Risk Aggregation and Fréchet Problems
 Part II - Preliminaries and Basic Results

Ruodu Wang
http://sas.uwaterloo.c
Department of Statistics and Ac
University of Waterloo, Can
WATERITY OF
WATOO

Minicourse Lectures, University of Milano-Bicocca, Italy
November 9-11, 2015

(1) Preliminaries
(2) Aggregation sets
(3) ES bounds

(4) VaR bounds

(5) References

Preliminaries

In the following we briefly give some preliminaries

- copulas
- Fréchet-Hoeffding inequalities
- comonotonicity and counter-monotonicity
- convex order

In this course we will try to avoid copulas as much as possible

Copulas

Lemma 1

For any $X \sim F$. There exists a $\mathrm{U}[0,1]$ random variable U_{X} such that $X=F^{-1}\left(U_{X}\right)$ a.s.

- Recall that $F^{-1}(t)=\operatorname{VaR}_{t}(X)=\inf \{x \in \mathbb{R}: F(x) \geq t\}$, $t \in(0,1)$.
- When F is continuous, one can take $U_{X}=F(X)$ which is a.s. unique.
- When F is not continuous, one can take a distributional transform as in Proposition 1.3 of Rüschendorf (2013).
- $I_{\left\{U_{X} \leq F(x)\right\}}=I_{\left\{F^{-1}\left(U_{X}\right) \leq x\right\}}$ a.s.

Copulas

$$
\text { Let } \mathcal{C}_{n}=\mathcal{M}_{n}(\mathrm{U}[0,1], \ldots, \mathrm{U}[0,1])
$$

Definition 2

An n-variate copula is an element in \mathcal{C}_{n}.

Theorem 3 (Sklar's Theorem, Sklar 1959)

For $F_{1}, \ldots, F_{n} \in \mathcal{M}_{1}, F \in \mathcal{M}_{n}\left(F_{1}, \ldots, F_{n}\right)$ if and only if there exists $C \in \mathcal{C}_{n}$ such that

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{n}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

C in (1) is called a copula of any random vector $\mathbf{X} \sim F$.

- General reference on copulas: Joe (2014)

Fréchet-Hoeffding inequalities

Theorem 4 (Fréchet-Hoeffding inequalities*)

For any $C \in \mathcal{C}_{n}$, it holds that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} x_{i}-(n-1)\right)_{+} \leq C\left(x_{1}, \ldots, x_{n}\right) \leq \min \left\{x_{1}, \ldots, x_{n}\right\} \tag{2}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
*the asterisk always indicates that details are (planned) to begiven in the lecture

Classic Fréchet problem

Sharpness*

- $M_{n}:\left(x_{1}, \ldots, x_{n}\right) \mapsto \min \left\{x_{1}, \ldots, x_{n}\right\}$ is a copula for $n \in \mathbb{N}$
- $W_{n}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\sum_{i=1}^{n} x_{i}-(n-1)\right)_{+}$is a copula only for $n=1,2$
- (2) is point-wise sharp for all $n \in \mathbb{N}$
M_{n} is called the Fréchet upper copula and W_{2} is called the Fréchet lower copula.

Classic Fréchet problem

Solution to the classic Fréchet problem*
Given $F_{1}, F_{2} \in \mathcal{M}_{1}$ and $G \in \mathcal{M}_{2}$, there exist $F \in \mathcal{M}_{2}\left(F_{1}, F_{2}\right)$ such that $F \leq G$ if and only if

$$
G\left(x_{1}, x_{2}\right) \geq F_{1}\left(x_{1}\right)+F_{2}\left(x_{2}\right)-1, \text { for all }\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

Comonotonicity

Definition 5

A pair of random variables $(X, Y) \in\left(L^{0}\right)^{2}$ is said to be comonotonic if there exists a random variable Z and two increasing functions f, g such that almost surely $X=f(Z)$ and $Y=g(Z)$.

- X and Y move in the same direction. This is a strongest (and simplest) notion of positive dependence.
- Two risks are not a hedge to each other if they are comonotonic
- We use $X / / Y$ to represent that $(X, Y) \in\left(L^{0}\right)^{2}$ is comonotonic.

Comonotonicity

Some examples of comonotonic random vectors:

- a constant and any random variable
- X and X
- X and $\mathrm{I}_{\{X \geq 0\}}$
- In the Black-Scholes framework, the time- t price of a stock S and a call option on S

Note: in the definition of comonotonicity, the choice of \mathbb{P} is irrelevant for equivalent probability measures.

- We also say " X and Y are comonotonic" when there is no confusion
- comonotonicity can be generalized to n-vectors

Comonotonicity

Theorem 6

For $X \sim F, Y \sim G$, the following are equivalent:
(i) $X / / Y$;
(ii) For some strictly increasing functions $f, g, f(X) / / g(Y)$;
(iii) $\mathbb{P}(X \leq x, Y \leq y)=\min \{F(x), G(y)\}$ for all $(x, y) \in \mathbb{R}^{2}$;
(iv) $\left(X(\omega)-X\left(\omega^{\prime}\right)\right)\left(Y(\omega)-Y\left(\omega^{\prime}\right)\right) \geq 0$ for a.s. $\left(\omega, \omega^{\prime}\right) \in \Omega \times \Omega$.
(v) There exists $U \sim \mathrm{U}[0,1]$ such that $X=F^{-1}(U)$ and $Y=G^{-1}(U)$ almost surely.
(vi) A copula of (X, Y) is the Fréchet upper copula.

Comonotonicity

In the following, the four random variables $X, Y, X^{\prime}, Y^{\prime} \in L^{2}$
satisfy $X \stackrel{\text { d }}{=} X^{\prime}$ and $Y \stackrel{\mathrm{~d}}{=} Y^{\prime}$.

Proposition 7

Suppose $X / / Y$. The following hold:
(i) $\mathbb{P}(X \leq x, Y \leq y) \geq \mathbb{P}\left(X^{\prime} \leq x, Y^{\prime} \leq y\right)$ for all $(x, y) \in \mathbb{R}^{2}$;
(ii) $\mathbb{E}[X Y] \geq \mathbb{E}\left[X^{\prime} Y^{\prime}\right]$;
(iii) $\operatorname{Corr}(X, Y) \geq \operatorname{Corr}\left(X^{\prime}, Y^{\prime}\right)$.

Comonotonicity

Let $F \oplus G$ be the distribution of $F^{-1}(U)+G^{-1}(U)$ for some $U \in \mathrm{U}[0,1]$.

Proposition 8

Suppose $X / / Y, X \sim F$ and $Y \sim G$. Let H be the distribution of $X+Y$. Then
(i) $H=F \oplus G$;
(ii) $H^{-1}=F^{-1}+G^{-1}$;
(iii) $\operatorname{VaR}_{p}(X+Y)=\operatorname{VaR}_{p}(X)+\operatorname{VaR}_{p}(Y), p \in(0,1)$;
(iv) $\operatorname{ES}_{p}(X+Y)=\operatorname{ES}_{p}(X)+\operatorname{ES}_{p}(Y), p \in(0,1)$.

- VaR_{p} and ES_{p} are comonotonic additive.

Counter-monotonicity

Definition 9

A pair of random variables $(X, Y) \in\left(L^{0}\right)^{2}$ is said to be counter-monotonic if $(X,-Y)$ is comonotonic.

- We use $X \rightleftharpoons Y$ to represent that $(X, Y) \in\left(L^{0}\right)^{2}$ is counter-monotonic.
- Counter-monotonicity is not easy to generalize to n-vectors for $n \geq 3$.

Counter-monotonicity

Theorem 10

For $X \sim F, Y \sim G$, the following are equivalent:
(i) $X \rightleftharpoons Y$;
(ii) For some strictly increasing functions $f, g, f(X) \rightleftharpoons g(Y)$;
(iii) $\mathbb{P}(X \leq x, Y \leq y)=(F(x)+G(y)-1)_{+}$for all $(x, y) \in \mathbb{R}^{2}$;
(iv) $\left(X(\omega)-X\left(\omega^{\prime}\right)\right)\left(Y(\omega)-Y\left(\omega^{\prime}\right)\right) \leq 0$ for a.s. $\left(\omega, \omega^{\prime}\right) \in \Omega \times \Omega$.
(v) There exists $U \sim \mathrm{U}[0,1]$ such that $X=F^{-1}(U)$ and
$Y=G^{-1}(1-U)$ almost surely.
(vi) A copula of (X, Y) is the Fréchet lower copula.

Convex order

Definition 11 (Convex order)

For $X, Y \in L^{1}, X$ is smaller than Y in (resp. increasing) convex order, denoted as $X \prec_{\text {cx }} Y$ (resp. $X \prec_{\text {icx }} Y$), if $\mathbb{E}[f(X)] \leq \mathbb{E}[f(Y)]$ for all (resp. increasing) convex functions f such that the expectations exist.

- For (increasing) convex order, the choice of \mathbb{P} is relevant.
- If $X \prec_{c x} Y$ then $\mathbb{E}[X]=\mathbb{E}[Y]$.
- Increasing convex order is also called second-order stochastic dominance or stop-loss order
- We abuse the notation here: for $F, G \in \mathcal{M}_{1}^{1}$ and $X \in L^{1}$, we sometimes write $X \prec_{\mathrm{cx}} F$ and $G \prec_{\mathrm{cx}} F$

Convex order

- Increasing convex order describes a preference among risks for risk-averse investors
- a risk-averse investor prefers a risk with less variability (uncertainty) against one with larger variability, and she prefers a risk with a certainly smaller loss against a risk with a larger loss
- convex order and increasing convex order are based on the law of random variables

Convex order

Some examples and properties (all random variables are in L^{1}):

- $X \prec_{\text {cx }} Y$ implies $X \prec_{\text {icx }} Y$.
- $X \leq Y$ a.s. implies $X \prec_{\text {icx }} Y$.
- If $\mathbb{E}[X]=\mathbb{E}[Y]=0$, and $X=a Y, a>1$, then $Y \prec_{\mathrm{cx}} X$.
- If $X \prec_{\text {icx }} Y, Y \prec_{\text {icx }} Z$, then $X \prec_{\text {icx }} Z$.
- If $X \prec_{\text {icx }} Y$, then $f(X) \prec_{\text {icx }} f(Y)$ for any increasing function f.
- $X \prec_{\text {cx }} Y$ if and only if $X \prec_{\text {icx }} Y$ and $\mathbb{E}[X]=\mathbb{E}[Y]$.

Reference: Shaked-Shanthikumar (2007)

Convex order

Theorem 12 (Martingale Theorem for convex order)

For $X, Y \in L^{1}, X \prec_{\mathrm{cx}} Y$ if and only if there exists $Z \stackrel{\mathrm{~d}}{=} X$ such that $Z=\mathbb{E}[Y \mid Z]$ almost surely.

- $\mathbb{E}[Y \mid \mathcal{G}] \prec_{\mathrm{cx}} Y$ for any σ-field \mathcal{G}. In particular, $\mathbb{E}[Y] \prec_{\mathrm{cx}} Y$.

Theorem 13 (Separation Theorem)

For $X, Y \in L^{1}, X \prec_{\mathrm{icx}} Y$ if and only if there exists $Z \in L^{0}$ such that

$$
X \leq Z \prec_{\mathrm{cx}} Y \quad \text { almost surely. }
$$

Convex order

Proposition 14

For $X, Y \in L^{1}$, the following are equivalent:
(i) $X \prec_{\text {icx }} Y$;
(ii) $\mathrm{ES}_{p}(X) \leq \mathrm{ES}_{p}(Y)$ for all $p \in(0,1)$;
(iii) $\mathbb{E}\left[(X-t)_{+}\right] \leq \mathbb{E}\left[(Y-t)_{+}\right]$for all $t \in \mathbb{R}$.

Convex order and comonotonicity

Theorem 15

Suppose that $X \stackrel{\mathrm{~d}}{=} X^{\prime} \in L^{1}, Y \stackrel{\mathrm{~d}}{=} Y^{\prime} \in L^{1}$.
(i) If $X / / Y$, then $X^{\prime}+Y^{\prime} \prec_{\mathrm{cx}} X+Y$.
(ii) If $X \leftrightharpoons Y$, then $X+Y \prec_{\mathrm{cx}} X^{\prime}+Y^{\prime}$.

- The case of $n \geq 3$ is still true for (i) but for (ii) it becomes unclear
- A general version of the above theorem dates back to Lorentz (1951)
- More information: Puccetti-W. (2015)
(2) Aggregation sets

(4) VaR bounds

(5) References

Aggregation sets

For $F \in \mathcal{M}_{1}^{1}$, let $\mathcal{M}^{*}(F)=\left\{G \in \mathcal{M}_{1}: G \prec_{\mathrm{cx}} F\right\}$ and $\mathcal{X}^{*}(F)=\left\{X \in L^{0}: X \prec_{c x} F\right\}$.

Proposition 16 (Basic properties*)

For $F_{1}, \ldots, F_{n} \in \mathcal{M}_{1}^{1}$, the following hold:
(i) $\mathcal{S}_{n} \subset \mathcal{X}^{*}\left(\oplus_{i=1}^{n} F_{i}\right)$;
(ii) $\mathcal{D}_{n} \subset \mathcal{M}^{*}\left(\oplus_{i=1}^{n} F_{i}\right)$;
(iii) Both the sets \mathcal{D}_{n} and $\mathcal{M}^{*}\left(\oplus_{i=1}^{n} F_{i}\right)$ are convex and closed with respect to convergence in distribution.

Aggregation sets

Uniform example*

For $F_{1}=F_{2}=\mathrm{U}[-1,1], \mathcal{D}_{2} \subsetneq \mathcal{M}^{*}(\mathrm{U}[-2,2])$.

- see Example X.

Bernoulli example*

For $F_{1}=F_{2}=\operatorname{Bern}(p), p \in[0,1]$, we have
$\mathcal{D}_{2}=\mathcal{M}^{*}(\operatorname{Bern}(p) \oplus \operatorname{Bern}(p)) \cap R$ where R is the set of distributions supported in $\{0,1,2\}$.

Aggregation sets

Question

Does the equality $\mathcal{D}_{n}=\mathcal{M}^{*}\left(\oplus_{i=1}^{n} F_{i}\right)$ hold for some non-degenerate distributions?
(2) Aggregation sets
(3) ES bounds

(4) VaR bounds

(5) References

Expected Shortfall bounds

Proposition 17 (Expected Shortfall naive bounds*)

For $F_{1}, \ldots, F_{n} \in \mathcal{M}_{1}, X_{i} \sim F_{i}, i=1, \ldots, n$ and $p \in(0,1)$, the following hold:
(i) $\overline{\operatorname{ES}}_{p}\left(\mathcal{S}_{n}\right)=\sum_{i=1}^{n} \mathrm{ES}_{p}\left(X_{i}\right)$;
(ii) $\mathrm{ES}_{p}\left(\mathcal{S}_{n}\right) \geq \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$.

- ES_{p} is comonotonic additive and preserves convex order
(2) Aggregation sets
(3) ES bounds
(4) VaR bounds
(5) References

Value-at-Risk bounds

Proposition 18 (Value-at-Risk naive bounds*)

For $F_{1}, \ldots, F_{n} \in \mathcal{M}_{1}, X_{i} \sim F_{i}, i=1, \ldots, n$ and $p \in(0,1)$, the following hold:
(i) $\sum_{i=1}^{n} \operatorname{VaR}_{p}\left(X_{i}\right) \leq \overline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{n}\right) \leq \sum_{i=1}^{n} \operatorname{ES}_{p}\left(X_{i}\right)$;
(ii) $\sum_{i=1}^{n} \operatorname{VaR}_{p}\left(X_{i}\right) \geq \underline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{n}\right) \geq-\sum_{i=1}^{n} \operatorname{ES}_{1-p}\left(-X_{i}\right)$.

- VaR_{p} is comonotonic additive but it does not preserve convex order

The problem of VaR_{p} for $n=2$

Theorem $19\left(\overline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{2}\right)\right.$ and $\left.\operatorname{VaR}_{p}\left(\mathcal{S}_{2}\right)^{*}\right)$

For any $p \in(0,1)$ and $F_{1}, F_{2} \in \mathcal{M}_{1}$ with F_{1}^{-1}, F_{2}^{-1} being continuous,

$$
\overline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{2}\right)=\inf _{x \in[0,1-p]}\left\{F_{1}^{-1}(p+x)+F_{2}^{-1}(1-x)\right\},
$$

and

$$
{\underline{\operatorname{VaR}_{p}}}_{p}\left(\mathcal{S}_{2}\right)=\sup _{x \in[0, p]}\left\{F_{1}^{-1}(x)+F_{2}^{-1}(p-x)\right\}
$$

- The dependence structure: a combination of comonotonicity and counter-monotonicity

The result dates back to Makarov (1981) and Rüschendorf (1982); both studied $\underline{\mathrm{P}}_{s}\left(\mathcal{S}_{2}\right)$, the former based on construction and the latter based on-duality.

The problem of $\overline{\mathrm{VaR}}_{p}$ for $n=2$

Example:

- For $F_{1}=F_{2}=\mathrm{U}[0,1]$,

$$
\overline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{2}\right)=\overline{\mathrm{ES}}_{p}\left(\mathcal{S}_{2}\right)=1+p .
$$

- For a concave distribution function $F_{1}=F_{2}$ (decreasing density),

$$
\overline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{2}\right)=2 \operatorname{VaR}_{\frac{1+p}{2}}\left(X_{1}\right)
$$

References I

Joe, H. (2014). Dependence Modeling with Copulas. London: Chapman \& Hall.
Lorentz, G. G. (1953). An inequality for rearrangements. American Mathematical Monthly, 60, 176-179.

Makarov, G.D. (1981). Estimates for the distribution function of the sum of two random variables with given marginal distributions. Theory of Probability and its Applications, 26, 803-806.

Puccetti, G. and Wang R. (2015). Extremal dependence concepts. Statistical Science, forthcoming.

Rüschendorf, L. (1982). Random variables with maximum sums. Advances in Applied Probability, 14(3), 623-632.

Shaked, M. and Shanthikumar, J. G. (2007). Stochastic orders. Springer Series in Statistics.

