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What is an e-value?

I A hypothesis H: a set of probability measures

Definition (e-variables, e-values, and e-processes)

(1) An e-variable for testing H is a non-negative random variable

E : Ω→ [0,∞] that satisfies
∫
E dQ ≤ 1 for all Q ∈ H.

• Realized values of e-variables are e-values.

(2) Given a filtration, an e-process for testing H is a non-negative

process (Et)t=0,1,...,n such that
∫
EτdQ ≤ 1 for all stopping

times τ and all Q ∈ H.

I For simple hypothesis {P}
• precise e-variable: random variable ≥ 0 with mean 1

• precise e-process: supermartingale ≥ 0 with initial value 1
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What is an e-value?

I A p-variable for testing H is a random variable P : Ω→ [0,∞)

that satisfies supQ∈H Q(P ≤ α) ≤ α for all α ∈ (0, 1)

I E-test: e(data) large ⇐⇒ reject H
I P-test: p(data) small ⇐⇒ reject H
I E stands for expectation; P stands for probability

I An e-process has retrospective validity (Ville’s inequality):

P
(

sup
t≥0

Xt ≥
1

α

)
≤ α =⇒ inf

t≥0
X−1
t is a p-value

I Bayes factors (simple hypothesis) and likelihood ratios:

e(data) =
Pr(data | Q)

Pr(data | P)
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E for Expectation (or Evidence)

requirement specific interpretation representative forms keyword

p-value

P

P(P ≤ α) ≤ α
for α ∈ (0, 1)

probability of a more

extreme observation
P(T ′ ≤ T (X)|X) (conditional)

probability

e-value

E

EP[E ] ≤ 1

and E ≥ 0

likelihood ratios,

stopped martingales,

and betting scores

EP
[
dQ
dP

∣∣∣X]
EP[Mτ |X]

(conditional)

expectation

An analogy of p-variables and e-variables for a simple hypothesis {P}

I X is data

I T (X) is any test statistic

I T ′ is an independent copy of T (X) under P

I Q is any probability measure

I M is a test supermartingale under P and τ a stopping time

(not to be confused with other objects bearing the name of e-values)
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Example in testing multiple hypotheses

Multi-armed bandit problems

I K arms

I null hypothesis k : arm k has mean reward at most 1

I strategy (kt): at time t ≥ 1, pull arm kt , obtain an iid reward

Xkt ,t ≥ 0

I aim: quickly detect arms with mean > 1

• or maximize profit, minimize regret, etc ...

I running reward: Mk,t =
∏t

j=1 Xk,j1{kj=k}

I complicated dependence due to exploration/exploitation

I M1,τ , . . . ,MK ,τ are e-values for any stopping time τ
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Calibration

I Admissible p-to-e calibrators

• Power calibrators: fκ(p) = κpκ−1 for κ ∈ (0, 1)

• Shafer’s: f (p) = p−1/2 − 1

• Averaging fκ:
∫ 1

0
κpκ−1dκ = 1−p+p ln p

p(− ln p)2

I the only admissible e-to-p calibrator: e → e−1 ∧ 1

Sir Jeffreys

“Users of these tests speak of the 5 per cent. point [p-value

of 5%] in much the same way as I should speak of the K =

10−1/2 point [e-value of 101/2], and of the 1 per cent. point

[p-value of 1%] as I should speak of the K = 10−1 point

[e-value of 10].” (Theory of Probability, p.435, 3rd Ed.)
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Sequential e-values

E-variables E1, . . . ,EK are sequential if Ek is an e-variable

conditional on E1, . . . ,Ek−1 for each k.

I E[Ek | E1, . . . ,Ek−1] ≤ 1 for all k ∈ [K ] := {1, . . . ,K}

I E-values e1, . . . , eK are obtained by laboratories 1, . . . ,K

I Laboratory k makes sure that its result ek is a valid e-value

given the previous results e1, . . . , ek−1

I Independent e-variables are sequential
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Progress

1 E-values

2 Merging sequential e-values

3 Merging independent e-values

4 Merging dependent e-values and the e-BH procedure

5 Risk forecasts and backtests
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One little philosophical slide

P-values can be avoided if one only aims for a binary decision

I If α = 0.05 is set a priori, then p = 0.049 and p = 0.001 carry the same

significance

I If α is not set a priori, then we cannot reject anything after we see the data

I When we need to operate on p-values, the abstract p-value becomes convenient

• p-combination, Bonferroni, closed testing, FDR (Benjamini-Hochberg),

FCR, meta analysis ...

Same for e-values?

I The abstract notion is needed when we operate on e-values

• e-combination, e/p-calibration, closed testing, FDR (e-BH), FCR (e-BY),

meta analysis ...

• out-come level, study level, or multiple hypotheses

I We do not specify how they are obtained or the target statistical problem
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Handling e-values

I We are supplied with K e-values for a hypothesis H0

• Obtained from other papers/talks ...

• They may be sequential, independent, or arbitrarily dependent

How do we come up with one output e-value?

Definition (e/ie/se-merging functions)

An e-merging/ie-merging/se-merging function is a Borel function

F : [0,∞)K → [0,∞) such that F (E1, . . . ,EK ) is an e-variable for

all/all independent/all sequential e-variables E1, . . . ,EK .

{e-merging} ( {se-merging} ( {ie-merging}
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Sequential vs independent e-variables

I An iid sample (X1, . . . ,XK ) from θtr ∈ Θ are sequentially

revealed

I Test H0 : θtr = 0 against H1 : θtr ∈ Θ1 where 0 6∈ Θ1 ⊆ Θ.

• It does not hurt to think about testing N(θ, 1)

I Let ` be the likelihood ratio function

`(x ; θ) =
dQθ
dQ0

(x),

where Qθ is the probability measure corresponds to θ ∈ Θ

I `(Xk ; θ) for any θ ∈ Θ and k ∈ [K ] is an e-variable for H0
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Sequential vs independent e-variables

The scientist may choose two difference strategies:

(a) Fix θ1, . . . , θK ∈ Θ1

• One may simply choose all θk to be the same

(b) Adaptively update θ1, . . . , θK , where θk is estimated from

(X1, . . . ,Xk−1) for each k.

• E.g., Bayesian update or point estimates

In either case:

I Define the e-variables Ek := `(Xk ; θk) for k ∈ [K ]

• In (a), E1, . . . ,EK are independent e-variables

• in (b), E1, . . . ,EK are sequential e-variables

I Combine (Ek)k∈[K ] to get an output e-variable, e.g.,
∏K

k=1 Ek
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Sequential vs independent e-variables

I An iid sample (X1, . . . ,XK ) from N(θtr, 1)

I H0 : θtr = 0 against H1 : θtr > 0

I Set θtr = 0.3

I Five ways to obtain Ek = `(Xk ; θk)

(i) θk = θtr = 0.3: true alternative, growth-optimal

(ii) θk = θ0 = 0.1: misspecified alternative

(iii) θk follows an iid uniform distribution on [0, 0.5]

(iv) θk follows a Bayesian update rule with a prior θ ∼ N(θ0, 0.2
2)

(v) θk is MLE based on (X1, . . . ,Xk−1) with θ1 = θ0

I (i)-(iii): independent e-variables; (iv)-(v): sequential

I Report
∏K

k=1 Ek
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Sequential vs independent e-variables
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Figure: A few ways of constructing e-processes from likelihood ratio.

Left: one run; Right: the average (log) of 1000 runs.

I Trade-off: sequential vs independent
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Merging with U-statistics

The U-statistics for n ∈ {0, 1, . . . ,K}:

Un(e1, . . . , eK ) :=
1(K
n

) ∑
{k1,...,kn}⊆{1,...,K}

ek1 . . . ekn .

I product (n = K )

I arithmetic average MK (n = 1)

I constant 1 (n = 0)

Proposition 1

Each of the U-statistics and their convex mixtures is an admissible

ie-merging function and an admissible se-merging function.

I Admissibility: not strictly dominated by any
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Merging with U-statistics

Proposition 2

For the product function PK : (e1, . . . , eK ) 7→
∏K

k=1 ek and any

ie-merging function F , it holds

(e1, . . . , eK ) ∈ [1,∞)K =⇒ F (e1, . . . , eK ) ≤ PK (e1, . . . , eK ).

In the setting that all e-variables are independent and have mean

≥ 1 under the alternative, the product function PK is

I uniformly “the most powerful” among all ie-merging functions

• largest expected value under the alternative

I uniformly “the least stable” among all se-merging functions

• largest second moment under the alternative
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Merging independent e-values

Example

The function

(e1, e2) 7→ 1

2

(
e1

1 + e1
+

e2

1 + e2

)
(1 + e1e2)

is

I an admissible ie-merging function;

I not a convex mixture of U-statistics;

I not an se-merging function.
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Sequential e-merging

(each card has an e-

value face down)

(bet on the first card)

(reveal the card and

proceed)
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Sequential e-merging

I e := (e1, . . . , eK ); e(k) := (e1, . . . , ek); e(0) := ∅
I For some functions λ1, . . . , λK , define S0 = 1 and

Sk(e) =
k∏

i=1

(
1− λj(e(j−1))(ej − 1)

)
, k ∈ [K ]

The sequence of functions (Sk)k∈{0,1,...,K} is a test martingale

I (Sk(E))k∈{0,1,...,K} is an e-process

I Define the martingale merging function F (e) = SK (e)

I F and Sk are connected via

Sk(e1, . . . , eK ) = F (e1, . . . , ek , 1, . . . , 1).

I F is generally not monotone
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Sequential e-merging

Theorem 1

(i) A convex combination of martingale e-merging functions is a

martingale e-merging function.

(ii) A martingale e-merging function is an se-merging function.

(iii) Each se-merging function is dominated by a martingale

e-merging function.

I Arithmetic average, product, and U-statistics are all special

cases of martingale e-merging functions
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Sequential e-merging

I An e-variable E is precise if E[E ] = 1

Theorem 2

For a sequence of functions F = (Fk)k=1,...,K , equivalent are:

(i) F is a test martingale;

(ii) F (E) is a martingale (wrt. the natural filtration of E) for any

vector E of precise and sequential e-values;

(iii) F is anytime valid and precise; i.e., it satisfies

(a) Fτ (E) is an e-variable for any vector E of sequential e-values

and any stopping time τ ;

(b) For each k ∈ [K ], E[Fk(E)] = 1 for any vector E of precise and

sequential e-variables.
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Progress

1 E-values

2 Merging sequential e-values

3 Merging independent e-values

4 Merging dependent e-values and the e-BH procedure

5 Risk forecasts and backtests
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Independent e-merging

(choose a card to bet

on)

(choose both the next

card and the bet)

(one could also bet

several cards simultane-

ously - mixed strategy)
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Independent e-merging

I Write eπ(k) = (eπ1 , . . . , eπk ) where πj may be a function

I A reading strategy π = (πk)k∈[K ] is such that

• πk : [0,∞)k−1 → [K ]

• πk(eπ(k−1)) 6= πj(eπ(j−1)) for all e ∈ [0,∞)K and j 6= k; i.e., you

can only read the same e-value once

Lemma 1

Let E1, . . . ,EK be independent e-variables, and π a reading

strategy. Recursively define Eπk = Eπk (Eπ1 ,...,E
π
k−1) for k ∈ [K ]. Then

Eπ1 , . . . ,E
π
K are sequential e-variables. If E1, . . . ,EK are iid, then so

are Eπ1 , . . . ,E
π
K .
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Independent e-merging

I A reordered test martingale: S0 = 1,

Sλ,πk (e) =
k∏

i=1

(
1 + λj(e

π
(j−1))(eπj (e(j−1)) − 1)

)
, k ∈ [K ]

I A generalized martingale merging function (GMMF) is a

mixture of Sλ,πK above

Proposition 3

Any GMMF is an ie-merging function.

I Are all ie-merging function dominated by some GMMF, like

se-merging functions dominated by MMF?

Ruodu Wang (wang@uwaterloo.ca) E-merging and e-backtesting 27/51

wang@uwaterloo.ca


E-values SE-merging IE-merging E-merging and e-BH Risk backtests

Independent e-merging

I A reordered test martingale: S0 = 1,

Sλ,πk (e) =
k∏

i=1

(
1 + λj(e

π
(j−1))(eπj (e(j−1)) − 1)

)
, k ∈ [K ]

I A generalized martingale merging function (GMMF) is a

mixture of Sλ,πK above

Proposition 3

Any GMMF is an ie-merging function.

I Are all ie-merging function dominated by some GMMF, like

se-merging functions dominated by MMF?

Ruodu Wang (wang@uwaterloo.ca) E-merging and e-backtesting 27/51

wang@uwaterloo.ca


E-values SE-merging IE-merging E-merging and e-BH Risk backtests

Merging independent e-values

Example

Fix a constant c > 1 and define the function G : [0,∞)2 → R by

G (e) = 1[0,c)2 (e) + (2c − 1)1[c,∞)2 (e).

I G is an ie-merging function

I G is not dominated by any GMMF

I G is not increasing or precise

c

c

1

1

0

2c − 1

1

0

0

This counter-example is provided by Zhenyuan Zhang
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Merging independent e-values

Open questions:

I What are all (precise, increasing) ie-merging functions?

I Does the set of precise ie-merging functions coincide with

GMMF?

I Are there useful ie-merging functions beyond GMMF?

I After all, what is the value of independence (if any)?
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Progress

1 E-values

2 Merging sequential e-values

3 Merging independent e-values

4 Merging dependent e-values and the e-BH procedure

5 Risk forecasts and backtests
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Arbitrarily dependent e-values

Theorem 3

Suppose that F is a symmetric e-merging function. Then

F ≤ λ+ (1− λ)MK for some λ ∈ [0, 1], and F is admissible if and

only if F = λ+ (1− λ)MK with λ = F (0).

I For any symmetric e-merging function F :

F (e) > 1 =⇒ MK (e) ≥ F (e).

I Asymmetric e-merging: e 7→ λ · e for λ ∈ ∆K where ∆K is

the standard K -simplex

Vovk-W., E-values: Calibration, combination, and applications.

Annals of Statistics, 2021, Theorem 3.2 (relaxing monotonicity: Proposition E.3)
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Connection to p-merging

Theorem 4

For any admissible p-merging function F and ε ∈ (0, 1), there exist

(w1, . . . ,wK ) ∈ ∆K and admissible calibrators f1, . . . , fK such that

F (p) ≤ ε ⇐⇒
K∑

k=1

wk fk(pk) ≥ 1

ε
.

If F is symmetric, then there exists an admissible calibrator f such

that

F (p) ≤ ε ⇐⇒ 1

K

K∑
k=1

f (pk) ≥ 1

ε
.

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.

Annals of Statistics, 2022, Theorem 5.1
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E-BH procedure

I e1, . . . , eK : e-values associated to H1, . . . ,HK , respectively

I e[1] ≥ · · · ≥ e[K ]: order statistics

I The rough relation e ∼ 1/p ⇒ use 1/e in the BH procedure

E-BH procedure

The e-BH procedure Gα : [0,∞]K → 2K for α > 0 rejects

hypotheses with the largest k∗ e-values, where

k∗ = max

{
k ∈ K :

ke[k]

K
≥ 1

α

}
.
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E-BH procedure

Theorem 5

The e-BH procedure Gα applied to arbitrary e-values has FDR at

most K0α/K .

nice cases general (AD)

p-BH
K0

K
α penalty

e-BH boosting
K0

K
α

I The catch: for the same data set, e ≤ 1/p and often e < 1/p

W.-Ramdas, False discovery rate control with e-values.

JRSSB, 2022, Theorem 2
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Progress

1 E-values

2 Merging sequential e-values

3 Merging independent e-values

4 Merging dependent e-values and the e-BH procedure

5 Risk forecasts and backtests
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VaR and ES

ES0.95

VaR0.95

Value-at-Risk (VaR), p ∈ (0, 1)

VaRp : L0 → R,

VaRp(X ) = qp(X )

= inf{x ∈ R : P(X ≤ x) ≥ p}

(left-quantile)

Expected Shortfall (ES), p ∈ (0, 1)

ESp : L1 → R,

ESp(X ) =
1

1− p

∫ 1

p

VaRq(X )dq

(also: TVaR/CVaR/AVaR)
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An example
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empirical

I Negated log-returns (in %) of the NASDAQ Composite index from

Jan, 2000 to Dec 2021

I Fitted (AR(1)-GARCH(1, 1)) or empirical ES0.975 forecasts with

moving window of 500
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Backtesting risk measures

I Risk measure ρ to backtest

I Define

Ft−1 := σ(Ls : s ≤ t − 1)

I Daily observations

• risk measure forecast rt for ρ(Lt) given Ft−1

• realized loss Lt

I non-iid, non-stationary observations

Hypothesis to test

H0 :
conditional on Ft−1:

rt ≥ ρ(Lt |Ft−1)
for t = 1, . . . ,T
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Some summary

I ES is the standard risk measure in banking

I VaR is easy to backtest and model-free methods are available

I ES is difficult to backtest and no model-free methods are

available
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E-backtesting ES

Daily observations

I ES forecast rt

I VaR forecast zt

I realized loss Lt

Hypothesis to test

H0 :
conditional on Ft−1:

rt ≥ ESp(Lt |Ft−1) and zt = VaRp(Lt |Ft−1)
for t = 1, . . . ,T

A weaker hypothesis

H ′0 :

conditional on Ft−1 :

rt − zt ≥ ESp(Lt |Ft−1)−VaRp(Lt |Ft−1)

and zt ≥ VaRp(Lt |Ft−1)

for t = 1, . . . ,T
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Obtaining sequential e-values

Define the function

ep(x , r , z) =
(x − z)+

(1− p)(r − z)
, x ∈ R, z ≤ r ,

Theorem 6

For H0 or H ′0, ep(Lt , rt , zt), t = 1, . . . ,T are sequential e-variables.

I Proof: based on Rockafellar/Uryasev’02

I ep is the only choice in this procedure in some sense
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Backtesting ES

The general protocol for t ∈ N
I The bank announces ES forecast rt and VaR forecast zt

I Decide predictable λt(rt , zt) ∈ [0, 1]

• Choosing λt : many papers/talks ...

I Observe realized loss Lt

I Obtain the e-value xt = ep(Lt , rt , zt)

I Compute the e-process (E0 = 1)

Et = Et−1(1− λt + λtxt) =
t∏

s=1

(1− λs + λsxs).

I model free, anytime valid, and allowing for intermediate

assessments
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Simulation studies

Data generating process (Nolde/Ziegel’17)

I AR(1)-GARCH(1, 1) process:

Lt = µt + εt , εt = σtZt ,

µt = −0.05 + 0.3Lt−1, σ2
t = 0.01 + 0.1ε2

t−1 + 0.85σ2
t−1

I The innovations {Zt}t∈N+ are iid skew-t with shape parameter

ν = 5 and skewness parameter γ = 1.5

I simulate 5500 daily losses (one run)
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Simulation studies

Forecasters

I Fit AR(1)-GARCH(1, 1) everyday with a moving window of

500 days

I Innovations: normal, t and skew-t

I Strategies: under-report, point forecast, over-report

Average point forecast over 5000 days

V̂aR0.95 V̂aR0.99 V̂aR0.875 ÊS0.875 V̂aR0.975 ÊS0.975

normal 0.605 0.883 0.403 0.606 0.734 0.888

t 0.528 0.974 0.300 0.566 0.709 1.034

skewed-t 0.658 1.217 0.365 0.701 0.888 1.281

true 0.658 1.242 0.359 0.706 0.897 1.312
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Backtesting ES (e-process)
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Figure: (Log) e-processes testing ES0.975 with respect to number of days.

Left: constant Kelly; right: functional Kelly
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Backtesting ES (constant Kelly)

constant Kelly

−10% ES −10% both exact +10% both +10% ES

normal
42 76 167 313 313

(58.25) (59.94) (39.70) (23.81) (25.41)

t
296 296 728 1958 1832

(33.71) (37.97) (19.03) (6.417) (8.665)

skewed-t
1914 1921 – – –

(5.490) (5.497) (−0.3122) (0.1477) (0.06787)

Table: Number of days taken to reject ES0.975 forecasts; “–” means no

rejection is detected till day 5000; numbers in brackets are final (log)

e-values
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Backtesting ES (functional Kelly)

functional Kelly

−10% ES −10% both exact +10% both +10% ES

normal
27 41 41 42 209

(50.66) (52.92) (36.93) (24.45) (25.84)

t
167 167 544 1405 1326

(31.67) (35.38) (20.32) (9.477) (11.71)

skewed-t
1914 1866 – – –

(6.370) (7.185) (−1.524) (−5.566) (−6.044)

Table: Number of days taken to reject ES0.975 forecasts; “–” means no

rejection is detected till day 5000; numbers in brackets are final (log)

e-values
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Empirical setting
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I Negated log-returns of the NASDAQ Composite index from Jan

2000 to Dec 2021

I Fitted to an AR(1)-GARCH(1, 1) model with moving window of 500

I Sample size after initial training: n = 5, 536
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Jan 2005 - Dec 2021, functional Kelly, ES0.875 (log scale)

Impact of financial crisis

normal t skewed-t

average ÊS0.875 1.823 1.829 1.965

rejection day 1344 1345 2645

final (log) e-value 14.70 14.91 4.722
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Jan 2005 - Dec 2021, functional Kelly, ES0.975 (log scale)

Impact of financial crisis

normal t skewed-t

average ÊS0.975 2.624 2.979 3.218

rejection day 650 1344 2676

final (log) e-value 23.84 10.56 4.825
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Thank you

Working paper series on e-values www.alrw.net/e
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