Risk Aggregation and Fréchet Problems Part I - Basic concepts, Applications and Examples

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo, Canada

Minicourse Lectures, University of Milano-Bicocca, Italy November 9 - 11, 2015

伺 ト イ ヨ ト イ ヨ ト

2 Fréchet problem

3 Risk aggregation



5 References

Image: Image:

- Instructor: Ruodu Wang
- Email: wang@uwaterloo.ca
- **Lectures:** 14:30 17:30

Nov 9, 10, 11

Notes: blackboard (details)

slides (skeleton)

Website: http://sas.uwaterloo.ca/~wang (slides are available on my website) In one sentence:

We study the problem of uncertain dependence in a multivariate model.

Preliminaries

- Knowledge on (undergraduate level) probability theory and mathematical statistics is necessary. Some knowledge on copulas and multivariate models is helpful.
- Some knowledge on (undergraduate level) stochastic processes, finance, and quantitative risk management is helpful but not necessary.

Some features of the field

- easily accessible to graduate students, and even high school students
- practically relevant in risk management
- naturally connected to other fields of finance, statistics, decision making, probability, combinatorics, operations research, numerical calculation, and so on

a lot of fun

Aim of the course is to

- understand Fréchet problems, mostly in its particular form of dependence uncertainty in risk aggregation
- understand their relevance in Quantitative Risk Management
- see some nice mathematical results
- see basic techniques in the field, especially some non-standard probabilistic and combinatorial techniques
- enjoy the beauty but not be buried in details
- discuss some open questions in the field

Structure of the course

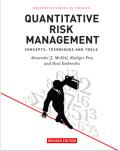
- Basic concepts, applications and examples
- Preliminaries and basic results
- Omplete and joint mixability
- Oncertainty bounds for risk measures

Risk aggregation and dependence uncertainty

Books relevant to this topic:

Rüschendorf (2013)

McNeil-Frey-Embrechts (2015)



2 Fréchet problem

3 Risk aggregation

5 References

< ∃ >

-

-

General setup

- An atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- n is a positive integer
- L^p, p ∈ [0,∞]: the set of random variables in (Ω, F, P), taking values in ℝ, with finite p-th moment
- \mathcal{X} : a "suitable" subset of L^0 , typically L^{∞} or L^1

Notation

Some notation

- \mathcal{M}_n : the set of *n*-variate distributions (cdf)
- *M*^p₁, *p* ∈ [0,∞]: the set of univariate distributions with finite *p*-th moment
- $X \sim F$ means $X \in L^0$, $F \in \mathcal{M}_1$ and the distribution of X is F
- $X \stackrel{\mathrm{d}}{=} Y$ means $X, Y \in L^0$ and they have the same distribution
- $X \perp Y$ means $X, Y \in L^0$ and they are independent
- For any monotone (always in the non-strict sense) function $f : \mathbb{R} \to \mathbb{R}, f^{-1}(t) := \inf\{x \in \mathbb{R} : f(x) \ge t\}.$
- Convention: $X_i \sim F_i$, i = 1, ..., n. We frequently use $X_1, ..., X_n$ without specifying who they really are

What is a Fréchet problem?

For $F_1, \ldots, F_n \in \mathcal{M}_1$, a Fréchet class is defined as

 $\mathcal{M}_n(F_1,\ldots,F_n) = \{F \in \mathcal{M}_n : F \text{ has margins } F_1,\ldots,F_n\}$

(introduced by Dall'Aglio, 1956).

Classic Fréchet problem

Given $F_1, F_2 \in \mathcal{M}_1$ and $G \in \mathcal{M}_2$, does there exist $F \in \mathcal{M}_2(F_1, F_2)$ such that $F \leq G$?

Answer (we will see this later) was given in Fréchet (1951), and it only works for n = 2

Pioneer papers: Fréchet (1951), Hoeffding (1940)

Maurice R. Fréchet (1878 - 1973)

Warrily Houffeling

Wassily Hoeffding (1914 - 1991)

(Modern) Fréchet problem

Any questions of the following type: for given $F_1, \ldots, F_n \in \mathcal{M}_1$, determine

$$\sup\{\gamma(F): F \in \mathcal{M}_n(F_1, \ldots, F_n)\}$$

where $\gamma : \mathcal{M}_n \to \mathbb{R}$ is some functional, is called a Fréchet problem in this course.

• $\gamma(F) = I_{\{F \leq G\}}$ gives the classic Fréchet problem

Handling the Fréchet problem

Many Fréchet problems have the following form: for some $f: \mathbb{R}^n \to \mathbb{R}$, determine

$$\sup\left\{\int f \mathrm{d}F: F \in \mathcal{M}_n(F_1,\ldots,F_n)\right\}.$$

The brutal way of handling this problem is to

(i) write down its dual (cf. Strassen 1965)

$$\inf\left\{\sum_{i=1}^n\int f_i\mathrm{d}F_i:f_i\in L^1(F_i),\ i=1,\ldots,n,\ \oplus(f_1,\ldots,f_n)\geq f\right\}$$

where
$$\oplus(f_1,\ldots,f_n):(x_1,\ldots,x_n)\mapsto \sum_{i=1}^n f_i(x_i)$$

(ii) show that the dual is equal to the primal (typically OK)(iii) numerically solve the dual (semi-infinite linear programming)

The brutal method

- is typically very difficult or impossible even for modern computational techniques
- cannot answer questions like compatibility
- does not give good visualization
- cannot be easily communicated to students, statisticians or industry

In this course

- we try to avoid linear programming
- we try to work with the primal whenever possible: try to understand the dependence
- we aim for analytical solutions

2 Fréchet problem



5 References

∃ → < ∃</p>

Our main object is

$$S_n = \Lambda(X_1,\ldots,X_n)$$

where $\Lambda : \mathbb{R}^n \to \mathbb{R}$ is an aggregation function.

• We mainly look at the case of Λ being the sum.

Two aspects of modeling and inference of a multivariate model: **marginal distribution** and **dependence structure**.

"copula thinking"

Margins vs Dependence

	data	accuracy	modeling	calculation
margins	rich	good	mature	easy
dependence	limited	poor	limited	heavy

Assumption throughout the course

certain margins, uncertain dependence.

• A common setup in operational risk

- **B** - **N** - **B** - **N**

An immediate example: CDO in the subprime crisis

- Between 2003 and 2007, Wall Street issued almost \$700 billion in CDOs that included mortgage-backed securities as collateral
- Senior CDO tranches were given high ratings by rating agencies on the grounds that mortgages were diversified by region and so "uncorrelated"
- By October triple-A tranches had started to fall
- CDOs made up over half (\$542 billion) of the nearly trillion dollars in losses suffered by financial institutions from 2007 to early 2009

伺 ト イ ヨ ト イ ヨ ト

For example,

$$S_n = X_1 + \cdots + X_n$$
.

 X_i : individual risks; S_n : risk aggregation

- For a manager, X_i is the loss of a business line i
- For an investor, X_i is the loss of asset *i* in a portfolio
- For a regulator, X_i is the loss of firm i

Key question

What are possible distributions of S_n ?

• In this course, aggregation always refers to the aggregation of random variables with unspecific dependence

Primary targets

For given F_1, \ldots, F_n , define the set of aggregate risks

$$\mathcal{S}_n = \mathcal{S}_n(F_1,\ldots,F_n) = \{X_1 + \cdots + X_n : X_i \sim F_i, i = 1,\ldots,n\} \subset L^0.$$

and the set of aggregate distributions

$$\mathcal{D}_n = \mathcal{D}_n(F_1, \ldots, F_n) = \{ \mathsf{cdf of } S : S \in \mathcal{S}_n(F_1, \ldots, F_n) \} \subset \mathcal{M}_1.$$

First things to think about:

- Are S_n and D_n properly defined?
- Does \mathcal{D}_n depend on the probability space we choose?
- Is the study of \mathcal{D}_n mathematically meaningful?

We work with \mathcal{D}_n instead of \mathcal{M}_n .

Some questions to ask:

- (Compatibility) For a given F, is $F \in D_n$?
- (Mimicking) What is the best approximation in D_n to F? That is, find G ∈ D_n such that d(F, G) is minimized for some metric d.
- (Extreme values) What is sup_{S∈S_n} ρ(S) for some functional
 ρ: X → ℝ? ← measurement of risk aggregation under
 uncertainty

First question to ask: what are the values of

$$\underline{\mathbf{P}}_{s}(\mathcal{D}_{n}) = \inf\{F(s) : F \in \mathcal{D}_{n}\}, \ s \in \mathbb{R},$$

and

$$\overline{\mathrm{P}}_{s}(\mathcal{D}_{n}) = \sup\{F(s): F \in \mathcal{D}_{n}\}, s \in \mathbb{R}.$$

• Analytical expression generally unavailable

Particular relevant questions in Quantitative Risk Management

• Let $\rho : \mathcal{X} \to \mathbb{R}$ be a risk measure. For some F_1, \ldots, F_n , $\mathcal{S}_n \subset \mathcal{X}$. Let

$$\overline{\rho}(\mathcal{S}_n) = \sup_{S \in \mathcal{S}_n} \rho(S) \text{ and } \underline{\rho}(\mathcal{S}_n) = \inf_{S \in \mathcal{S}_n} \rho(S).$$

[<u>ρ</u>(S_n), <u>ρ</u>(S_n)] characterizes model uncertainty in the dependence with known marginal distributions.

Risk aggregation

Primary examples: $p \in (0, 1)$, $X \sim F$.

Value-at-Risk (VaR)

 $\mathrm{VaR}_{p}:L^{0}\rightarrow\mathbb{R},$

$$\operatorname{VaR}_p(X) = F^{-1}(p) = \inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) \ge p\}.$$

Expected Shortfall (ES, or TVaR, CVaR, CTE, AVaR)

$$\begin{split} \mathrm{ES}_p &: L^0 \to (-\infty, \infty], \\ \mathrm{ES}_p(X) &= \frac{1}{1-p} \int_p^1 \mathrm{VaR}_q(X) \mathrm{d}q \,_{(F \text{ cont.})} \mathbb{E}\left[X | X > \mathrm{VaR}_p(X)\right]. \end{split}$$

3

For given $F_1, \ldots, F_n \in \mathcal{M}_1$ and $p \in (0, 1)$, the four quantities

 $\underline{\operatorname{VaR}}_{p}(\mathcal{S}_{n}), \ \overline{\operatorname{VaR}}_{p}(\mathcal{S}_{n}), \ \underline{\operatorname{ES}}_{p}(\mathcal{S}_{n}), \ \overline{\operatorname{ES}}_{p}(\mathcal{S}_{n})$

are our primary examples.

- $\overline{\operatorname{VaR}}_p(\mathcal{S}_n)$, $\underline{\operatorname{VaR}}_p(\mathcal{S}_n)$ and $\underline{\operatorname{ES}}_p(\mathcal{S}_n)$ are generally analytically unavailable
- $\overline{\mathrm{ES}}_p(\mathcal{S}_n)$ can be analytically calculated

「同 ト イ ヨ ト イ ヨ ト ― ヨ

The questions of $\underline{\mathrm{P}}_{s}(\mathcal{D}_{n})$ and $\overline{\mathrm{VaR}}_{p}(\mathcal{S}_{n})$:

• One should always keep the problem of finding

$$\overline{\mathrm{VaR}}_{p}(\mathcal{S}_{n}) = \sup\{\mathrm{VaR}_{p}(\mathcal{S}) : \mathcal{S} \in \mathcal{S}_{n}\}, \ p \in (0, 1)$$

and

$$\underline{\mathbf{P}}_{s}(\mathcal{D}_{n}) = \inf\{F(s) : F \in \mathcal{D}_{n}\}, s \in \mathbb{R}$$

in mind throughout the course.

 The two quantities are inverse to each other; we primarily work with VaR_p(S_n) for some mathematical elegance

Other applications

Many applications and related problems

- Risk measurement under uncertainty (our main problem)
- Simulation: variance reduction
- Model-independent option pricing
- (Multi-dimensional) Monge-Kantorovich optimal transportation
- Change of measure
- Decision making
- Assembly and scheduling¹

Many natural questions are not related to statistical uncertainty of

a joint model

¹traditional problem in OR: e.g. Coffman-Yannakakis (1984 M@R) (=> (=>) = ∽ ⊂

Consider the bottleneck of a schedule:

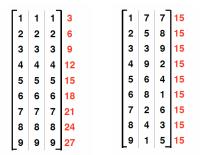
- *n* steps to produce an equipment
- *m* workers specialized in each step (*mn* workers in total)
- produce *m* equipments simultaneously
- time needed for each worker is recorded in an $m \times n$ matrix
- target: minimize the time T of production of m equipments, T = max{t₁,..., t_m}

What is the optimal arrangement o	f workers	for each	equipment?
-----------------------------------	-----------	----------	------------

[1	1	1]
2	2	2
3	3	3
4	4	4
5	5	5
6	6	6
7	7	7
8	8	8
9	9	9_

Assembly and scheduling

Simple example: we are allowed to rotate each column.



- If t_1, \ldots, t_n are identical, then the arrangement is optimal
- When is it possible to have identical t_1, \ldots, t_n ?
- How do we obtain this optimal arrangement?

2 Fréchet problem

3 Risk aggregation

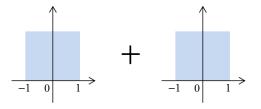
5 References

∃ → < ∃</p>

э

A simple example

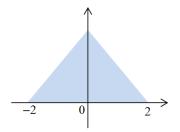
One simple example: n = 2, $F_1 = F_2 = U[-1, 1]$. What is a possible distribution of $S_2 = X_1 + X_2$?



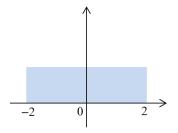
Obvious constraints

- $\mathbb{E}[S_2] = 0$
- range of S_2 in [-2, 2]
- $Var(S_2) \le 4/3$

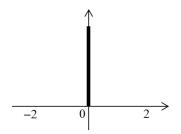
Uniform example I



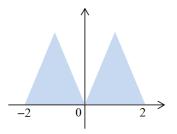
Uniform example II



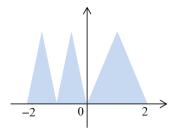
Uniform example III



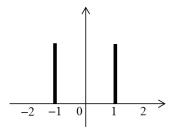
Uniform example IV



Uniform example V

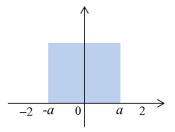


Uniform example VI



Uniform example VII

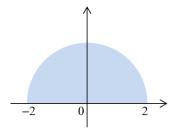
Is the following distribution possible for S_2 ?



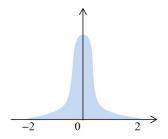
This it not trivial any more².

²the case [-1,1] obtained in Rüschendorf (1982); general case [-a,a] obtained in Wang-W. (2015+)

Uniform example VIII

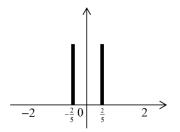


Uniform example IX



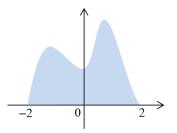
Uniform example X

Is the following distribution possible for S_2 ?



We will come back to this example later³.

Uniform example XI



References I

- Coffman, E. G. and Yannakakis, M. (1984). Permuting elements within columns of a matrix in order to minimize maximum row sum. *Mathematics of Operations Research*, **9**(3), 384–390.

Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. *Ann. Univ. Lyon. Sect. A.* **14**, 53–77.

- Hoeffding, W. (1940). Massstabinvariante korrelationtheorie. *Schriften Math. Inst. Univ. Berlin* **5**(5), 181–233.
- Mao, T. and Wang, R. (2015). On aggregation sets and lower-convex sets. Journal of Multivariate Analysis, **136**, 12–25.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). *Quantitative Risk Management: Concepts, Techniques and Tools.* Revised Edition. Princeton, NJ: Princeton University Press.

Rüschendorf, L. (1982). Random variables with maximum sums. *Advances in Applied Probability*, **14**(3), 623–632.

Rüschendorf, L. (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer, Heidelberg.

- 4 同 6 4 日 6 4 日 6

Strassen, V. (1965). The existence of probability measures with given marginals. *Annals of Mathematical Statistics*, **36**(2), 423–439.

Wang, B. and Wang, R. (2015+). Joint mixability. *Mathematics of Operations Research*, forthcoming.

伺 ト イヨト イヨト