Risk Aggregation and Fréchet Problems

Part III - Uncertainty Bounds for Risk Measures

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo, Canada

FIM Minicourse Lectures, ETH Zurich, Switzerland October 12 - 28, 2015

- Risk measures
- 2 VaR and ES Bounds: basic ideas
- Smallest element wrt convex order
- 4 Analytical results for homogeneous models

(wang@uwaterloo.ca)

- 6 Asymptotic equivalence
- 6 Dependence-uncertainty spread
- Challenges
- References

2/47

Risk measures

A risk measure is a functional $\rho: \mathcal{X} \to [-\infty, \infty]$.

- \mathcal{X} is a convex cone of random variables, $\mathcal{X} \supset L^{\infty}$.
- $\rho(L^{\infty}) \subset \mathbb{R}$
- $X \in \mathcal{X}$ represents loss/profit

A law-determined risk measure can be treated as a functional $\rho:\mathcal{D}\to[-\infty,\infty].$

• \mathcal{D} is the set of distributions of random variables in \mathcal{X} .

Risk measures

There are several properties of risk measures discussed in the literature, for instance:

- Monetary risk measure
 - Monotonicity: $\rho(X) \leq \rho(Y)$ for $X \leq Y, X, Y \in \mathcal{X}$
 - Cash-additivity: $\rho(X+c) = \rho(X) + c$ for $X \in \mathcal{X}$ and $c \in \mathbb{R}$
- Coherent risk measure: Monetary + two of the three:
 - Positive homogeneity: $\rho(\lambda X) = \lambda \rho(X)$ for $X \in \mathcal{X}$ and $\lambda \in \mathbb{R}_+$
 - Subadditivity: $\rho(X + Y) \le \rho(X) + \rho(Y)$ for $X, Y \in \mathcal{X}$
 - Convexity: $\rho(\lambda X + (1 \lambda)Y) \le \lambda \rho(X) + (1 \lambda)\rho(Y)$ for $X, Y \in \mathcal{X}$ and $\lambda \in [0, 1]$
- Comonotonic additivity: $\rho(X + Y) = \rho(X) + \rho(Y)$ for $X /\!\!/ Y, \ X, Y \in \mathcal{X}$

4/47

Distortion risk measures

Distortion risk measures

A distortion risk measure is defined as

$$\rho(X) = \int_{\mathbb{R}} x \mathrm{d}h(F_X(x)), \ X \in \mathcal{X}, \ X \sim F_X,$$

where h is an increasing function on [0,1] with h(0)=0 and h(1)=1. h is called a distortion function.

 Yaari (1987): distortion risk measure ⇔ law-determined and comonotonic additive monetary risk measure.

Distortion risk measures

Distortion risk measures

If one of h and F_x^{-1} is continuous, then via a change of variable,

$$\rho(X) = \int_0^1 \operatorname{VaR}_t(X) dh(t), \ X \in \mathcal{X}.$$

ES and VaR are special cases of distortion risk measures.

Left-tail-FS

Two distortion risk measures, Left-tail-ES (LES) and right-quantiles (VaR*)1:

Left-tail-ES (LES)

$$\mathrm{LES}_p:L^0\to[-\infty,\infty),$$

$$\operatorname{LES}_{p}(X) = \frac{1}{p} \int_{0}^{p} \operatorname{VaR}_{q}(X) \mathrm{d}q = -\operatorname{ES}_{1-p}(-X), \quad p \in (0,1).$$

Right-quantile (VaR*)

$$\operatorname{VaR}_{p}^{*}:L^{0}\to(-\infty,\infty),$$

$$\operatorname{VaR}_{p}^{*}(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) > p\}, \quad p \in (0, 1).$$

¹We introduce them only for mathematical reasons. LES is not to be implemented in financial regulation and VaR_p^* is indistinguishable from VaR_p in practice.

- VaR and ES Bounds: basic ideas
- Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 6 Asymptotic equivalence
- 6 Dependence-uncertainty spread

VaR and ES Bounds

As in Part I: For given $F_1, \ldots, F_n \in \mathcal{M}_1$ and $p \in (0,1)$, the four quantities

$$\underline{\operatorname{VaR}}_p(\mathcal{S}_n), \ \overline{\operatorname{VaR}}_p(\mathcal{S}_n), \ \underline{\operatorname{ES}}_p(\mathcal{S}_n), \ \overline{\operatorname{ES}}_p(\mathcal{S}_n)$$

are our primary targets.

- $\overline{\mathrm{ES}}_p(\mathcal{S}_n) = \sum_{i=1}^n \mathrm{ES}_p(X_i)$
- $\underline{\text{LES}}_{p}(\mathcal{S}_{n}) = \sum_{i=1}^{n} \text{LES}_{p}(X_{i})$
- The others are generally open
- LES_p and \overline{LES}_p are symmetric to ES

We assume the marginal distributions F_1, \ldots, F_n have finite means.

Basic ideas

Observation: ES_p preserves convex order.

Finding $\underline{\mathrm{ES}}_p(S_n)$

Search for a smallest element in S_n with respect to convex order, if it exists.

• If (F_1, \ldots, F_n) is JM, then such an element is a constant.

Basic ideas

VaR does not respect convex order: more tricky.

For i = 1, ..., n and $U \sim U[0, 1]$, let $F_i^{[p,1]}$ be the distribution of $F_i^{-1}(p+(1-p)U)$, and $F_i^{[0,p]}$ be the distribution of $F_i^{-1}(pU)$.

Lemma 1 (VaR bounds*)

For $p \in (0,1)$ and $F_1, \ldots, F_n \in \mathcal{M}_1$.

$$\overline{\operatorname{VaR}}_p^*(\mathcal{S}_n) = \sup\{\operatorname{ess-inf} S: S \in \mathcal{S}_n(F_1^{[p,1]}, \dots, F_n^{[p,1]})\},$$

and

$$\underline{\operatorname{VaR}}_p(\mathcal{S}_n) = \inf\{\operatorname{ess-sup} S : S \in \mathcal{S}_n(F_1^{[0,p]}, \dots, F_n^{[0,p]})\}.$$

Basic ideas

Corollary 2 (VaR bounds*)

Suppose that T is the smallest element in $S_n(F_1^{[p,1]}, \dots, F_n^{[p,1]})$ with respect to convex order. Then $\overline{\operatorname{VaR}}_{\mathbf{p}}^*(\mathcal{S}_{\mathbf{p}}) = \operatorname{VaR}_{\mathbf{p}}^*(T)$.

Finding $\overline{\mathrm{VaR}}_{p}(\mathcal{S}_{n})$

Search for a smallest element in $S_n(F_1^{[p,1]}, \dots, F^{[p,1]})$ with respect to convex order.

• $\overline{\operatorname{VaR}}_{p}^{*}(\mathcal{S}_{n}) = \overline{\operatorname{VaR}}_{p}(\mathcal{S}_{n})$ if $F_{1}^{-1}, \ldots, F_{n}^{-1}$ are continuous at p.

- VaR and ES Bounds: basic ideas
- Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 6 Asymptotic equivalence
- 6 Dependence-uncertainty spread

Smallest element wrt convex order

Question

For general $F_1, \ldots, F_n \in \mathcal{M}_1$, does there always exist a smallest element wrt \prec_{cx} in \mathcal{S}_n (or \mathcal{D}_n)?

- If (F_1, \ldots, F_n) is JM, then there exists one
- \bullet The largest element wrt $\prec_{\rm cx}$ is always the comonotonic sum for any marginal distributions

Smallest element wrt convex order

Example*

Let $F_1 = D\{0,3,8\}$ $F_2 = D\{0,6,16\}$ and $F_3 = D\{0,7,13\}$.

Dependence (a)

$$\begin{pmatrix} X_1(\omega_1) & X_2(\omega_1) & X_3(\omega_1) \\ X_1(\omega_2) & X_2(\omega_2) & X_3(\omega_2) \\ X_1(\omega_3) & X_2(\omega_3) & X_3(\omega_3) \end{pmatrix} = \begin{pmatrix} 3 & 16 & 0 \\ 0 & 6 & 13 \\ 8 & 0 & 7 \end{pmatrix}$$

Dependence (b)

$$\begin{pmatrix} X_1(\omega_1) & X_2(\omega_1) & X_3(\omega_1) \\ X_1(\omega_2) & X_2(\omega_2) & X_3(\omega_2) \\ X_1(\omega_3) & X_2(\omega_3) & X_3(\omega_3) \end{pmatrix} = \begin{pmatrix} 0 & 16 & 0 \\ 3 & 0 & 13 \\ 8 & 6 & 7 \end{pmatrix}$$

Example 3.1 of Bernard-Jiang-W. (2014); this example was provided by Bin Wang

Smallest element wrt convex order

Some conclusions:

- \mathcal{S}_n does not always admit a smallest element wrt \prec_{cx}
- To search for a smallest element wrt \prec_{cx} might not be a viable solution

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}_1^1$ which has a decreasing density on its support. Define three quantities:

$$H(x) = (n-1)F^{-1}((n-1)x) + F^{-1}(1-x), \ x \in \left[0, \frac{1}{n}\right],$$

$$a = \min \left\{ c \in \left[0, \frac{1}{n}\right] : \int_{c}^{\frac{1}{n}} H(t) dt \ge \left(\frac{1 - nc}{n}\right) H(c) \right\},$$

and

$$D = \frac{n}{1 - na} \int_{a}^{\frac{1}{n}} H(x) dx = n \frac{\int_{(n-1)a}^{1-a} F^{-1}(y) dy}{1 - na}.$$

Note that if a > 0 then D = H(a). Finally, let

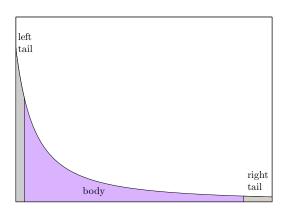
$$T(u) = H(u/n)I_{\{u \le na\}} + DI_{\{u > na\}}, \quad u \in [0,1].$$

Theorem 3 (Homogeneous model with a decreasing density*)

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}_1^1$ which has a decreasing density on its support. Then

- (i) $T(U) \in \mathcal{S}_n$ for some $U \sim U[0,1]$;
- (ii) $T(U) \prec_{cx} S$ for all $S \in \mathcal{S}_n$.

This is a weaker version of Theorem 3.1 of Bernard-Jiang-W. (2014) which was essentially shown in Wang-W. (2011)



The corresponding dependence structure:

- On $\{U \le na\}$: almost mutual exclusivity
- On $\{U > na\}$: a joint mix

General model with decreasing densities

Suppose that each of F_1, \ldots, F_n has a decreasing density. Then there exists an element T in S_n such that $T \prec_{cx} S$ for all $S \in S_n$.

- The distribution of T consists of a point-mass part and a continuous part, both of which can be calculated via a set of functional equations.
- The structure is very similar to the homogeneous model: an almost mutually exclusive part and a part of joint mix.

- 2 VaR and ES Bounds: basic ideas
- Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 6 Asymptotic equivalence
- 6 Dependence-uncertainty spread

Summary of existing results

- Homogeneous model $(F_1 = \cdots = F_n)$
 - $\underline{\mathrm{ES}}_p(\mathcal{S}_n)$ solved analytically for decreasing densities, e.g. Pareto, Exponential
 - $\overline{\mathrm{VaR}}_p(\mathcal{S}_n)$ solved analytically for tail-decreasing densities, e.g. Pareto, Gamma, Log-normal
- Inhomogeneous model
 - Semi-analytical results are available for decreasing densities
- Numerical method: Rearrangement Algorithm (RA)²
- Real data analysis: DNB³

²Embrechts-Puccetti-Rüschendorf (2013)

³Aas-Puccetti (2014)

VaR bounds - homogeneous model

Theorem 4 (Sharp VaR bounds for homogeneous model*)

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}^1_1$ which has a decreasing density on $[b, \infty)$ for some $b \in \mathbb{R}$. Then, for $p \in [F(b), 1)$ and $X \sim F$,

$$\overline{\operatorname{VaR}}_p(S_n) = n\mathbb{E}[X|X \in [F^{-1}(p + (n-1)c), F^{-1}(1-c)]],$$

where c is the smallest number in $[0, \frac{1}{n}(1-p)]$ such that

$$\int_{p+(n-1)c}^{1-c} F^{-1}(t) dt \ge \frac{1-p-nc}{n} ((n-1)F^{-1}(p+(n-1)c) + F^{-1}(1-c)).$$

• c = 0: $\overline{\operatorname{VaR}}_p(S_n) = \overline{\operatorname{ES}}_p(S_n)$.

VaR bounds - homogeneous model

Theorem 5 (Sharp VaR bounds for homogeneous model II*)

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}_1^1$ which has a decreasing density on its support. Then for $p \in (0,1)$ and $X \sim F$,

$$\underline{\mathrm{VaR}}_{p}(S_{n}) = \max\{(n-1)F^{-1}(0) + F^{-1}(p), n\mathbb{E}[X|X \leq F^{-1}(p)]\}.$$

ES bounds - homogeneous model

Theorem 6 (Sharp ES bounds for homogeneous model*)

Suppose that $F_1 = \cdots = F_n := F \in \mathcal{M}^1$ which has a decreasing density on its support. Then for $p \in (1 - na, 1)$, q = (1 - p)/nand $X \sim F$.

$$\underline{\mathrm{ES}}_{p}(S_{d}) = \frac{1}{q} \int_{0}^{q} ((n-1)F^{-1}((n-1)t) + F^{-1}(1-t)) \, \mathrm{d}t,$$
$$= (n-1)^{2} \mathrm{LES}_{(n-1)q}(X) + \underline{\mathrm{ES}}_{1-q}(X).$$

One large outcome is coupled with d-1 small outcomes.

Numerical calculation

Rearrangement Algorithm (RA)⁴

- A fast numerical procedure
- Discretization of relevant quantile regions
- The idea is to find the \prec_{cx} -smallest element if it exists
- n possibly large
- Applicable to $\overline{\mathrm{VaR}}_p$, $\underline{\mathrm{VaR}}_p$ and $\underline{\mathrm{ES}}_p$

⁴Puccetti-Rüschendorf (2012) and Embrecths-Puccetti-Rüschendorf (2013)

- VaR and ES Bounds: basic ideas
- Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 6 Asymptotic equivalence
- 6 Dependence-uncertainty spread

Asymptotic equivalence

Consider the case $n \to \infty$. What would happen to $\overline{\mathrm{VaR}}_p(\mathcal{S}_n)$?

- Clearly always $\overline{\operatorname{VaR}}_p(\mathcal{S}_n) \leq \overline{\operatorname{ES}}_p(\mathcal{S}_n)$.
- Recall that $\overline{\mathrm{VaR}}_p(\mathcal{S}_n)$ has an ES-type part.

Under some weak conditions,

$$\lim_{n\to\infty}\frac{\overline{\mathrm{ES}}_p(\mathcal{S}_n)}{\overline{\mathrm{VaR}}_p(\mathcal{S}_n)}=1.$$

• When arbitrary dependence is allowed, the worst-case VaR_p of a portfolio behaves like the worst-case ES_p

This was shown first for homogeneous models and then extended to general inhomogeneous models. The first result is in Puccetti-Rüschendorf (2014).

Asymptotic equivalence - homogeneous model

Theorem 7 ((VaR_p, ES_p) -equivalence for homogeneous model*)

In the homogeneous model, $F_1 = F_2 = \cdots = F$, for $p \in (0,1)$ and $X \sim F$.

$$\lim_{n\to\infty}\frac{1}{n}\overline{\mathrm{VaR}}_p(\mathcal{S}_n)=\mathrm{ES}_p(X).$$

Asymptotic equivalence - worst-cases

Theorem 8 (($\operatorname{VaR}_{p},\operatorname{ES}_{p}$)-equivalence)

Suppose the continuous distributions F_i , $i \in \mathbb{N}$ satisfy that for $X_i \sim F_i$ and some $p \in (0,1)$,

- (i) $\mathbb{E}[|X_i \mathbb{E}[X_i]|^k]$ is uniformly bounded for some k > 1;
- (ii) $\liminf_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\mathrm{ES}_p(X_i)>0.$

Then as $n \to \infty$,

$$\frac{\overline{\mathsf{ES}}_p(\mathcal{S}_n)}{\overline{\mathsf{VaR}}_p(\mathcal{S}_n)} = 1 + O(n^{1/k-1}).$$

• k = 1 is not ok

Asymptotic equivalence - best-cases

Similar results holds for $\underline{\operatorname{VaR}}_p$ and $\underline{\operatorname{ES}}_p$: assume (i) and

(iii)
$$\liminf_{n\to\infty} \frac{1}{n} \sum_{i=1}^n LES_p(X_i) > 0$$
,

then

$$\lim_{n\to\infty}\frac{\underline{\mathrm{VaR}}_p(\mathcal{S}_n)}{\underline{\mathrm{LES}}_p(\mathcal{S}_n)}=1,$$

$$\lim_{n\to\infty}\frac{\underline{\mathrm{ES}}_p(\mathcal{S}_n)}{\sum_{i=1}^n\mathbb{E}[X_i]}=1,$$

and

$$\frac{\underline{\mathrm{VaR}}_p(\mathcal{S}_n)}{\underline{\mathrm{ES}}_p(\mathcal{S}_n)} \approx \frac{\sum_{i=1}^n \mathrm{LES}_p(X_i)}{\sum_{i=1}^n \mathbb{E}[X_i]} \leq 1, \quad n \to \infty.$$

Example: Pareto(2) risks

Bounds on VaR and ES for the sum of n Pareto(2) distributed rvs for p=0.999; VaR_p^+ corresponds to the comonotonic case.

	n = 8	n = 56
$\underline{\operatorname{VaR}}_{p}$	31	53
$\underline{\mathrm{ES}}_{p}$	178	472
VaR^+_p	245	1715
$\overline{\operatorname{VaR}}_p$	465	3454
$\overline{\mathrm{ES}}_p$	498	3486
$\overline{\mathrm{VaR}}_{p}/\mathrm{VaR}_{p}^{+}$	1.898	2.014
$\overline{\mathrm{ES}}_p/\overline{\mathrm{VaR}}_p$	1.071	1.009

Example: Pareto(θ) risks

Bounds on the VaR and ES for the sum of n=8 Pareto(θ)-distributed rvs for p=0.999.

	$\theta = 1.5$	$\theta = 2$	$\theta = 3$	$\theta = 5$	$\theta = 10$
$\overline{\mathrm{VaR}}_{p}$	1897	465	110	31.65	9.72
$\overline{\mathrm{ES}}_p$	2392	498	112	31.81	9.73
$\overline{\mathrm{ES}}_{p}/\overline{\mathrm{VaR}}_{p}$	1.261	1.071	1.018	1.005	1.001

General risk measures

Let $\mathcal{D}_n(F) = \mathcal{D}_n(F, \dots, F)$ (homogeneous model).

For a law-determined risk measure ρ , define

$$\Gamma_{\rho}(X) = \lim_{n \to \infty} \frac{1}{n} \sup \{ \rho(S) : F_S \in \mathcal{D}_n(F_X) \}.$$

 Γ_{ρ} is also a law-determined risk measure.

- $\Gamma_{\rho} \geq \rho$.
- If ρ is subadditive then $\Gamma_{\rho} = \rho$.

Aggregation of risk measures

Take $\mathcal{X} = L^{\infty}$.

Theorem 9 $((\rho_h, \rho_{h^*})$ -equivalence for homogeneous model)

We have

$$\Gamma_{\rho_h}(X) = \rho_{h^*}(X), \quad X \in \mathcal{X},$$

where h^* is the largest convex distortion function dominated by h.

Aggregation of risk measures

For distortion risk measures

- $\Gamma_{\text{VaR}_p} = \text{ES}_p$
- ρ_h is coherent if and only if $h^* = h$

For law-determined convex risk measures.

- ullet $\Gamma_{
 ho}$ is the smallest coherent risk measure dominating ho
- If ρ is a convex shortfall risk measure, then Γ_{ρ} is a coherent expectile

- VaR and ES Bounds: basic ideas
- Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 6 Asymptotic equivalence
- 6 Dependence-uncertainty spread

Dependence-uncertainty spread

Theorem 10 (Uncertainty spread)

Take $1 > q \ge p > 0$. Under weak regularity conditions, for inhomogeneous models,

$$\liminf_{n\to\infty}\frac{\overline{\operatorname{VaR}}_q(\mathcal{S}_n)-\underline{\operatorname{VaR}}_q(\mathcal{S}_n)}{\overline{\operatorname{ES}}_p(\mathcal{S}_n)-\underline{\operatorname{ES}}_p(\mathcal{S}_n)}\geq 1.$$

- The uncertainty-spread of VaR is generally bigger than that of ES.
- In recent Consultative Documents of the Basel Committee. $VaR_{0.99}$ is compared with $ES_{0.975}$: p = 0.975 and q = 0.99.

(wang@uwaterloo.ca)

Dependence-uncertainty spread

ES and VaR of $S_n = X_1 + \cdots + X_n$, where

- $X_i \sim \text{Pareto}(2 + 0.1i), i = 1, ..., 5$;
- $X_i \sim \text{Exp}(i-5), i=6,\ldots,10;$
- $X_i \sim \text{Log-Normal}(0, (0.1(i-10))^2), i = 11, ..., 20.$

		n = 5			n = 20	
	best	worst	spread	best	worst	spread
ES _{0.975}	22.48	44.88	22.40	29.15	102.35	73.20
$VaR_{0.975}$	9.79	41.46	31.67	21.44	100.65	79.21
$VaR_{0.99}$	12.96	62.01	49.05	22.29	136.30	114.01
$\frac{\overline{\mathrm{ES}}_{0.975}}{\overline{\mathrm{VaR}}_{0.975}}$		1.08			1.02	

Dependence-uncertainty spread

Features/Risk measure	VaR	Tail-VaR
Frequency captured?	Yes	Yes
Severity captured?	No	Yes
Sub-additive?	Not always	Always
Diversification captured?	Issues	Yes
Back-testing?	Straight-forward	Issues
Estimation?	Feasible	Issues with data limitation
Model uncertainty?	Sensitive to aggregation	Sensitive to tail modelling
Robustness I (with respect to "Lévy metric ³³ ")?	Almost, only minor issues	No
Robustness II (with respect to "Wasserstein metric")?	Yes	Yes

From the International Association of Insurance Supervisors Consultation Document (December 2014).

- VaR and ES Bounds: basic ideas
- Smallest element wrt convex order
- 4 Analytical results for homogeneous models
- 6 Asymptotic equivalence
- 6 Dependence-uncertainty spread
- Challenges

Open questions

Concerete mathematical questions:

- Full characterization of \mathcal{D}_n and mixability
- Existence and determination of smallest \prec_{cx} -element in \mathcal{D}_n
- \bullet General analytical formulas for $\overline{\mathrm{VaR}}_{p}~(\underline{\mathrm{VaR}}_{p})$ and $\underline{\mathrm{ES}}_{p}$
- Aggregation of random vectors

Practical questions:

- Capital calculation under uncertainty
- Robust decision making under uncertainty
- Regulation with uncertainty

Other directions

Some on-going directions on RADU

- Partial information on dependence⁵
- Connection with Extreme Value Theory
- Connection with martingale optimal transportation
- Both marginal and dependence uncertainty
- Computational solutions
- Other aggregation functionals

⁵Bignozzi-Puccetti-Rüschendorf (2015), Bernard-Rüschendorf-Vanduffel (2015+), Bernard-Vanduffel (2015), many more

References I

Aas, K. and G. Puccetti (2014). Bounds for total economic capital: the DNB case study. *Extremes*, **17**(4), 693–715.

Bernard, C., Jiang, X. and Wang, R. (2014). Risk aggregation with dependence uncertainty. *Insurance: Mathematics and Economics*, **54**, 93–108.

Bernard C., Rüschendorf L., and Vanduffel S. (2015+). Value-at-risk bounds with variance constraints. *Journal of Risk and Insurance*, forthcoming.

Bernard, C. and Vanduffel, S. (2015). A new approach to assessing model risk in high dimensions. *Journal of Banking and Finance*, **58**, 166–178.

Bignozzi, V., Puccetti, G. and Rüschendorf, L. (2015). Reducing model risk via positive and negative dependence assumptions. *Insurance: Mathematics and Economics*, **61**, 17–26.

Embrechts, P., Puccetti, G. and Rüschendorf, L. (2013). Model uncertainty and VaR aggregation. *Journal of Banking and Finance*, **37**(8), 2750-2764.

Embrechts, P., Wang, B. and Wang, R. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures. *Finance and Stochastics*, forthcoming.

References II

Jakobsons, E., Han, X. and Wang, R. (2015+). General convex order on risk aggregation. Scandinavian Actuarial Journal, forthcoming.

Puccetti, G. and Rüschendorf, L. (2012). Computation of sharp bounds on the distribution of a function of dependent risks. Journal of Computational and Applied Mathematics, 236(7), 1833–1840.

Puccetti, G. and Rüschendorf, L. (2014). Asymptotic equivalence of conservative VaR- and ES-based capital charges. Journal of Risk, 16(3), 3-22.

Wang, B. and Wang, R. (2011). The complete mixability and convex minimization problems with monotone marginal densities. Journal of Multivariate Analysis, 102, 1344-1360.

Wang, B. and Wang, R. (2015). Extreme negative dependence and risk aggregation. Journal of Multivariate Analysis, 136, 12–25.

Wang, R., Bignozzi, V. and Tsakanas, A. (2015). How superadditive can a risk measure be? SIAM Journal on Financial Mathematics, 6(1), 776–803.

References III

Wang, R., Peng, L. and Yang, J. (2013). Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. Finance and Stochastics, 17(2), 395-417.

Danke

Thank you for your kind attention