Risk Aggregation and Fréchet Problems Part IV - Uncertainty Bounds for Risk Measures

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo, Canada

Minicourse Lectures, University of Milano-Bicocca, Italy November 9 - 11, 2015

伺 ト イ ヨ ト イ ヨ ト

- 2 VaR and ES Bounds: basic ideas
- 3 Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 5 Asymptotic equivalence
- 6 Dependence-uncertainty spread
- Challenges
- 8 References

4 3 b

A risk measure is a functional $\rho : \mathcal{X} \to [-\infty, \infty]$.

- \mathcal{X} is a convex cone of random variables, $\mathcal{X} \supset L^{\infty}$.
- $\rho(L^{\infty}) \subset \mathbb{R}$
- $X \in \mathcal{X}$ represents loss/profit
- A law-determined risk measure can be treated as a functional $\rho:\mathcal{D}\to [-\infty,\infty].$
 - \mathcal{D} is the set of distributions of random variables in \mathcal{X} .

There are several properties of risk measures discussed in the literature, for instance:

- Monetary risk measure
 - Monotonicity: $\rho(X) \leq \rho(Y)$ for $X \leq Y, \ X, Y \in \mathcal{X}$
 - Cash-additivity: ho(X + c) =
 ho(X) + c for $X \in \mathcal{X}$ and $c \in \mathbb{R}$
- Coherent risk measure: Monetary + two of the three:
 - Positive homogeneity: $\rho(\lambda X) = \lambda \rho(X)$ for $X \in \mathcal{X}$ and $\lambda \in \mathbb{R}_+$
 - Subadditivity: $\rho(X + Y) \le \rho(X) + \rho(Y)$ for $X, Y \in \mathcal{X}$
 - Convexity: $\rho(\lambda X + (1 \lambda)Y) \le \lambda \rho(X) + (1 \lambda)\rho(Y)$ for $X, Y \in \mathcal{X}$ and $\lambda \in [0, 1]$
- Comonotonic additivity: $\rho(X + Y) = \rho(X) + \rho(Y)$ for $X / \!\!/ Y, \ X, Y \in \mathcal{X}$

周 ト イ ヨ ト イ ヨ ト

Distortion risk measures

A distortion risk measure is defined as

$$\rho(X) = \int_{\mathbb{R}} x \mathrm{d}h(F_X(x)), \ X \in \mathcal{X}, \ X \sim F_X,$$

where *h* is an increasing function on [0, 1] with h(0) = 0 and h(1) = 1. *h* is called a distortion function.

• Yaari (1987):

distortion risk measure \Leftrightarrow law-determined and comonotonic additive monetary risk measure.

ヨト イヨト イヨト

Distortion risk measures

If one of h and F_X^{-1} is continuous, then via a change of variable,

$$\rho(X) = \int_0^1 \operatorname{VaR}_t(X) \mathrm{d}h(t), \ X \in \mathcal{X}.$$

• ES and VaR are special cases of distortion risk measures.

Left-tail-ES

Two distortion risk measures, Left-tail-ES (LES) and right-quantiles $(VaR^*)^1$:

Left-tail-ES (LES)

 $\mathrm{LES}_{p}: L^0 \to [-\infty,\infty),$

$$\operatorname{LES}_p(X) = rac{1}{p} \int_0^p \operatorname{VaR}_q(X) \mathrm{d}q = -\operatorname{ES}_{1-p}(-X), \ \ p \in (0,1).$$

Right-quantile (VaR*)

 $\operatorname{VaR}_{p}^{*}: L^{0} \to (-\infty, \infty),$

$$\operatorname{VaR}_p^*(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) > p\}, \ p \in (0, 1).$$

¹We introduce them only for mathematical reasons. LES is not to be implemented in financial regulation and VaR_p^* is indistinguishable from VaR_p in practice.

- 2 VaR and ES Bounds: basic ideas
- 3 Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 5 Asymptotic equivalence
- 6 Dependence-uncertainty spread
- 7 Challenges
- 8 References

3 N

As in Part I: For given $F_1, \ldots, F_n \in \mathcal{M}_1$ and $p \in (0, 1)$, the four quantities

$\underline{\operatorname{VaR}}_{p}(\mathcal{S}_{n}), \ \overline{\operatorname{VaR}}_{p}(\mathcal{S}_{n}), \ \underline{\operatorname{ES}}_{p}(\mathcal{S}_{n}), \ \overline{\operatorname{ES}}_{p}(\mathcal{S}_{n})$

are our primary targets.

- $\overline{\mathrm{ES}}_p(\mathcal{S}_n) = \sum_{i=1}^n \mathrm{ES}_p(X_i)$
- $\underline{\text{LES}}_{p}(\mathcal{S}_{n}) = \sum_{i=1}^{n} \text{LES}_{p}(X_{i})$
- The others are generally open
- $\underline{\mathrm{LES}}_{p}$ and $\overline{\mathrm{LES}}_{p}$ are symmetric to ES

We assume the marginal distributions F_1, \ldots, F_n have finite means.

Observation: ES_p preserves convex order.

Finding $\underline{\mathrm{ES}}_p(S_n)$

Search for a smallest element in S_n with respect to convex order, if it exists.

• If (F_1, \ldots, F_n) is JM, then such an element is a constant.

伺 ト イヨト イヨト

VaR does not respect convex order: more tricky.

For i = 1, ..., n and $U \sim U[0, 1]$, let $F_i^{[p,1]}$ be the distribution of $F_i^{-1}(p + (1-p)U)$, and $F_i^{[0,p]}$ be the distribution of $F_i^{-1}(pU)$.

Lemma 1 (VaR bounds*)

For
$$p \in (0, 1)$$
 and $F_1, \ldots, F_n \in \mathcal{M}_1$,

$$\overline{\operatorname{VaR}}_p^*(\mathcal{S}_n) = \sup\{\operatorname{ess-inf} \mathcal{S} : \mathcal{S} \in \mathcal{S}_n(\mathcal{F}_1^{[p,1]}, \dots, \mathcal{F}_n^{[p,1]})\}$$

and

$$\underline{\operatorname{VaR}}_{p}(\mathcal{S}_{n}) = \inf\{\operatorname{ess-sup} S : S \in \mathcal{S}_{n}(F_{1}^{[0,p]}, \ldots, F_{n}^{[0,p]})\}.$$

伺 と く ヨ と く ヨ と

Corollary 2 (VaR bounds*)

Suppose that T is the smallest element in $S_n(F_1^{[p,1]}, \ldots, F^{[p,1]})$ with respect to convex order. Then $\overline{\operatorname{VaR}}_p^*(S_n) = \operatorname{ess-inf} T$.

Finding $\overline{\operatorname{VaR}}_p(\mathcal{S}_n)$

Search for a smallest element in $S_n(F_1^{[p,1]}, \ldots, F^{[p,1]})$ with respect to convex order.

•
$$\overline{\operatorname{VaR}}_p^*(\mathcal{S}_n) = \overline{\operatorname{VaR}}_p(\mathcal{S}_n)$$
 if $F_1^{-1}, \ldots, F_n^{-1}$ are continuous at p .

「マット・ション・

2 VaR and ES Bounds: basic ideas

- 3 Smallest element wrt convex order
- Analytical results for homogeneous models
- 5 Asymptotic equivalence
- 6 Dependence-uncertainty spread
- Challenges
- 8 References

4 3 b

Question

For general $F_1, \ldots, F_n \in \mathcal{M}_1$, does there always exist a smallest element wrt \prec_{cx} in S_n (or \mathcal{D}_n)?

- If (F_1, \ldots, F_n) is JM, then there exists one
- The largest element wrt ≺_{cx} is always the comonotonic sum for any marginal distributions

• • = • • = •

Example*

Let
$$F_1 = D\{0,3,8\}$$
 $F_2 = D\{0,6,16\}$ and $F_3 = D\{0,7,13\}$.
Dependence (a)

$$\begin{pmatrix} X_1(\omega_1) & X_2(\omega_1) & X_3(\omega_1) \\ X_1(\omega_2) & X_2(\omega_2) & X_3(\omega_2) \\ X_1(\omega_3) & X_2(\omega_3) & X_3(\omega_3) \end{pmatrix} = \begin{pmatrix} 3 & 16 & 0 \\ 0 & 6 & 13 \\ 8 & 0 & 7 \end{pmatrix}$$

Dependence (b)

$$\begin{pmatrix} X_1(\omega_1) & X_2(\omega_1) & X_3(\omega_1) \\ X_1(\omega_2) & X_2(\omega_2) & X_3(\omega_2) \\ X_1(\omega_3) & X_2(\omega_3) & X_3(\omega_3) \end{pmatrix} = \begin{pmatrix} 0 & 16 & 0 \\ 3 & 0 & 13 \\ 8 & 6 & 7 \end{pmatrix}$$

Example 3.1 of Bernard-Jiang-W. (2014); this example was provided by Bin Wang and

Some conclusions:

- \mathcal{S}_n does not always admit a smallest element wrt \prec_{cx}
- $\bullet\,$ To search for a smallest element wrt $\prec_{\rm cx}$ might not be a viable solution

Homogeneous model with a decreasing density

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}_1^1$ which has a decreasing density on its support. Define three quantities:

$$H(x) = (n-1)F^{-1}((n-1)x) + F^{-1}(1-x), x \in \left[0, \frac{1}{n}\right],$$

$$a = \min\left\{c \in \left[0, \frac{1}{n}\right] : \int_{c}^{\frac{1}{n}} H(t) \mathrm{d}t \ge \left(\frac{1-nc}{n}\right) H(c)
ight\},$$

and

$$D = \frac{n}{1 - na} \int_{a}^{\frac{1}{n}} H(x) dx = n \frac{\int_{(n-1)a}^{1-a} F^{-1}(y) dy}{1 - na}.$$

Note that if a > 0 then D = H(a). Finally, let

$$T(u) = H(u/n)I_{\{u \le na\}} + DI_{\{u > na\}}, \ u \in [0, 1].$$

Theorem 3 (Homogeneous model with a decreasing density st)

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}_1^1$ which has a decreasing density on its support. Then (i) $T(U) \in S_n$ for some $U \sim U[0, 1]$; (ii) $T(U) \prec_{cx} S$ for all $S \in S_n$.

Homogeneous model with a decreasing density

The corresponding dependence structure:

- On $\{U \le na\}$: almost mutual exclusivity
- On $\{U > na\}$: a joint mix

General model with decreasing densities

Suppose that each of F_1, \ldots, F_n has a decreasing density. Then there exists an element T in S_n such that $T \prec_{cx} S$ for all $S \in S_n$.

- The distribution of *T* consists of a point-mass part and a continuous part, both of which can be calculated via a set of functional equations.
- The structure is very similar to the homogeneous model: an almost mutually exclusive part and a part of joint mix.

 obtained in Jakobsons-Han-W. (2015+)
 Image: Constraint of the second second

- 2 VaR and ES Bounds: basic ideas
- 3 Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 5 Asymptotic equivalence
- 6 Dependence-uncertainty spread
- Challenges
- 8 References

4 3 b

- Homogeneous model $(F_1 = \cdots = F_n)$
 - $\underline{\mathrm{ES}}_{p}(\mathcal{S}_{n})$ solved analytically for decreasing densities, e.g. Pareto, Exponential
 - VaR_p(S_n) solved analytically for tail-decreasing densities, e.g.
 Pareto, Gamma, Log-normal
- Inhomogeneous model
 - Semi-analytical results are available for decreasing densities
- Numerical method: Rearrangement Algorithm (RA)²
- Real data analysis: DNB³

³Aas-Puccetti (2014)

22/49

²Embrechts-Puccetti-Rüschendorf (2013)

Theorem 4 (Sharp VaR bounds for homogeneous model*)

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}_1^1$ which has a decreasing density on $[b, \infty)$ for some $b \in \mathbb{R}$. Then, for $p \in [F(b), 1)$ and $X \sim F$,

$$\overline{\operatorname{VaR}}_p(S_n) = n\mathbb{E}[X|X \in [F^{-1}(p+(n-1)c), F^{-1}(1-c)]],$$

where c is the smallest number in $[0, \frac{1}{n}(1-p)]$ such that

$$\int_{p+(n-1)c}^{1-c} F^{-1}(t) \mathrm{d}t \geq \frac{1-p-nc}{n}((n-1)F^{-1}(p+(n-1)c) + F^{-1}(1-c)).$$

•
$$c = 0$$
: $\overline{\operatorname{VaR}}_p(S_n) = \overline{\operatorname{ES}}_p(S_n)$.

Ruodu Wang (wang@uwaterloo.ca)	Risk Aggregation and Fréchet Problems Part IV	23/4
obtained in WPeng-Yang (2013)	▲□▶ ▲圖▶ ▲圖▶ ▲圖▶	∃

Theorem 5 (Sharp VaR bounds for homogeneous model II*)

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}_1^1$ which has a decreasing density on its support. Then for $p \in (0, 1)$ and $X \sim F$,

$$\underline{\operatorname{VaR}}_{p}(S_{n}) = \max\{(n-1)F^{-1}(0) + F^{-1}(p), n\mathbb{E}[X|X \leq F^{-1}(p)]\}.$$

 obtained in Bernard-Jiang-W. (2014)
 Image: Control of the second secon

Theorem 6 (Sharp ES bounds for homogeneous model*)

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}_1^1$ which has a decreasing density on its support. Then for $p \in (1 - na, 1)$, q = (1 - p)/n and $X \sim F$,

$$\underline{\mathrm{ES}}_{p}(S_{d}) = \frac{1}{q} \int_{0}^{q} \left((n-1)F^{-1}((n-1)t) + F^{-1}(1-t) \right) \mathrm{d}t,$$
$$= (n-1)^{2} \mathrm{LES}_{(n-1)q}(X) + \mathrm{ES}_{1-q}(X).$$

• One large outcome is coupled with d-1 small outcomes.

Rearrangement Algorithm (RA)⁴

- A fast numerical procedure
- Discretization of relevant quantile regions
- The idea is to approximate a $\prec_{\mathrm{cx}}\text{-smallest}$ element assuming one exists
- n possibly large
- Applicable to $\overline{\operatorname{VaR}}_p$, $\underline{\operatorname{VaR}}_p$ and $\underline{\operatorname{ES}}_p$

⁴Puccetti-Rüschendorf (2012) and Embrecths-Puccetti-Rüschendorf (2013) =

Numerical calculation

Example of RA borrowed from Marius Hofert:

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 5 & 4 \\ 4 & 7 & 8 \end{pmatrix} \xrightarrow{\Longrightarrow} \sum_{-1} = \begin{pmatrix} 2 \\ 5 \\ 9 \\ 15 \end{pmatrix} \begin{pmatrix} 4 & 1 & 1 \\ 3 & 3 & 2 \\ 2 & 5 & 4 \\ 1 & 7 & 8 \end{pmatrix} \xrightarrow{\Longrightarrow} \sum_{-2} = \begin{pmatrix} 4 & 7 & 1 \\ 3 & 5 & 2 \\ 2 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\Longrightarrow} \sum_{-1} = \begin{pmatrix} 2 \\ 5 \\ 9 \\ 15 \end{pmatrix} \begin{pmatrix} 4 & 7 & 1 \\ 3 & 5 & 2 \\ 2 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\Longrightarrow} \sum_{-1} = \begin{pmatrix} 2 & 7 & 1 \\ 4 & 5 & 2 \\ 3 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\Longrightarrow} \sum_{-2} = \begin{pmatrix} 2 & 7 & 1 \\ 4 & 5 & 2 \\ 3 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\Longrightarrow} \sum_{-3} = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 7 & 2 \\ 4 & 5 & 1 \\ 3 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\bigvee} \sum_{-2} = \begin{pmatrix} 2 & 7 & 1 \\ 4 & 5 & 2 \\ 3 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\bigvee} \sum_{-3} = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 2 \end{pmatrix}$$

© 2015 Marius Hofert | University of Waterloo

14

э

Example of RA not working:

э

3 ►

- 2 VaR and ES Bounds: basic ideas
- 3 Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 5 Asymptotic equivalence
- 6 Dependence-uncertainty spread
- Challenges
- 8 References

4 3 b

Consider the case $n \to \infty$. What would happen to $\overline{\operatorname{VaR}}_p(\mathcal{S}_n)$?

- Clearly always $\overline{\operatorname{VaR}}_p(\mathcal{S}_n) \leq \overline{\operatorname{ES}}_p(\mathcal{S}_n)$.
- Recall that $\overline{\operatorname{VaR}}_p(\mathcal{S}_n)$ has an ES-type part.

Under some weak conditions,

$$\lim_{n\to\infty}\frac{\overline{\mathrm{ES}}_p(\mathcal{S}_n)}{\overline{\mathrm{VaR}}_p(\mathcal{S}_n)}=1.$$

• When arbitrary dependence is allowed, the worst-case VaR_p of a portfolio behaves like the worst-case ES_p

This was shown first for homogeneous models and then extended to general inhomogeneous models. The first result is in Puccetti-Rüschendorf (2014).

Theorem 7 ((VaR_p, ES_p)-equivalence for homogeneous model*) In the homogeneous model, $F_1 = F_2 = \cdots = F$, for $p \in (0, 1)$ and $X \sim F$, $\lim_{n \to \infty} \frac{1}{n} \overline{\operatorname{VaR}}_p(\mathcal{S}_n) = \operatorname{ES}_p(X).$

 Corollary 3.7 in Wang-W. (2015)
 Image: Corollary 3.7 in Wang-W. (2015)
 Image: Corollary 3.7 in Wang-W. (2015)
 Image: Corollary 3.7 in Wang-W. (2015)

 Ruodu Wang (wang@uwaterloo.ca)
 Risk Aggregation and Fréchet Problems Part IV
 31/49

Theorem 8 ((VaR_p, ES_p)-equivalence)

Suppose the continuous distributions F_i , $i \in \mathbb{N}$ satisfy that for $X_i \sim F_i$ and some $p \in (0, 1)$, (i) $\mathbb{E}[|X_i - \mathbb{E}[X_i]|^k]$ is uniformly bounded for some k > 1; (ii) $\liminf_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mathrm{ES}_p(X_i) > 0$. Then as $n \to \infty$,

$$\frac{\overline{\mathsf{ES}}_{p}(\mathcal{S}_{n})}{\overline{\mathsf{VaR}}_{p}(\mathcal{S}_{n})} = 1 + O(n^{1/k-1}).$$

• k = 1 is not ok

 Theorem 3.3 of Embrechts-Wang-W. (2015)
 Image: Comparison of the second sec

Similar results holds for $\underline{\operatorname{VaR}}_p$ and $\underline{\operatorname{ES}}_p$: assume (i) and

(iii)
$$\liminf_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \operatorname{LES}_p(X_i) > 0,$$

then

$$\lim_{n\to\infty}\frac{\underline{\operatorname{VaR}}_{\rho}(\mathcal{S}_n)}{\underline{\operatorname{LES}}_{\rho}(\mathcal{S}_n)}=1,$$

$$\lim_{n\to\infty}\frac{\underline{\mathrm{ES}}_p(\mathcal{S}_n)}{\sum_{i=1}^n\mathbb{E}[X_i]}=1,$$

and

$$\frac{\underline{\operatorname{VaR}}_p(\mathcal{S}_n)}{\underline{\operatorname{ES}}_p(\mathcal{S}_n)} \approx \frac{\sum_{i=1}^n \operatorname{LES}_p(X_i)}{\sum_{i=1}^n \mathbb{E}[X_i]} \leq 1, \quad n \to \infty.$$

4 B N 4 B N

Example: Pareto(2) risks

Bounds on VaR and ES for the sum of *n* Pareto(2) distributed rvs for p = 0.999; VaR_p⁺ corresponds to the comonotonic case.

	<i>n</i> = 8	<i>n</i> = 56
<u>VaR</u> _p	31	53
$\underline{\mathrm{ES}}_{p}$	178	472
$\operatorname{VaR}_{p}^{+}$	245	1715
$\overline{\mathrm{VaR}}_{p}$	465	3454
$\overline{\mathrm{ES}}_{p}$	498	3486
$\overline{\mathrm{VaR}}_{p}/\mathrm{VaR}_{p}^{+}$	1.898	2.014
$\overline{\mathrm{ES}}_{p}/\overline{\mathrm{VaR}}_{p}$	1.071	1.009

A B > A B >

Bounds on the VaR and ES for the sum of n = 8Pareto(θ)-distributed rvs for p = 0.999.

	heta=1.5	$\theta = 2$	$\theta = 3$	$\theta = 5$	$\theta = 10$
$\overline{\mathrm{VaR}}_p$	1897	465	110	31.65	9.72
$\overline{\mathrm{ES}}_{p}$	2392	498	112	31.81	9.73
$\overline{\mathrm{ES}}_{p}/\overline{\mathrm{VaR}}_{p}$	1.261	1.071	1.018	1.005	1.001

直 ト イヨ ト イヨ ト

Let $\mathcal{D}_n(F) = \mathcal{D}_n(F, \dots, F)$ (homogeneous model). For a law-determined risk measure ρ , define

$$\Gamma_{\rho}(X) = \lim_{n \to \infty} \frac{1}{n} \sup \left\{ \rho(S) : F_{S} \in \mathcal{D}_{n}(F_{X}) \right\}.$$

 Γ_{ρ} is also a law-determined risk measure.

- $\Gamma_{\rho} \geq \rho$.
- If ρ is subadditive then $\Gamma_{\rho} = \rho$.

.

Take $\mathcal{X} = L^{\infty}$.

Theorem 9 ((ρ_h, ρ_{h^*})-equivalence for homogeneous model)

We have

$$\Gamma_{\rho_h}(X) = \rho_{h^*}(X), \quad X \in \mathcal{X},$$

where h^* is the largest convex distortion function dominated by h.

 Theorem 3.2 of W.-Bignozzi-Tsanakas (2015)
 Image: Constraints of the second second

For distortion risk measures

•
$$\Gamma_{\operatorname{VaR}_p} = \operatorname{ES}_p$$

• ρ_h is coherent if and only if $h^* = h$

For law-determined convex risk measures.

- $\Gamma_{
 ho}$ is the smallest coherent risk measure dominating ho
- If ρ is a convex shortfall risk measure, then Γ_{ρ} is a coherent expectile

- 2 VaR and ES Bounds: basic ideas
- 3 Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 5 Asymptotic equivalence
- 6 Dependence-uncertainty spread
- Challenges
- 8 References

4 3 b

Theorem 10 (Uncertainty spread)

Take $1 > q \ge p > 0$. Under weak regularity conditions, for inhomogeneous models,

$$\liminf_{n\to\infty} \frac{\overline{\operatorname{VaR}}_q(\mathcal{S}_n) - \underline{\operatorname{VaR}}_q(\mathcal{S}_n)}{\overline{\operatorname{ES}}_p(\mathcal{S}_n) - \underline{\operatorname{ES}}_p(\mathcal{S}_n)} \geq 1.$$

- The uncertainty-spread of VaR is generally bigger than that of ES.
- In recent Consultative Documents of the Basel Committee, VaR_{0.99} is compared with ES_{0.975}: p = 0.975 and q = 0.99.

	indrecints-wang-w. (2013)		NEK NEK	-	•)40
Ruodu Wang	(wang@uwaterloo.ca)	Risk Aggreg	ation and Fréchet Pr	oblems Part IV		40/49

ES and VaR of $S_n = X_1 + \cdots + X_n$, where

•
$$X_i \sim \text{Pareto}(2 + 0.1i), \ i = 1, \dots, 5;$$

•
$$X_i \sim \text{Exp}(i-5), i = 6, ..., 10;$$

• $X_i \sim \text{Log-Normal}(0, (0.1(i-10))^2), i = 11, \dots, 20.$

		<i>n</i> = 5			<i>n</i> = 20	
	best	worst	spread	best	worst	spread
ES _{0.975}	22.48	44.88	22.40	29.15	102.35	73.20
$VaR_{0.975}$	9.79	41.46	31.67	21.44	100.65	79.21
$VaR_{0.99}$	12.96	62.01	49.05	22.29	136.30	114.01
ES _{0.975} VaR _{0.975}		1.08			1.02	

(4月) (日) (日) 日

Features/Risk measure	VaR	Tail-VaR
Frequency captured?	Yes	Yes
Severity captured?	No	Yes
Sub-additive?	Not always	Always
Diversification captured?	Issues	Yes
Back-testing?	Straight-forward	Issues
Estimation?	Feasible	Issues with data limitation
Model uncertainty?	Sensitive to aggregation	Sensitive to tail modelling
Robustness I (with respect to "Lévy metric ³³ ")?	Almost, only minor issues	No
Robustness II (with respect to "Wasserstein metric ³⁴ ")?	Yes	Yes

From the International Association of Insurance Supervisors Consultation Document (December 2014).

- 2 VaR and ES Bounds: basic ideas
- 3 Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 5 Asymptotic equivalence
- 6 Dependence-uncertainty spread
- Challenges
 - 8 References

4 3 b

Concerete mathematical questions:

- Full characterization of \mathcal{D}_n and mixability
- Existence and determination of smallest \prec_{cx} -element in \mathcal{D}_n
- General analytical formulas for $\overline{\mathrm{VaR}}_p$ ($\underline{\mathrm{VaR}}_p$) and $\underline{\mathrm{ES}}_p$
- Aggregation of random vectors

Practical questions:

- Capital calculation under uncertainty
- Robust decision making under uncertainty
- Regulation with uncertainty

Some on-going directions on RADU

- Partial information on dependence⁵
- Connection with Extreme Value Theory
- Connection with martingale optimal transportation
- Both marginal and dependence uncertainty
- Computational solutions
- Other aggregation functionals

⁵Bignozzi-Puccetti-Rüschendorf (2015), Bernard-Rüschendorf-Vanduffel (2015+), Bernard-Vanduffel (2015), many more

References I

- Aas, K. and G. Puccetti (2014). Bounds for total economic capital: the DNB case study. *Extremes*, **17**(4), 693–715.

- Bernard, C., Jiang, X. and Wang, R. (2014). Risk aggregation with dependence uncertainty. *Insurance: Mathematics and Economics*, **54**, 93–108.
- Bernard C., Rüschendorf L., and Vanduffel S.. (2015+). Value-at-risk bounds with variance constraints. *Journal of Risk and Insurance*, forthcoming.

Bernard, C. and Vanduffel, S. (2015). A new approach to assessing model risk in high dimensions. *Journal of Banking and Finance*, **58**, 166–178.

Bignozzi, V., Puccetti, G. and Rüschendorf, L. (2015). Reducing model risk via positive and negative dependence assumptions. *Insurance: Mathematics and Economics*, **61**, 17–26.

Embrechts, P., Puccetti, G. and Rüschendorf, L. (2013). Model uncertainty and VaR aggregation. *Journal of Banking and Finance*, **37**(8), 2750-2764.

Embrechts, P., Wang, B. and Wang, R. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures. *Finance and Stochastics*, **19**(4), 763–790.

- 4 同 6 4 日 6 4 日 6

References II

- Jakobsons, E., Han, X. and Wang, R. (2015+). General convex order on risk aggregation. *Scandinavian Actuarial Journal*, forthcoming.

Puccetti, G. and Rüschendorf, L. (2012). Computation of sharp bounds on the distribution of a function of dependent risks. *Journal of Computational and Applied Mathematics*, **236**(7), 1833–1840.

- Puccetti, G. and Rüschendorf, L. (2014). Asymptotic equivalence of conservative VaR- and ES-based capital charges. *Journal of Risk*, **16**(3), 3–22.
- Wang, B. and Wang, R. (2011). The complete mixability and convex minimization problems with monotone marginal densities. *Journal of Multivariate Analysis*, **102**, 1344–1360.

Wang, B. and Wang, R. (2015). Extreme negative dependence and risk aggregation. *Journal of Multivariate Analysis*, **136**, 12–25.

Wang, R., Bignozzi, V. and Tsakanas, A. (2015). How superadditive can a risk measure be? *SIAM Journal on Financial Mathematics*, 6(1), 776–803.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Wang, R., Peng, L. and Yang, J. (2013). Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. *Finance and Stochastics*, **17**(2), 395–417.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you for your kind attention