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Notes

The depth of the topics will be at the level of recent research

advances.

Preliminary knowledge on (graduate level) probability theory

and mathematical statistics is expected.

Preliminary knowledge on (graduate level) mathematical

finance is expected.

This is a course in mathematics.
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Part 1

Risk measures and regulatory capital

Value-at-Risk and Expected Shortfall

Current debates (2013 - 2016) in regulation

Basic Extreme Value Theory (EVT) for VaR and ES

Estimation and modeling issues
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Introduction

Key question in mind

A financial institution has a risk (random loss) X in a fixed period.

How much capital should this financial institution reserve in order

to undertake this risk?

X can be market risks, credit risks, operational risks,

insurance risks, etc.
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Risks

In this course, risks are represented by random variables. The

realization of a risk is loss/profit.

Some standard notation: fix an atomless probability space

(Ω,F ,P).

P-a.s. equal random variables are treated as identical

Lp, p ∈ [0,∞) is the set of random variables with finite p-th

moment

L∞ is the set of bounded random variables
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Risks

Let X ⊃ L∞ be a convex cone (closed under addition and

R+-multiplication)

X is the set of all risks that we are interested in.

For different types of risks, the time horizon of the measurement

procedure might be different: it can be, for instance,

1 day (market risk)

10 days (liability risk)

1 year (credit and operational risks)

20 years (life-insurance risk)

In this course we do not specify the type of risks and discuss the

theory of risk measurement with generality.
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Risk Measures

Risk measures

A risk measure calculates the amount of regulatory capital of a

financial institution taking a risk (random loss) X in a fixed period.

A risk measure is a functional ρ : X → (−∞,∞].

Typically one requires ρ(L∞) ⊂ R for obvious reasons.

In most technical parts of this course, we take X = L∞ for

convenience.
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Some General Mindset

Question

What is a good risk measure to use?

Regulator’s and firm manager’s perspectives can be different

or even conflicting

taxpayers versus shareholders

systemic risk in an economy versus risk of a single firm

How does one know about X?

Typically through a model/distribution: simulation, parametric

models, expert opinion, ...

Information asymmetry, model misspecification, data sparsity,

random errors ...
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Example: VaR

p ∈ (0, 1), X ∼ F .

Definition (Value-at-Risk)

VaRp : L0 → R,

VaRp(X ) = F−1(p) = inf{x ∈ R : F (x) ≥ p}.

In practice, the choice of p is typically close to 1.

Book on VaR: Jorion (2006)

Proposition

For X ∈ L0, VaRp(X ) is increasing1in p ∈ (0, 1).

1In this course, the term “increasing” is in the non-strict sense.
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Example: ES

p ∈ (0, 1).

Definition (Expected Shortfall (TVaR, CVaR, CTE, WCE))

ESp : L0 → (−∞,∞],

ESp(X ) =
1

1− p

∫ 1

p
VaRq(X )dq =

(F cont.)
E [X |X > VaRp(X )] .

In addition, let VaR1(X ) = ES1(X ) = ess-sup(X ), and

ES0(X ) = E[X ] (ES0 is only well-defined on e.g. L1 or L0+).

Proposition

For X ∈ L0, ESp(X ) is increasing in p ∈ (0, 1), and

ESp(X ) ≥ VaRp(X ) for p ∈ (0, 1).
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Value-at-Risk and Expected Shortfall
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Example: Standard Deviation Principle

b ≥ 0.

Definition (Standard deviation principle)

SDb : L2 → R,

SDb(X ) = E[X ] + b
√
Var(X ).

A small note: for normal risks, one can find p, q, b such that

VaRp(X ) ≈ ESq(X ) ≈ SDb(X ). Example: p = 0.99,

q = 0.975, b = 2.33.

All risk measures can be defined on smaller subset X than its

natural domain, e.g. X = L∞.
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Functionals: X → (−∞,∞]

Three major perspectives

Preference of risk: Economic Decision Theory

Pricing of risk: Insurance and Actuarial Science

Capital requirement: Mathematical Finance
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Preference of Risk

Preference of risk: Economic Decision Theory

Mathematical theory established since 1940s.

Expected utility: von Neumann-Morgenstern (1944)

Rank-dependent expected utility: Quiggin (1982, JEBO)

Dual utility: Yaari (1987, Econometrica); Schmeidler (1989,

Econometrica)

Prospect theory: Kahneman-Tversky (1979, Econometrica)

Citation: 39000+ (Google, March 2016)

Cumulative prospect theory: Tversky-Kahneman (1992, JRU)
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Pricing of Risk

Pricing of risk: Insurance and Actuarial Science

Mathematical theory established since 1970s.

Additive principles: Gerber (1974, ASTIN Bulletin)

Economic principles: Bühlmann (1980, ASTIN Bulletin)

Convex principles: Deprez-Gerber (1985, IME)

Choquet principles: Wang-Young-Panjer (1997, IME)
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Capital Requirement

Capital requirement: Mathematical Finance

Mathematical theory established around late 1990s.

Coherent measures of risk: Artzner-Delbaen-Eber-Heath

(1999, MF)

Citation: 6800+ (Google, March 2016)

Law-invariant risk measures: Kusuoka (2001, AME)

Convex measures of risk: Föllmer-Schied (2002, FS),

Frittelli-Rossaza Gianin (2002, JBF)

Spectral measures of risk: Acerbi (2002, JBF)

Mathematically very well developed, and fast expanding in the

past ∼15 years.

Value-at-Risk introduced earlier (around 1994): e.g.

Duffie-Pan (1997, J. Derivatives).
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Caution...

Different perspectives should lead to different principles of

desirability.

Preference of risk: only ordering matters (not precise values),

gain and loss matter

Pricing of risk: precise values matter, gain and loss matter

central limit theorem often kicks in (large number effect)

typically there is a market

Capital requirement: precise values matter, only loss matters

(← our focus)

typically there is no market; no large number effect

Of course, very large mathematical overlap ...
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Research of Risk Measures

Two major perspectives

What interesting mathematical/statistical problems arise from

this field?

What risk measures are practical in real life, and what are the

practicality issues?

Good research may ideally address both questions, but it often only

addresses one of them.
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Academic Debates

ES is generally advocated in academia for desirable properties

in the past ∼ 15 years

Some argue: backtesting ES is difficult, whereas backtesting

VaR is straightforward

Paper before 2012: Gneiting (2011 JASA)

Some argue: ES is not robust, whereas VaR is

Papers before 2012: Cont-Deguest-Scandolo (2010 QF);

Kou-Peng-Heyde (2013 MOR)

Review paper: Embrechts et al. (2014, Risks).
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Academic Debates

Some more recent papers

On backtesting of risk measures:

Ziegel (2015+ MF)

Acerbi-Székely (2014 Risk)

Kou-Peng (2015 SSRN)

Fissler-Ziegel (2016 AoS)

Fissler-Ziegel-Gneiting (2016 Risk)

On robustness of risk measures:

Stahl-Zheng-Kiesel-Rühlicke (2012 SSRN)

Krätschmer-Schied-Zähle (2012 JMVA, 2014 FS, 2015 arXiv)

Cambou-Filipović (2015+ MF)

Embrechts-Wang-Wang (2015 FS)

Dańıelsson-Zhou (2015 SSRN)
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Regulatory Documents

From the Basel Committee on Banking Supervision:

R1: Consultative Document, May 2012,

Fundamental review of the trading book

R2: Consultative Document, October 2013,

Fundamental review of the trading book: A revised market risk

framework

R3: Standards, January 2016,

Minimum capital requirements for Market Risk

From the International Association of Insurance Supervisors:

R4: Consultation Document, December 2014,

Risk-based global insurance capital standard
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Questions from Regulation

R1, Page 20, Choice of risk metric:

“... However, a number of weaknesses have been identified with

VaR, including its inability to capture “tail risk”. The Committee

therefore believes it is necessary to consider alternative risk metrics

that may overcome these weaknesses.”

R1, Page 41, Question 8:

“What are the likely constraints with moving from VaR to ES,

including any challenges in delivering robust backtesting, and how

might these be best overcome?”
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Questions from Regulation

R3, Page 1. Executive Summary:

“... A shift from Value-at-Risk (VaR) to an Expected Shortfall

(ES) measure of risk under stress. Use of ES will help to ensure a

more prudent capture of “tail risk” and capital adequacy during

periods of significant financial market stress.”

R4, Page 43. Question 42:

“Which risk measure - VaR, Tail-VaR [ES] or another - is most

appropriate for ICS [insurance capital standard] capital requirement

purposes? Why?”
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VaR versus ES

Table from R4, December 2014
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VaR versus ES

Centers of discussion:

backtesting

estimation

model uncertainty

robustness

All refer to uncertainty (or ambiguity)
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VaR versus ES

A summary of the current situation (early 2016):

VaR is globally dominating banking regulation at the moment;

in insurance it is popularly used (e.g. Solvency II).

ES is also widely implemented (e.g. Swiss Solvency Test). In

many places ES and VaR coexist (Basel III).

ES is proposed to replaced VaR in many places of the world.

The search for alternative risk measures to VaR and ES is on

going (mainly academic).
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Industry Perspectives

From the International Association of Insurance Supervisors:

R5: Document (version June 2015)

Compiled Responses to ICS Consultation 17 Dec 2014 - 16

Feb 2015

In summary

Responses from insurance organizations and companies in the

world.

49 responses are public

34 commented on Q42: VaR versus ES (TVaR)
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Industry Perspectives

5 responses are supportive about ES:

Canadian Institute of Actuaries, CA

Liberty Mutual Insurance Group, US

National Association of Insurance Commissioners, US

Nematrian Limited, UK

Swiss Reinsurance Company, CH

Some are indecisive; most favour VaR.

The debate will go on for a while

Regulator and firms may have different views
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Question from Regulation

We focus on the mathematical and statistical aspects, and try to

avoid practicalities and operational issues.

From R1, Page 3:

“The Committee recognises that moving to ES could entail certain

operational challenges; nonetheless it believes that these are

outweighed by the benefits of replacing VaR with a measure that

better captures tail risk.”
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Value-at-Risk

Interpretation: only crashes when the worst 100(1− p)% case

happens.

In one-year capital requirement:

0.95 - only crashes in a crisis that happens once in 20 years.

0.99 - only crashes in a crisis that happens once in 100 years.

(Survive 2007.)

0.995 - only crashes in a crisis that happens once in 200 years.

(Survive 1930.)

VaR is a measure based on frequency, and “does not capture

the tail risk”.

Does not require E[X ] <∞.
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Expected Shortfall

Interpretation: prepare for the worst 100(1− p)% case.

More conservative than VaR at the same level.

In one-year capital requirement:

0.95 - prepare for a crisis that happens once in 20 years.

0.99 - prepare for a crisis that happens once in 100 years.

(prepare for 1930.)

0.995 - prepare for a crisis that happens once in 200 years.

(prepare for something we have not experienced.)

ES is a measure based on frequency and severity, and

“captures the tail risk”.

Requires E[X ] <∞.

Always keep in mind that the above probabilities are

inaccurate

Ruodu Wang Peking University 2016



VaR and ES

VaRp, p ∈ (0, 1) is invariant under increasing transformations: for

any strictly increasing function f : R→ R,

f (VaRp(X )) = VaRp(f (X )).

This property does not hold generally for ES.

For instance, one can calculate the VaR of the return of an

asset, and then transform it into the VaR of the asset value.

This procedure does not work for ES.

asset value : AT ; return : log(AT/A0)

If the return follows some heavy-tailed distribution (like

t-distribution), the asset value may not have finite

expectation. Typically however, one worries about the loss,

which is bounded by assuming AT ≥ 0.
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Extreme Value Theory (EVT)

Definition

An eventually non-negative (that is, f (x) ≥ 0 for x large enough)

measurable function f is said to be regularly varying (RV) with a

regularity index γ ∈ R, if

lim
x→∞

f (tx)

f (x)
= tγ , for all t > 0.

Denote this by f ∈ RVγ .

An RV function only concerns its behavior close to infinity.

General reference book on EVT: de Haan and Ferreira (2006).
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Extreme Value Theory

Proposition

f ∈ RVγ if and only if

f (x) = xγL(x),

for some slowly varying function L, that is,

lim
x→∞

L(tx)

L(x)
= 1, for all t > 0.
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Extreme Value Theory

For a distribution F , F (·) = 1− F (·) is the survival function.

Lemma (RV Inversion)

Let F be a distribution function. Then for any β > 0,

F (·) ∈ RV−β is equivalent to F−1(1− 1/·) ∈ RV1/β.

Corollary (VaR Extrapolation*)

Suppose that X ∼ F and F ∈ RV−β. Then for t > 0,

lim
ε↓0

VaR1−tε(X )

VaR1−ε(X )
= t−1/β.

*an asterisk always indicates that details (proofs) are planned to be given

in the lecture
Ruodu Wang Peking University 2016



Extreme Value Theory

Example: Pareto distributions, for α > 0, θ > 0,

F (x) = 1−
(x
θ

)−α
, x ≥ θ.

We can easily see that F (·) ∈ RV−α. Moreover,

F−1(p) = θ(1− p)−1/α, p ∈ (0, 1),

and hence F−1(1− 1/·) ∈ RV1/α.

Note that for X ∼ F ,

VaRp(X ) = F−1(p).

ESp(X ) <∞ if and only if α > 1.
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VaR versus ES, Extreme Value Theory

Very common in Quantitative Risk Management (QRM)

applications, RV distributions are used to model

α ∈ [0.5, 1] for catastrophe insurance,

α ∈ [3, 5] for market return data,

α > 0.5 for operational risk.

Typical choices of p are close to 1, so it is natural to study the

limiting behavior of VaRp and ESp as p → 1.
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VaR versus ES, Extreme Value Theory

For light tailed distributions (such as X ∼ N(µ, σ2)),

lim
p→1

ESp(X )

VaRp(X )
= 1.

For heavy tailed distributions:

Suppose that the function F (x) = P(X > x) is RV−1/ξ,

ξ ∈ (0, 1), then

lim
p→1

ESp(X )

VaRp(X )
=

1

1− ξ
.

This remarkable result is known as Karamata’s Theorem.
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Karamata’s Theorem

Theorem (Karamata’s Theorem)

Suppose that an eventually non-negative and locally bounded

function f is RV−α, α > 1. Then

lim
t→∞

tf (t)∫∞
t f (s)ds

= α− 1.
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EVT for VaR/ES Ratio

Theorem (Karamata’s Theorem for VaR/ES*)

Suppose that the function F (x) = P(X > x) is RV−1/ξ, ξ ∈ (0, 1),

then

lim
p→1

VaRp(X )

ESp(X )
= 1− ξ.
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VaR versus ES, 0.99 vs 0.975

From R4: Page 22, Moving to expected shortfall:

”... using an ES model, the Committee believes that

moving to a confidence level of 97.5% (relative to

the 99th percentile confidence level for the current

VaR measure) is appropriate.”

VaR0.99 vs ES0.975

Example: X ∼ Normal(0,1).

ES0.975(X ) = 2.3378,

VaR0.99(X ) = 2.3263.

They are quite close for all normal models!
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VaR versus ES, 0.99 vs 0.975

From EVT: approximately,

for heavy-tailed risks, ES0.975 yields a more conservative value

than VaR0.99;

for light-tailed distributions, ES0.975 yields an equivalent

regulation principle as VaR0.99;

for risks that do not have a very heavy tail, it holds

ES0.975(X ) ≈ VaR0.99(X ).
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VaR versus ES, 0.99 vs 0.975

Via Karamata’s Theorem: for ξ ∈ [0, 1) (ξ = 0 indicates a

light tail),
ES0.975(X )

VaR0.975(X )
≈ 1

1− ξ
,

and (via VaR extrapolation)

VaR0.99(X )

VaR0.975(X )
≈ 2.5ξ.

Putting the above together,

VaR0.99(X )

ES0.975(X )
≈ 2.5ξ(1− ξ).
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VaR versus ES, 0.99 vs 0.975

ξ ∈ [0, 1),

VaR0.99(X )

ES0.975(X )
≈ 2.5ξ(1− ξ) ≤ eξ(1− ξ) ≤ 1.

Approximately, ES0.975 yields a more conservative regulation

principle than VaR0.99.

For a particular X , it is not always ES0.975(X ) ≥ VaR0.99(X ).
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VaR versus ES, 0.99 vs 0.975

Light-tailed distributions: as ξ → 0,

VaR0.99(X )

ES0.975(X )
≈ 2.5ξ(1− ξ)→ 1.

For light-tailed distributions, ES0.975 yields an (approximately)

equivalent regulation principle as VaR0.99.

It seems that the value

c = 2.5 = (1− 0.975)/(1− 0.99)

is chosen such that c is close to e ≈ 2.72, so that the

approximation cξ(1− ξ) ≈ 1 holds most accurate for small ξ;

note that e−ξ ≈ 1− ξ for small ξ.
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VaR versus ES, 0.99 vs 0.975 (α = 1/ξ)
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ES0.975 vs VaR0.99 approximation with respect to tail index α for RVα risks
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ES0.975/VaR0.99
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VaR versus ES: Estimation

Estimation

Suppose that the iid data are X1, . . . ,Xn from a distribution F . To

estimate VaRp(X ) and ESp(X ) for X ∼ F , three basic methods:

Empirical method

Parametric (model) method

EVT (semi-parametric) method
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VaR versus ES: Estimation

Empirical method: [x ] stands for the integer part of x .

V̂aRp(X ) = X[np]: the [np]-th largest observation

ÊSp(X ) = 1
n−[np]

∑n
i=[np] X[i ]: the largest n − [np] + 1

observations

One may also use [np] + 1 instead of [np], or a linear

combination of both.

Problems: p is typically close to 1

if n is small and p is close to 1, the estimators V̂aRp(X ) and

ÊSp(X ) may not be viable

very large estimation error

in real problems in finance, large and iid data set is not easy to

find
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VaR versus ES: Estimation

Parametric (model) method:

First fit data to a model, typically parametric

Then calculate the model VaR and ES

This may be through analytical calculation for nice models

e.g. for X ∼ N(µ, σ2),

VaRp(X ) = µ+ σΦ−1(p),

ESp(X ) = µ+ σ
φ(Φ−1(p))

1 − p
,

where Φ and φ are the standard normal cdf and pdf,

respectively.

or Monte Carlo simulation for complicated models

Problems:

model risk

very large estimation error

data limitation
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VaR versus ES: Estimation

EVT (semi-parametric) method:

First estimate the RV index of the distribution

This can be done through for instance the Hill Estimator; see

Section 3.2 of de Haan and Ferreira (2006).

Use the data to obtain credible lower level VaRq, q < p

Then use VaR extrapolation to obtain VaRp

Problems:

still model risk: there is no guarantee that the extrapolation is

valid

depends on the choices of thresholds in the Hill Estimator and

in q

considerable estimation error

data limitation
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Summary

Key questions in this course and in reality

Which risk measure is better for regulation, VaR or ES, and in

what situations?

What other possible risk measure can be used?

What properties should a good risk measure satisfy?

Are there any overlooked problems with existing risk

measures?

Are there new methods for estimation, calculation, simulation,

model selection or other practical issues?
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Summary

From R5, major reasons to favour VaR from the industry

Implementation of ES is expensive (staff, software, capital)

ES does not exist for certain heavy-tailed risks

ES is more costly on distributional information, data and

simulation

ES has trouble with a change of currency (Koch

Medina-Munari, 2016 JBF)
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