Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity

Some recent results on the axiomatic theory of risk measures

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

Actuarial, Finance, Risk and Insurance Congress Victoria Falls, Zimbabwe, July 24–28, 2023

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	000000		00000
~					

Content

- Maccheroni/Marinacci/W./Wu Risk aversion and hedging motives Working paper, 2023
- W./Zitikis An axiomatic foundation for the Expected Shortfall

Management Science, 2021

- Bellini/Mao/W./Wu Duet expectile preferences Working paper, 2023
- Principi/Wakker/W. Antimonotonicity for preference axioms: The natural counterpart to comonotonicity arxiv:2307.08542,2023

(日)

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	000000		00000
Agenda					

1 Risk measures

2 Additivity

3 Comonotonicity

- 4 Risk concentration
- 5 Solvency synchronization
- 6 Antimomonotonicity

▶ ∢ ⊒ ▶

Risk measures ●00000	Additivity 00	Comonotonicity 00	Concentration	Solvency sync	Antimomonotonicity 00000
Risk mea	sures				

- Fix an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- \mathcal{X} : the set of bounded random variables, representing losses
- A risk measure is $\rho : \mathcal{X} \to \mathbb{R}$ satisfying
 - Monotonicity: $\rho(X) \le \rho(Y)$ whenever $X \le Y$
 - Normalization: ho(0) = 0 and ho(1) = 1
- ρ maps a risk (via a model) to a number
 - regulatory capital calculation
 - insurance pricing
 - decision making, optimization, portfolio selection, ...
 - performance analysis and capital allocation

Risk measures 0●0000	Additivity 00	Comonotonicity 00	Concentration	Solvency sync	Antimomonotonicity 00000
General fi	ramewor	k			

- **L1.** (Law invariance) $\rho(X) = \rho(Y)$ if $X \stackrel{d}{=} Y$, where $\stackrel{d}{=}$ means equality in distribution under \mathbb{P}
- A risk measure is coherent if

Artzner/Delbaen/Eber/Heath'99 MF

- **TI.** (Translation invariance) $\rho(X + m) = \rho(X) + m$ for $X \in \mathcal{X}$ and $m \in \mathbb{R}$.
- **PH.** (Positive homogeneity) $\rho(\lambda X) = \lambda \rho(X)$ for $X \in \mathcal{X}$ and $\lambda > 0$.
 - **S.** (Subadditivity) $\rho(X + Y) \leq \rho(X) + \rho(Y)$ for $X, Y \in \mathcal{X}$.

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
00●000	00	00	000000		00000
VaR and	FS				

Value-at-Risk (VaR), $p \in (0,1)$	Expected Shortfall (ES), $p \in (0,1)$
$\operatorname{VaR}_{\rho}: L^0 \to \mathbb{R},$	$\mathrm{ES}_p:L^1 o\mathbb{R},$
$\operatorname{VaR}_p(X) = F_X^{-1}(p)$ = $\inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) \ge p\}.$	$\mathrm{ES}_p(X) = rac{1}{1-p} \int_p^1 \mathrm{VaR}_q(X) \mathrm{d}q$
(left-quantile)	(also: TVaR/CVaR/AVaR)

< □ > < □ > < □ > < □ > < □ > < □ > ... □

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000●00	00	00	000000		00000
Expectiles	;				

For $\alpha \in (0,1)$ and $X \in \mathcal{X}$, the α -expectile $ex_{\alpha}(X)$ is the unique number y such that

$$\alpha \mathbb{E}\left[(X - y)_{+} \right] = (1 - \alpha) \mathbb{E}\left[(y - X)_{+} \right]$$

Expectiles are

introduced in asymmetric least squares Newey/Powell'87 ECMA

$$\operatorname{ex}_{\alpha}(X) = \arg\min_{y \in \mathbb{R}} \mathbb{E} \left[\alpha (X - y)_{+}^{2} + (1 - \alpha)(y - X)_{+}^{2} \right]$$

- coherent if $lpha \geq 1/2$ Bellini/Klar/Müller/Rosazza Gianin'14 IME
- elicitable

Ziegel'16 MF

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000					

Axiomatic theory of risk functionals

- expected utility theory
- subjective expected utility
- rank dependent utility
- dual utility
- Choquet expected utility
- insurance premium
- coherent risk measures
- convex risk measures

von Neumann/Morgenstein'44

Savage'54

Qinggin'82 JEBO

Yaari'87 ECMA

Schmeilder'89 ECMA

Wang/Young/Panjer'97 IME

Artzner/Delbaen/Eber/Heath'99 MF

Föllmer/Schied'02 FS Frittelli/Rosazza Gianin'02 JBF

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
	•0				

・ロ・・日・・ヨ・ ・ヨ・ うへぐ

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	●0	00	000000		00000
Additivity	/				

・ロ・・母・・ヨ・・ヨ・ うへの

Risk measures	Additivity ●O	Comonotonicity 00	Concentration 000000	Solvency sync	Antimomonotonicity 00000
Additivity	/				

Additivity:

$$ho(X+Y)=
ho(X)+
ho(Y)$$
 for all $X,Y\in\mathcal{X}$

Theorem 1

A risk measure $\rho : \mathcal{X} \to \mathbb{R}$ is additive if and only if

$$\rho(X) = \mathbb{E}^Q[X], \ X \in \mathcal{X}$$

for some probability Q. If ρ is further law invariant, then $\rho = \mathbb{E}^{\mathbb{P}}$.

- Hahn-Banach theorem
- Bookmaking
- Risk-neutral pricing

000000		00	Concentration 000000	Solvency sync	OCOCO
General f	ramewo	rk			

Additivity under dependence $\ensuremath{\mathcal{D}}$

$$ho(X+Y)=
ho(X)+
ho(Y)$$
 for $(X,Y)\in\mathcal{D}$

- The set \mathcal{D} represents some dependence
- \blacktriangleright The choice of ${\cal D}$ pins down different classes of risk measures
- Interpretation: D leads to no diversification benefit
 - this interpretation is the best with subadditivity

Risk measures 000000	Additivity 00	Comonotonicity ●0	Concentration	Solvency sync	Antimomonotonicity 00000
C					

Comonotonicity

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	●0	000000		00000
Comonot	onicity				

Two random variables X and Y are comonotonic if

 $(X(\omega) - X(\omega'))(Y(\omega) - Y(\omega')) \ge 0$ almost surely wrt $\mathbb{P} imes \mathbb{P}$

Most positive dependence

e.g., Denneberg'94; Dhaene/Denuit/Goovaerts/Kaas/Vynche'02

• Equivalent definition: For some increasing functions f and g, X = f(X + Y) and Y = g(X + Y) almost surely

Capacity

Choquet'54

$$u:\mathcal{F}
ightarrow [0,1]$$
 increasing with $u(arnothing)=0$

Choquet integral

$$\int X \mathrm{d}\nu = \int_0^\infty \nu(X > x) \mathrm{d}x + \int_{-\infty}^0 (\nu(X > x) - \nu(\Omega)) \mathrm{d}x$$

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	○●	000000		00000
Comonot	onicity				

Theorem 2 (Schmeidler'86; Yaari'87)

A risk measure $\rho : \mathcal{X} \to \mathbb{R}$ is additive for comonotonic risks if and only if

$$ho(X) = \int X \mathrm{d}
u, \quad X \in \mathcal{X}$$

for some capacity ν with $\nu(\Omega) = 1$. If ρ is further law invariant, then $\nu = g \circ \mathbb{P}$ for some increasing $g : [0,1] \rightarrow [0,1]$ with g(0) = 0and g(1) = 1.

Non-additive integral
 Dual utility theory
 Distortion premium/risk measures
 Wang/Young/Panjer'97 IME

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	●00000		00000

Risk concentration

<ロ> <四> <四> <四> <三</p>

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	●00000		00000
D ' I					

Risk concentration

• tail event \implies most severe loss

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	○●○○○○		00000
Diele een					

Risk concentration

Undesirable dependence concentrated portfolio ↔ severe losses occur simultaneously on a stress event

 A: a stress event specified by the regulator

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	000000		00000
D 11					

Risk concentration in 2009

S&P 500, NASDAQ and Dow Jones daily returns, Jan 2, 2009 - Dec 31, 2009

Ð.

(日)

Risk measures	Additivity 00	Comonotonicity 00	Concentration 000000	Solvency sync	Antimomonotonicity 00000

Risk concentration in 2019 - 2020

S&P 500, NASDAQ and Dow Jones daily returns, Jul 1, 2019 - Jun 30, 2020

æ

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	0000●0		00000
Axiomat	izing ES				

No reward for concentration

NRC. (No reward for concentration) There exists an event $A \in \mathcal{F}$ such that $\rho(X + Y) = \rho(X) + \rho(Y)$ holds for all risks X and Y sharing the tail event A.

NRC: additivity for concentrated risks

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	00000●		00000
Axiomati	zing ES				

LC. (Lower semicontinuity) $\liminf_{n} \rho(X_n) \ge \rho(X)$ whenever $X_n \to X$ point-wise.

► The loss is modeled truthfully (e.g., consistent estimators) ⇒ estimated risk ≥ true risk asymptotically

Theorem 3 (W./Zitikis'21)

A risk measure $\rho : \mathcal{X} \to \mathbb{R}$ satisfies LI, LC and NRC if and only if it is ES_p for some $p \in (0, 1)$.

- Additivity for risk concentration characterizes ES!
- ES_p is coherent and Choquet

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	000000	●○	00000

Solvency synchronization

æ

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	000000	●0	00000
- ·					

Solvency synchronization

Solvency-synced dependence

Two random variables X and Y are ρ -solvency-synced if

 $\{X > \rho(X)\} = \{Y > \rho(Y)\}.$

No reward for solvency-synchronization

NRS. (No reward for solvency-sync) $\rho(X + Y) = \rho(X) + \rho(Y)$ if X and Y are ρ -solvency-synced.

Disappointment aversion

Gul'91 ECMA

• Disappointment: X is worse than its certainty equivalent ho(X)

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	000000		00000
Axiomati	zing exp	oectiles			

SC. (Sup-norm continuity) $\rho(X_n) \rightarrow \rho(X)$ whenever $X_n \rightarrow X$ in sup-norm.

Theorem 4 (Bellini/Mao/W./Wu'23)

A risk measure $\rho : \mathcal{X} \to \mathbb{R}$ satisfies LI, SC and NRS if and only if it is ex_{α} for some $\alpha \in (0, 1)$.

- Additivity for solvency-synced risks characterizes expectiles!
- An expectile is coherent for $\alpha \ge 1/2$ but not Choquet

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	000000		•0000

Antimomonotonicity

Risk measures	Additivity 00	Comonotonicity 00	Concentration 000000	Solvency sync	Antimomonotonicity •0000
Antimom	nonotoni	city			

- ► Two random variables X and Y are antimomonotonic if X and -Y are comonotonic
- Also known as counter-monotonicity
- Most negative dependence

e.g., Puccetti/W.'15 STS

Theorem 5 (Principi/Wakker/W.'23)

A risk measure $\rho : \mathcal{X} \to \mathbb{R}$ is additive for antimonotonic risks if and only if

$$\rho(X) = \mathbb{E}^Q[X], \quad X \in \mathcal{X}$$

for some probability Q. If ρ is further law invariant, then $\rho = \mathbb{E}^{\mathbb{P}}$.

► Antimonotonic additivity ⇔ additivity

Risk measures 000000	Additivity 00	Comonotonicity 00	Concentration	Solvency sync	Antimomonotonicity 00000
Antimon	otonicity	,			

Proof for a finite $\Omega = \{\omega_1, \ldots, \omega_n\}.$

We will show antinomonotonic additivity (AA) ⇒ additivity

$$\blacktriangleright (AA) \Longrightarrow 0 = \rho(X - X) = \rho(X) + \rho(-X) \Longrightarrow \rho(-X) = -\rho(X)$$

- ► X and Y are comonotonic \implies X + Y and -Y are antimonotonic \implies I(X) = I(X + Y - Y) = I(X + Y) + I(-Y) = I(X + Y) - I(Y)
- ⇒ comonotonic additivity (CA) holds
- For general X, Y, write X = X[↑] + X[↓] with X[↑](ω_i) increasing and X[↓](ω_i) decreasing in i, and Y = Y[↑] + Y[↓] similar
- Putting the above together,

$$I(X + Y) \xrightarrow{\text{(def)}} I(X^{\uparrow} + X^{\downarrow} + Y^{\uparrow} + Y^{\downarrow})$$

$$\xrightarrow{\text{(AA)}} I(X^{\uparrow} + Y^{\uparrow}) + I(X^{\downarrow} + Y^{\downarrow})$$

$$\xrightarrow{\text{(CA)}} I(X^{\uparrow}) + I(Y^{\uparrow}) + I(X^{\downarrow}) + I(Y^{\downarrow})$$

$$\xrightarrow{\text{(AA)}} I(X^{\uparrow} + X^{\downarrow}) + I(Y^{\uparrow} + Y^{\downarrow}) = I(X) + I(Y)$$

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	000000		00000
Conclusio	on				

Additivity under dependence

- characterizes law-invariant risk measures
 - arbitrary dependence: mean
 - comonotonicity: Choquet (distortion) risk measures
 - concentration via tail events: ES
 - solvency-synced dependence: expectiles
 - antimonotonicity: mean
- leads to many new mathematics

Risk measures 000000	Additivity 00	Comonotonicity 00	Concentration	Solvency sync	Antimomonotonicity 00000
Conclusio	on				

Future directions

Characterizing other risk measures such as VaR

- Comonotonic additivity + convex level sets
 Kou/Peng'16 OR
 - (without monotonicity)
- Tail relevance + elicitability
- Ordinality + continuity
 - (without monotonicity/continuity)

- Wang/W.'20 MF Liu/W.'21 MOR Chambers'09 MF
- Fadina/Liu/W.'23 SIFIN
- Preferences for dependence structures
- Ambiguity and uncertainty (relaxing law-invariance)

Risk measures	Additivity	Comonotonicity	Concentration	Solvency sync	Antimomonotonicity
000000	00	00	000000		0000●
Thank v					

Thank you for your attention

