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Aggregation sets

Observe that

S = X1 + · · ·+ Xn ⇔ X1 + · · ·+ Xn − S = 0

Hence,

FS ∈ Dn(F1, . . . ,Fn) ⇔ δ0 ∈ Dn+1(F1, . . . ,Fn,F−S).

To answer

is a distribution in Dn, n ≥ 2?

We study

is a point-mass in Dn+1, n ≥ 2?
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Joint mixability

Joint mix

A random vector (X1, . . . ,Xn) is a joint mix if X1 + · · ·+ Xn is a

constant.

Example: a multinomial random vector
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Joint mixability

Definition 1 (Joint mixability)

An n-tuple of univariate distributions (F1, . . . ,Fn) is jointly mixable

(JM) if there exists a joint mix with marginal distributions

(F1, . . . ,Fn).

The property concerns whether the n-tuple is able to support

a joint mix.

definition given in W.-Peng-Yang (2013)
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wang@uwaterloo.ca


Joint mixability

Remark 1 (Equivalent definitions)

An n-tuple of univariate distributions (F1, . . . ,Fn) is JM if either

(i) there exists F ∈Mn(F1, . . . ,Fn) supported in a hyperplane

{(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = K} for some K ∈ R, or

(ii) Dn(F1, . . . ,Fn) contains a point-mass.

The above K is called a center of (F1, . . . ,Fn).

We write Jn(K ), K ∈ R as the set of jointly mixable tuples

with center K , and let Jn =
⋃

K∈R Jn(K ).
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Joint mixability

Proposition 2 (Center of JM*)

Suppose that F1, . . . ,Fn have finite means µ1, . . . , µn respectively,

and (F1, . . . ,Fn) is JM, then the center of (F1, . . . ,Fn) is unique

and it is
∑n

i=1 µi .

Question

Is the center always unique? That is, are the sets Jn(K ) disjoint

for K ∈ R?
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wang@uwaterloo.ca


Motivation

Reasons to study JM

To understand and characterize Dn

A notion of extremal negative dependence

The safest dependence structure for random variables in Sn;

this leads to at least ESp(Sn) and later we will see it also

serves as a building block for VaRp(Sn) and VaRp(Sn)

All the applications in Part I
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History

Who first came with the idea of a constant sum1?

Gaffke-Rüschendorf (1981) and Rüschendorf (1982)

the target was to study Pn(Dn)

obtained analytical results for several U[0, 1] distributions

Knott-Smith (2006) - first version 1998

the target was variance reduction

obtained results for three radially symmetric distributions

Rüschendorf-Uckelmann (2002)

the target was variance reduction

obtained analytical results for unimodal-symmetric distributions

Müller-Stoyan (2002) book

the target was the safest dependence structure for risks

provided several examples

1the knowledge of W. is very limited
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Complete mixability

Definition 3 (Complete mixability)

We say a univariate distribution F is n-completely mixabe (n-CM)

if exists an n-dimensional joint mix with identical marginal

distributions F .

Equivalently, (F , . . . ,F ) ∈ Jn(nµ) for some µ ∈ R.

µ is called the center of F (uniqueness?). If the mean of F is

finite, then it is equal to µ.

We write In(µ), µ ∈ R as the set of completely mixable

distributions with center µ, and let In =
⋃
µ∈R In(µ).

definition given in Wang-W. (2011)
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Examples

Examples:

F is 1-CM if and only if F is the distribution of a constant.

F is 2-CM if and only if F is symmetric, i.e. X ∼ F and

a− X ∼ F for some constant a.

An discrete uniform distribution on n points is n-CM.

Suppose that r = p
q is rational, p, q ∈ N. The Bernoulli

distribution Bern(r) is q-CM.

We say F is discrete uniform on (a1, . . . , an) ∈ Rn if

F (x) =
1

n

n∑
i=1

I{ai≤x}, x ∈ R.

We write F = D{a1, . . . , an}.
Ruodu Wang (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems Part II 11/46
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Duality

Dual of mixability

(F1, . . . ,Fn) ∈ Jn(K ) if and only if for all measurable functions

fi : R→ R, i = 1, . . . , n such that
∑n

i=1 fi (xi ) ≥ I{x1+···+xn=K} for

all (x1, . . . , xn) ∈ Rn,

n∑
i=1

∫
fidFi ≥ 1,

whenever the left-hand side of the above equation is finite.

In this course we will not work with the dual.
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Mixability

An open research area:

what distributions are CM/JM?

The research in this area is very much marginal-dependent - copula

techniques do not help much!

recent summary paper: Puccetti-W. (2015)
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Properties

We focus on theoretical properties of CM; these for JM can

be analogously formulated.

In the following proposition FX stands for the distribution of

X ∈ L0.
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Properties

Proposition 4 (Basic properties*)

Take any n ∈ N and µ ∈ R.

(i) For a, b ∈ R, FX ∈ In(µ)⇒ FaX+b ∈ In(aµ+ b).

(ii) In(µ) is a convex set.

(iii) For any k ∈ N, n
n+k In + k

n+k Ik ⊂ In+k . In particular,

In ⊂ Ink .
(iv) Suppose X ⊥ Y and FX ,FY ∈ In. Then FX+Y ∈ In.

(v) In(µ) and In are both closed under convergence in

distribution.

mostly given in Wang-W. (2011)

similar properties hold for Dn; see Remark 2.2 of Bernard-Jiang-W. (2014).
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Properties

Example:

Suppose that r = p
q is rational, p, q ∈ N. The binomial

distribution Bin(n, r) is q-CM.
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Decomposition

Theorem 5 (Decomposition Theorem*)

For µ ∈ R, a discrete distribution F ∈ In(µ) if and only if it has a

decomposition:

F =
∞∑
i=1

biFi ,

where
∑∞

i=1 bi = 1, bi ≥ 0, i ∈ N and Fi , i ∈ N are n-discrete

uniform distributions with mean µ.

given in Puccetti-Wang-W. (2012); a stronger version is given in W. (2015)
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Mean condition

Proposition 6 (Mean condition for CM*)

Suppose that F ∈ In(µ) and the essential support of F is [a, b],

a, b ∈ R. Then

a +
b − a

n
≤ µ ≤ b − b − a

n
. (1)

0 1

µ

(n− 1)/n1/n

this condition was given in Wang-W. (2011)
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wang@uwaterloo.ca


Mean condition

Remark 2 (One-side unbounded distributions*)

If b =∞ and a > −∞, F cannot be n-CM.

unbounded

µ
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Mean condition

For i = 1, . . . , n, let µi , ai , bi be respectively the mean, essential

infimum, and essential supremum of Xi ∼ Fi , and

` = maxi=1,...,n{bi − ai}.
Proposition 7 (Mean condition for JM)

If (F1, . . . ,Fn) ∈ Jn and µi , ai , bi ∈ R for i = 1, . . . , n, then

n∑
i=1

ai + ` ≤
n∑

i=1

µi ≤
n∑

i=1

bi − ` (2)

We can always scale and shift the distributions such that∑n
i=1 ai = 0 and

∑n
i=1 bi = 1. In that case, (2) becomes

` ≤
n∑

i=1

µi ≤ 1− `.
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Norm inequality

Definition 8 (Pseudo-norm)

A pseudo-norm || · || is a map from L0 to [0,∞], such that

(i) ||aX || = |a| · ||X || for a ∈ R and X ∈ L0;

(ii) ||X + Y || ≤ ||X ||+ ||Y || for X ,Y ∈ L0;

(iii) ||X || = 0 implies X = 0 a.s.;

(iv) ||X || = ||Y || if X
d
= Y , X ,Y ∈ L0.

The Lp-norms, p ∈ [1,∞), and the L∞-norm,

|| · ||p : L0 → [0,∞], X 7→ (E[|X |p])1/p

and

|| · ||∞ : L0 → [0,∞], X 7→ ess-sup(|X |)
are pseudo-norms.
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wang@uwaterloo.ca


Norm inequality

Proposition 9 (Norm inequality*)

If (F1, . . . ,Fn) ∈ Jn and µ1, . . . , µn ∈ R, then

n∑
i=1

||Xi − µi || ≥ 2 max
i=1,...,n

||Xi − µi ||,

where Xi ∼ Fi , i = 1, . . . , n and || · || is any pseudo-norm on L0.

A polygon inequality

a stronger version is given in W. (2015)
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Norm inequality

A special case of the norm inequality,

Variance condition

If (F1, . . . ,Fn) is JM with finite variance σ2
1, . . . , σ

2
n, then

max
i=1,...,n

σi ≤
1

2

n∑
i=1

σi . (3)

this trivial condition was first given in W.-Peng-Yang (2013)

Ruodu Wang (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems Part II 25/46
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Monotone densities

Theorem 10 (CM for monotone densities*)

Suppose that F admits a monotone density on its bounded

essential support. Then F is n-CM if and only if the mean

condition (1) is satisfied.

In general, the mean condition is not sufficient

The mean condition is weaker as n grows

given in Wang-W. (2011)
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Monotone densities

Corollary 11 (CM for uniform distributions)

For any a, b ∈ R, a < b, U[a, b] is n-CM for n ≥ 2.

Example:

The Beta distribution Beta(α, β) with parameters α, β > 0

where (α− 1)(β − 1) ≤ 0 has a monotone density. Thus it is

n-CM for 1
n ≤ α

α+β ≤ n−1
n .

the corollary is already given in Rüschendorf (1982)
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Application: VaR bounds

Corollary 12 (VaR bounds for uniform distributions*)

Suppose F1 = · · · = Fn = U[0, a]. Then

VaRp(Sn) = ESp(Sn) =
na

2
(1 + p).

Again, a combination of comonotonicity and extremal negative

dependence (cf Theorem 19. Part I); a coincidence, maybe?
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Unimodal-symmetric densities

Theorem 13 (CM for unimodal-symmetric densities)

Suppose that F admits a unimodal-symmetric density. Then F is

n-CM for n ≥ 2.

Example:

The normal distribution and the Cauchy distribution are n-CM

for n ≥ 2.

result given in Rüschendorf and Uckelmann (2002)
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Concave densities

Theorem 14 (CM for concave densities)

Suppose that F admits a concave density on its essential support.

Then F is n-CM for n ≥ 3.

The mean condition is precisely satisfied by the concavity.

Examples:

The Beta distribution Beta(α, β) with 1 ≤ α, β ≤ 2 is a

typical distribution with a concave density. Thus it is n-CM

for n ≥ 3.

Any triangular distribution has a concave density and hence it

is n-CM for n ≥ 3.

result given in Puccett-Wang-W. (2012)
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Positive densities

Theorem 15 (CM for positive densities)

A distribution on [0, 1] with density p(x) ≥ 3/n , x ∈ [0, 1] is n-CM.

3/n cannot be lowered to 2/n.

Corollary 16

A distribution on a finite interval with density p(x) > ε > 0 is

n-CM for sufficiently large n.

Question

Can we remove the condition p(x) > ε > 0? (p(x) > 0 or

p(x) ≥ 0?)

result given in Puccett-Wang-W. (2013)
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Joint mixability

Theorem 17 (JM for monotone densities)

The mean condition (2) is sufficient for a tuple of distributions with

increasing (decreasing) densities and bounded supports to be JM.

This of course includes the previous result on CM for

monotone densities, but the proof is much more complicated

(U[0, a],U[0, b],U[0, c]) is jointly mixable if and only if
1
2 (a + b + c) ≥ max{a, b, c}.

result given in Wang-W. (2015+)
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Joint mixability

Theorem 18 (JM for symmetric distributions*)

The variance condition (3) is sufficient for the joint mixability of

(i) a tuple of uniform distributions,

(ii) a tuple of marginal distributions of a multivariate elliptical

distribution,

(iii) a tuple of distributions with unimodal-symmetric densities in

the same location-scale family.

result given in Wang-W. (2015+)
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Joint mixability

Theorem 19 (Sum of two uniform distributions*)

Suppose that F has a unimodal-symmetric density. For a > 0,

(U[0, a],U[0, a],F ) is JM if and only if F is supported in an

interval of length at most 2a.

result given in Wang-W. (2015+)
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Joint mixability

Some remarks:

Determination of JM is still open

12 open questions on mixability: W. (2015)

Determination of JM in discrete setting is NP-complete2.

2see Haus (2015)
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An irrelevant question

Question

Can we use integer-valued decreasing densities to approximate an

arbitrary decreasing density?

this question was raised during collaborative research with J. Shen (Waterloo) and

Y. Shen (Waterloo)
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Density question

For T ∈ (0, 1), denote

EM
T =

{
f : [0,T ]→ N0 : f is decreasing and

∫ T

0
f (x)dx ≤ 1

}
,

IMT = cx(EM
T ),

that is, (weak-) closed convex hull of EM
T , and

AM
T =

{
f : [0,T ]→ R+ : f is decreasing and

∫ T

0
f (x)dx ≤ 1

}
.

Obviously EM
T ⊂ IMT ⊂ AM

T .

When we take f in EM
T , IMT or AM

T , we treat f as a function

on R taking value 0 on R \ [0,T ].
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Density question

The question is

Is it IMT = AM
T ?

If the above is not true, for f ∈ AM
T , how can we determine

whether f is in IMT ? That is, to characterize IMT .

This question is purely analysis. It has barely anything to do with

probability.

Ruodu Wang (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems Part II 40/46
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Density question

Proposition 20 (*)

For any f ∈ AM
T , let N = df (0)e, and define the distribution

functions

Fi : R→ [0, 1], x 7→ min{(i − f (x))+, 1}I{x≥0}, i = 1, . . . ,N.

Then f ∈ IMT if (F1, . . . ,FN) is jointly mixable.
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Density question

Proposition 21 (*)

Suppose that f ∈ AM
T is convex on [0,T ] and

N∑
i=0

f −1(i) ≤
∫ T

0
f (x)dx + f −1(1).

Then f ∈ IMT .

Non-trivial results in joint mixability!
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Density question

Proposition 22 (*)

Suppose that f ∈ AM
T is linear on its essential support [0, b] and

f (b) = 0. Then f ∈ IMT .
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