holds that α ≥ αmin.

ρ(0) = 0 is equivalent to inf{α(Q) : Q ∈ P} = 0.
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