Merging e-values via martingales and e-backtesting

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science
University of Waterloo

Workshop: "Safe, Anytime-Valid Inference (SAVI) and Game-theoretic Statistics" Eindhoven, Netherlands, May 31, 2022

Agenda

(1) E-values
(2) Merging sequential e-values
(3) Merging independent e-values

4 Merging dependent e-values and the e- BH procedure
(5) Risk forecasts and backtests

E-values

Aaditya Ramdas (Carnegie Mellon) (Royal Holloway)

Vladimir Vovk (Royal

Bin Wang (CAS Beijing)

Qiuqi Wang (Waterloo)

Johanna F. Ziegel (Bern)

- Vovk/W., E-values: Calibration, combination, and applications.

Annals of Statistics, 2021, arXiv:1912.06116

- Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.

Annals of Statistics, 2022, arXiv:2007.14208

- Vovk/W., Merging sequential e-values via martingales. 2022, arXiv:2007.06382
- W./Ramdas, False discovery rate control with e-values. JRSSB, 2022, arXiv:2009.02824
- Wang/W./Ziegel, E-statistics, model-free tests, and backtesting the Expected Shortfall. 2022, working paper

What is an e-value?

- A hypothesis H : a set of probability measures

Definition (e-variables, e-values, and e-processes)

(1) An e-variable for testing H is a non-negative random variable $E: \Omega \rightarrow[0, \infty]$ that satisfies $\int E \mathrm{~d} Q \leq 1$ for all $Q \in H$.

- Realized values of e-variables are e-values.
(2) Given a filtration, an e-process for testing H is a non-negative process $\left(E_{t}\right)_{t=0,1, \ldots, n}$ such that $\int E_{\tau} \mathrm{d} Q \leq 1$ for all stopping times τ and all $Q \in H$.
- For simple hypothesis $\{\mathbb{P}\}$
- precise e-variable: random variable ≥ 0 with mean 1
- precise e-process: supermartingale ≥ 0 with initial value 1

What is an e-value?

- A p-variable for testing H is a random variable $P: \Omega \rightarrow[0, \infty)$ that satisfies $\sup _{Q \in H} Q(P \leq \alpha) \leq \alpha$ for all $\alpha \in(0,1)$
- E-test: $e($ data) large \Longleftrightarrow reject \mathcal{H}
- P-test: p (data) small \Longleftrightarrow reject \mathcal{H}
- E stands for expectation; P stands for probability
- An e-process has retrospective validity (Ville's inequality):

$$
\mathbb{P}\left(\sup _{t \geq 0} X_{t} \geq \frac{1}{\alpha}\right) \leq \alpha \Longrightarrow \inf _{t \geq 0} X_{t}^{-1} \text { is a p-value }
$$

- Bayes factors (simple hypothesis) and likelihood ratios:

$$
e(\text { data })=\frac{\operatorname{Pr}(\text { data } \mid \mathbb{Q})}{\operatorname{Pr}(\text { data } \mid \mathbb{P})}
$$

E for Expectation (or Evidence)

	requirement	specific interpretation	representative forms	keyword
p-value P	$\mathbb{P}(P \leq \alpha) \leq \alpha$ for $\alpha \in(0,1)$	probability of a more extreme observation	$\mathbb{P}\left(T^{\prime} \leq T(\mathbf{X}) \mid \mathbf{X}\right)$	(conditional) probability
e-value				
E	$\mathbb{E}^{\mathbb{P}}[E] \leq 1$ and $E \geq 0$	likelihood ratios, stopped martingales, and betting scores	$\mathbb{E}^{\mathbb{P}}\left[\left.\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}} \right\rvert\, \mathbf{X}\right]$	
$\mathbb{E}^{\mathbb{P}}\left[M_{\tau} \mid \mathbf{X}\right]$	(conditional) expectation			

An analogy of p-variables and e-variables for a simple hypothesis $\{\mathbb{P}\}$

- X is data
- $T(\mathbf{X})$ is any test statistic
- T^{\prime} is an independent copy of $T(\mathbf{X})$ under \mathbb{P}
- \mathbb{Q} is any probability measure
- M is a test supermartingale under \mathbb{P} and τ a stopping time (not to be confused with other objects bearing the name of e-values)

Example in testing multiple hypotheses

Multi-armed bandit problems

- K arms
- null hypothesis k : arm k has mean reward at most 1
- strategy $\left(k_{t}\right)$: at time $t \geq 1$, pull arm k_{t}, obtain an iid reward $X_{k_{t}, t} \geq 0$
- aim: quickly detect arms with mean >1
- or maximize profit, minimize regret, etc ...
- running reward: $M_{k, t}=\prod_{j=1}^{t} X_{k, j} \mathbb{1}_{\left\{k_{j}=k\right\}}$
- complicated dependence due to exploration/exploitation
- $M_{1, \tau}, \ldots, M_{K, \tau}$ are e-values for any stopping time τ

Calibration

- Admissible p-to-e calibrators
- Power calibrators: $f_{\kappa}(p)=\kappa p^{\kappa-1}$ for $\kappa \in(0,1)$
- Shafer's: $f(p)=p^{-1 / 2}-1$
- Averaging $f_{\kappa}: \int_{0}^{1} \kappa p^{\kappa-1} \mathrm{~d} \kappa=\frac{1-p+p \ln p}{p(-\ln p)^{2}}$
- the only admissible e-to-p calibrator: $e \rightarrow e^{-1} \wedge 1$

Sir Jeffreys

"Users of these tests speak of the 5 per cent. point [p-value of 5%] in much the same way as I should speak of the $K=$ $10^{-1 / 2}$ point [e -value of $10^{1 / 2}$], and of the 1 per cent. point [p -value of 1%] as I should speak of the $K=10^{-1}$ point [e-value of 10]." (Theory of Probability, p.435, 3rd Ed.)

Sequential e-values

E-variables E_{1}, \ldots, E_{K} are sequential if E_{k} is an e-variable conditional on E_{1}, \ldots, E_{k-1} for each k.

- $\mathbb{E}\left[E_{k} \mid E_{1}, \ldots, E_{k-1}\right] \leq 1$ for all $k \in[K]:=\{1, \ldots, K\}$
- E-values e_{1}, \ldots, e_{K} are obtained by laboratories $1, \ldots, K$
- Laboratory k makes sure that its result e_{k} is a valid e-value given the previous results e_{1}, \ldots, e_{k-1}
- Independent e-variables are sequential

Progress

(2) Merging sequential e-values
(3) Merging independent e-values
(4) Merging dependent e-values and the e-BH procedure
(5) Risk forecasts and backtests

One little philosophical slide

P-values can be avoided if one only aims for a binary decision

- If $\alpha=0.05$ is set a priori, then $p=0.049$ and $p=0.001$ carry the same significance
- If α is not set a priori, then we cannot reject anything after we see the data
- When we need to operate on p-values, the abstract p-value becomes convenient
- p-combination, Bonferroni, closed testing, FDR (Benjamini-Hochberg), FCR, meta analysis ...

One little philosophical slide

P-values can be avoided if one only aims for a binary decision

- If $\alpha=0.05$ is set a priori, then $p=0.049$ and $p=0.001$ carry the same significance
- If α is not set a priori, then we cannot reject anything after we see the data
- When we need to operate on p-values, the abstract p-value becomes convenient
- p-combination, Bonferroni, closed testing, FDR (Benjamini-Hochberg), FCR, meta analysis ...

Same for e-values?

- The abstract notion is needed when we operate on e-values
- e-combination, e/p-calibration, closed testing, FDR (e-BH), FCR (e-BY), meta analysis ...
- out-come level, study level, or multiple hypotheses
- We do not specify how they are obtained or the target statistical problem

Handling e-values

- We are supplied with K e-values for a hypothesis H_{0}
- Obtained from other papers/talks ...
- They may be sequential, independent, or arbitrarily dependent

How do we come up with one output e-value?

Handling e-values

- We are supplied with K e-values for a hypothesis H_{0}
- Obtained from other papers/talks ...
- They may be sequential, independent, or arbitrarily dependent

How do we come up with one output e-value?

Definition (e/ie/se-merging functions)

An e-merging/ie-merging/se-merging function is a Borel function $F:[0, \infty)^{K} \rightarrow[0, \infty)$ such that $F\left(E_{1}, \ldots, E_{K}\right)$ is an e-variable for all/all independent/all sequential e-variables E_{1}, \ldots, E_{K}.
\{e-merging\} $\subsetneq\{$ se-merging $\} \subsetneq\{$ ie-merging $\}$

Sequential vs independent e-variables

- An iid sample $\left(X_{1}, \ldots, X_{K}\right)$ from $\theta_{\text {tr }} \in \Theta$ are sequentially revealed
- Test $H_{0}: \theta_{\text {tr }}=0$ against $H_{1}: \theta_{\text {tr }} \in \Theta_{1}$ where $0 \notin \Theta_{1} \subseteq \Theta$.
- It does not hurt to think about testing $\mathrm{N}(\theta, 1)$
- Let ℓ be the likelihood ratio function

$$
\ell(x ; \theta)=\frac{\mathrm{d} Q_{\theta}}{\mathrm{d} Q_{0}}(x)
$$

where Q_{θ} is the probability measure corresponds to $\theta \in \Theta$

- $\ell\left(X_{k} ; \theta\right)$ for any $\theta \in \Theta$ and $k \in[K]$ is an e-variable for H_{0}

Sequential vs independent e-variables

The scientist may choose two difference strategies:
(a) Fix $\theta_{1}, \ldots, \theta_{K} \in \Theta_{1}$

- One may simply choose all θ_{k} to be the same
(b) Adaptively update $\theta_{1}, \ldots, \theta_{K}$, where θ_{k} is estimated from $\left(X_{1}, \ldots, X_{k-1}\right)$ for each k.
- E.g., Bayesian update or point estimates

In either case:

- Define the e-variables $E_{k}:=\ell\left(X_{k} ; \theta_{k}\right)$ for $k \in[K]$
- In (a), E_{1}, \ldots, E_{K} are independent e-variables
- in (b), E_{1}, \ldots, E_{K} are sequential e-variables
- Combine $\left(E_{k}\right)_{k \in[K]}$ to get an output e-variable, e.g., $\prod_{k=1}^{K} E_{k}$

Sequential vs independent e-variables

- An iid sample $\left(X_{1}, \ldots, X_{K}\right)$ from $\mathrm{N}\left(\theta_{\mathrm{tr}}, 1\right)$
- $H_{0}: \theta_{\text {tr }}=0$ against $H_{1}: \theta_{\text {tr }}>0$
- Set $\theta_{\text {tr }}=0.3$
- Five ways to obtain $E_{k}=\ell\left(X_{k} ; \theta_{k}\right)$
(i) $\theta_{k}=\theta_{\mathrm{tr}}=0.3$: true alternative, growth-optimal
(ii) $\theta_{k}=\theta_{0}=0.1$: misspecified alternative
(iii) θ_{k} follows an iid uniform distribution on $[0,0.5]$
(iv) θ_{k} follows a Bayesian update rule with a prior $\theta \sim \mathrm{N}\left(\theta_{0}, 0.2^{2}\right)$
(v) θ_{k} is MLE based on $\left(X_{1}, \ldots, X_{k-1}\right)$ with $\theta_{1}=\theta_{0}$
- (i)-(iii): independent e-variables; (iv)-(v): sequential
- Report $\prod_{k=1}^{K} E_{k}$

Sequential vs independent e-variables

Figure: A few ways of constructing e-processes from likelihood ratio. Left: one run; Right: the average (log) of 1000 runs.

- Trade-off: sequential vs independent

Merging with U-statistics

The U-statistics for $n \in\{0,1, \ldots, K\}$:

$$
U_{n}\left(e_{1}, \ldots, e_{K}\right):=\frac{1}{\binom{K}{n}} \sum_{\left\{k_{1}, \ldots, k_{n}\right\} \subseteq\{1, \ldots, K\}} e_{k_{1}} \ldots e_{k_{n}} .
$$

- product ($n=K$)
- arithmetic average $M_{K}(n=1)$
- constant $1(n=0)$

Proposition 1

Each of the U-statistics and their convex mixtures is an admissible ie-merging function and an admissible se-merging function.

- Admissibility: not strictly dominated by any

Merging with U-statistics

Proposition 2

For the product function $P_{K}:\left(e_{1}, \ldots, e_{K}\right) \mapsto \prod_{k=1}^{K} e_{k}$ and any ie-merging function F, it holds

$$
\left(e_{1}, \ldots, e_{K}\right) \in[1, \infty)^{K} \Longrightarrow F\left(e_{1}, \ldots, e_{K}\right) \leq P_{K}\left(e_{1}, \ldots, e_{K}\right)
$$

Merging with U-statistics

Proposition 2

For the product function $P_{K}:\left(e_{1}, \ldots, e_{K}\right) \mapsto \prod_{k=1}^{K} e_{k}$ and any ie-merging function F, it holds

$$
\left(e_{1}, \ldots, e_{K}\right) \in[1, \infty)^{K} \Longrightarrow F\left(e_{1}, \ldots, e_{K}\right) \leq P_{K}\left(e_{1}, \ldots, e_{K}\right)
$$

In the setting that all e-variables are independent and have mean
≥ 1 under the alternative, the product function P_{K} is

- uniformly "the most powerful" among all ie-merging functions
- largest expected value under the alternative
- uniformly "the least stable" among all se-merging functions
- largest second moment under the alternative

Merging independent e-values

Example

The function

$$
\left(e_{1}, e_{2}\right) \mapsto \frac{1}{2}\left(\frac{e_{1}}{1+e_{1}}+\frac{e_{2}}{1+e_{2}}\right)\left(1+e_{1} e_{2}\right)
$$

is

- an admissible ie-merging function;
- not a convex mixture of U-statistics;
- not an se-merging function.

Sequential e-merging

(each card has an evalue face down)

Sequential e-merging

(each card has an evalue face down)
(bet on the first card)

Sequential e-merging

(each card has an evalue face down)
(bet on the first card)
(reveal the card and proceed)

Sequential e-merging

- $\mathbf{e}:=\left(e_{1}, \ldots, e_{K}\right) ; \mathbf{e}_{(k)}:=\left(e_{1}, \ldots, e_{k}\right) ; \mathbf{e}_{(0)}:=\varnothing$
- For some functions $\lambda_{1}, \ldots, \lambda_{K}$, define $S_{0}=1$ and

$$
S_{k}(\mathbf{e})=\prod_{i=1}^{k}\left(1-\lambda_{j}\left(\mathbf{e}_{(j-1)}\right)\left(e_{j}-1\right)\right), \quad k \in[K]
$$

The sequence of functions $\left(S_{k}\right)_{k \in\{0,1, \ldots, K\}}$ is a test martingale

- $\left(S_{k}(\mathbf{E})\right)_{k \in\{0,1, \ldots, K\}}$ is an e-process
- Define the martingale merging function $F(\mathbf{e})=S_{K}(\mathbf{e})$
- F and S_{k} are connected via

$$
S_{k}\left(e_{1}, \ldots, e_{K}\right)=F\left(e_{1}, \ldots, e_{k}, 1, \ldots, 1\right)
$$

- F is generally not monotone

Sequential e-merging

Theorem 1

(i) A convex combination of martingale e-merging functions is a martingale e-merging function.
(ii) A martingale e-merging function is an se-merging function.
(iii) Each se-merging function is dominated by a martingale e-merging function.

- Arithmetic average, product, and U-statistics are all special cases of martingale e-merging functions

Sequential e-merging

- An e-variable E is precise if $\mathbb{E}[E]=1$

Theorem 2

For a sequence of functions $F=\left(F_{k}\right)_{k=1, \ldots, K}$, , equivalent are:
(i) F is a test martingale;
(ii) $F(\mathbf{E})$ is a martingale (wrt. the natural filtration of \mathbf{E}) for any vector \mathbf{E} of precise and sequential e-values;
(iii) F is anytime valid and precise; i.e., it satisfies
(a) $F_{\tau}(\mathbf{E})$ is an e-variable for any vector \mathbf{E} of sequential e-values and any stopping time τ;
(b) For each $k \in[K], \mathbb{E}\left[F_{k}(\mathbf{E})\right]=1$ for any vector \mathbf{E} of precise and sequential e-variables.

Progress

(2) Merging sequential e-values
(3) Merging independent e-values
(4) Merging dependent e-values and the e-BH procedure
(5) Risk forecasts and backtests

Independent e-merging

(choose a card to bet on)

Independent e-merging

(choose a card to bet on)

(choose both the next card and the bet)

Independent e-merging

(choose a card to bet on)
(choose both the next card and the bet)
(one could also bet several cards simultaneously - mixed strategy)

Independent e-merging

- Write $\mathbf{e}_{(k)}^{\pi}=\left(e_{\pi_{1}}, \ldots, e_{\pi_{k}}\right)$ where π_{j} may be a function
- A reading strategy $\pi=\left(\pi_{k}\right)_{k \in[K]}$ is such that
- $\pi_{k}:[0, \infty)^{k-1} \rightarrow[K]$
- $\pi_{k}\left(\mathbf{e}_{(k-1)}^{\pi}\right) \neq \pi_{j}\left(\mathbf{e}_{(j-1)}^{\pi}\right)$ for all $\mathbf{e} \in[0, \infty)^{K}$ and $j \neq k$; i.e., you can only read the same e-value once

Lemma 1

Let E_{1}, \ldots, E_{K} be independent e-variables, and π a reading strategy. Recursively define $E_{k}^{\pi}=E_{\pi_{k}\left(E_{1}^{\pi}, \ldots, E_{k-1}^{\pi}\right)}$ for $k \in[K]$. Then $E_{1}^{\pi}, \ldots, E_{K}^{\pi}$ are sequential e-variables. If E_{1}, \ldots, E_{K} are iid, then so are $E_{1}^{\pi}, \ldots, E_{K}^{\pi}$.

Independent e-merging

- A reordered test martingale: $S_{0}=1$,

$$
S_{k}^{\lambda, \pi}(\mathbf{e})=\prod_{i=1}^{k}\left(1+\lambda_{j}\left(\mathbf{e}_{(j-1)}^{\pi}\right)\left(e_{\pi_{j}\left(\mathbf{e}_{(j-1)}\right)}-1\right)\right), \quad k \in[K]
$$

- A generalized martingale merging function (GMMF) is a mixture of $S_{K}^{\lambda, \pi}$ above

Proposition 3

Any GMMF is an ie-merging function.

Independent e-merging

- A reordered test martingale: $S_{0}=1$,

$$
S_{k}^{\lambda, \pi}(\mathbf{e})=\prod_{i=1}^{k}\left(1+\lambda_{j}\left(\mathbf{e}_{(j-1)}^{\pi}\right)\left(e_{\pi_{j}\left(\mathbf{e}_{(j-1)}\right)}-1\right)\right), \quad k \in[K]
$$

- A generalized martingale merging function (GMMF) is a mixture of $S_{K}^{\lambda, \pi}$ above

Proposition 3

Any GMMF is an ie-merging function.

- Are all ie-merging function dominated by some GMMF, like se-merging functions dominated by MMF?

Merging independent e-values

Example

Fix a constant $c>1$ and define the function $G:[0, \infty)^{2} \rightarrow \mathbb{R}$ by

$$
G(\mathbf{e})=\mathbb{1}_{[0, c)^{2}}(\mathbf{e})+(2 c-1) \mathbb{1}_{[c, \infty)^{2}}(\mathbf{e}) .
$$

- G is an ie-merging function
- G is not dominated by any GMMF
- G is not increasing or precise

Merging independent e-values

Open questions:

- What are all (precise, increasing) ie-merging functions?
- Does the set of precise ie-merging functions coincide with GMMF?
- Are there useful ie-merging functions beyond GMMF?
- After all, what is the value of independence (if any)?

Progress

(2) Merging sequential e-values
(3) Merging independent e-values

4 Merging dependent e-values and the e- BH procedure
(5) Risk forecasts and backtests

Arbitrarily dependent e-values

Theorem 3

Suppose that F is a symmetric e-merging function. Then $F \leq \lambda+(1-\lambda) M_{K}$ for some $\lambda \in[0,1]$, and F is admissible if and only if $F=\lambda+(1-\lambda) M_{K}$ with $\lambda=F(\mathbf{0})$.

- For any symmetric e-merging function F :

$$
F(\mathbf{e})>1 \Longrightarrow M_{K}(\mathbf{e}) \geq F(\mathbf{e}) .
$$

- Asymmetric e-merging: $\mathbf{e} \mapsto \boldsymbol{\lambda} \cdot \mathbf{e}$ for $\boldsymbol{\lambda} \in \Delta_{K}$ where Δ_{K} is the standard K-simplex

Vovk-W., E-values: Calibration, combination, and applications.
Annals of Statistics, 2021, Theorem 3.2 (relaxing monotonicity: Proposition E.3)

Connection to p-merging

Theorem 4

For any admissible p-merging function F and $\epsilon \in(0,1)$, there exist $\left(w_{1}, \ldots, w_{K}\right) \in \Delta_{K}$ and admissible calibrators f_{1}, \ldots, f_{K} such that

$$
F(\mathbf{p}) \leq \epsilon \Longleftrightarrow \sum_{k=1}^{K} w_{k} f_{k}\left(p_{k}\right) \geq \frac{1}{\epsilon}
$$

If F is symmetric, then there exists an admissible calibrator f such that

$$
F(\mathbf{p}) \leq \epsilon \Longleftrightarrow \frac{1}{K} \sum_{k=1}^{K} f\left(p_{k}\right) \geq \frac{1}{\epsilon} .
$$

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.
Annals of Statistics, 2022, Theorem 5.1

E-BH procedure

- e_{1}, \ldots, e_{K} : e-values associated to H_{1}, \ldots, H_{K}, respectively
- $e_{[1]} \geq \cdots \geq e_{[K]}:$ order statistics
- The rough relation $e \sim 1 / p \Rightarrow$ use $1 / e$ in the BH procedure

E-BH procedure

The e-BH procedure $\mathcal{G}_{\alpha}:[0, \infty]^{K} \rightarrow 2^{\mathcal{K}}$ for $\alpha>0$ rejects hypotheses with the largest $k^{*} \mathrm{e}$-values, where

$$
k^{*}=\max \left\{k \in \mathcal{K}: \frac{k e_{[k]}}{K} \geq \frac{1}{\alpha}\right\} .
$$

E-BH procedure

Theorem 5

The e-BH procedure \mathcal{G}_{α} applied to arbitrary e-values has FDR at most $K_{0} \alpha / K$.

	nice cases	general (AD)
p-BH	$\frac{K_{0}}{K} \alpha$	penalty
e-BH	boosting	$\frac{K_{0}}{K} \alpha$

- The catch: for the same data set, $e \leq 1 / p$ and often $e<1 / p$
W.-Ramdas, False discovery rate control with e-values.

JRSSB, 2022, Theorem 2

Progress

(2) Merging sequential e-values
(3) Merging independent e-values
4) Merging dependent e-values and the e-BH procedure
(5) Risk forecasts and backtests

VaR and ES

Value-at-Risk (VaR), $p \in(0,1)$
$\operatorname{VaR}_{p}: L^{0} \rightarrow \mathbb{R}$,
$\operatorname{VaR}_{p}(X)=q_{p}(X)$

$$
=\inf \{x \in \mathbb{R}: \mathbb{P}(X \leq x) \geq p\}
$$

(left-quantile)

Expected Shortfall (ES), $p \in(0,1)$

$\mathrm{ES}_{p}: L^{1} \rightarrow \mathbb{R}$,
$\operatorname{ES}_{p}(X)=\frac{1}{1-p} \int_{p}^{1} \operatorname{VaR}_{q}(X) \mathrm{d} q$
(also: TVaR/CVaR/AVaR)

An example

- Negated log-returns (in \%) of the NASDAQ Composite index from Jan, 2000 to Dec 2021
- Fitted $\operatorname{AR}(1)-\operatorname{GARCH}(1,1))$ or empirical $\mathrm{ES}_{0.975}$ forecasts with moving window of 500

Backtesting risk measures

- Risk measure ρ to backtest
- Define

$$
\mathcal{F}_{t-1}:=\sigma\left(L_{s}: s \leq t-1\right)
$$

- Daily observations
- risk measure forecast r_{t} for $\rho\left(L_{t}\right)$ given \mathcal{F}_{t-1}
- realized loss L_{t}
- non-iid, non-stationary observations

Hypothesis to test

H_{0} :
conditional on \mathcal{F}_{t-1} :

$$
r_{t} \geq \rho\left(L_{t} \mid \mathcal{F}_{t-1}\right)
$$

$$
\text { for } t=1, \ldots, T
$$

Some summary

- ES is the standard risk measure in banking
- VaR is easy to backtest and model-free methods are available
- ES is difficult to backtest and no model-free methods are available

E-backtesting ES

Daily observations

- ES forecast r_{t}
- VaR forecast z_{t}
- realized loss L_{t}

Hypothesis to test

$$
H_{0}:
$$

conditional on \mathcal{F}_{t-1} :

$$
r_{t} \geq \operatorname{ES}_{p}\left(L_{t} \mid \mathcal{F}_{t-1}\right) \text { and } z_{t}=\operatorname{VaR}_{p}\left(L_{t} \mid \mathcal{F}_{t-1}\right)
$$

$$
\text { for } t=1, \ldots, T
$$

A weaker hypothesis

conditional on \mathcal{F}_{t-1} :

$$
\begin{gathered}
H_{0}^{\prime}: \quad r_{t}-z_{t} \geq \operatorname{ES}_{p}\left(L_{t} \mid \mathcal{F}_{t-1}\right)-\operatorname{VaR}_{p}\left(L_{t} \mid \mathcal{F}_{t-1}\right) \text { for } t=1, \ldots, T \\
\quad \text { and } z_{t} \geq \operatorname{VaR}_{p}\left(L_{t} \mid \mathcal{F}_{t-1}\right)
\end{gathered}
$$

Obtaining sequential e-values

Define the function

$$
e_{p}(x, r, z)=\frac{(x-z)_{+}}{(1-p)(r-z)}, \quad x \in \mathbb{R}, \quad z \leq r
$$

Theorem 6

For H_{0} or $H_{0}^{\prime}, e_{p}\left(L_{t}, r_{t}, z_{t}\right), t=1, \ldots, T$ are sequential e-variables.

- Proof: based on Rockafellar/Uryasev'02
- e_{p} is the only choice in this procedure in some sense

Backtesting ES

The general protocol for $t \in \mathbb{N}$

- The bank announces ES forecast r_{t} and VaR forecast z_{t}
- Decide predictable $\lambda_{t}\left(r_{t}, z_{t}\right) \in[0,1]$
- Choosing λ_{t} : many papers/talks ...
- Observe realized loss L_{t}
- Obtain the e-value $x_{t}=e_{p}\left(L_{t}, r_{t}, z_{t}\right)$
- Compute the e-process $\left(E_{0}=1\right)$

$$
E_{t}=E_{t-1}\left(1-\lambda_{t}+\lambda_{t} x_{t}\right)=\prod_{s=1}^{t}\left(1-\lambda_{s}+\lambda_{s} x_{s}\right)
$$

- model free, anytime valid, and allowing for intermediate assessments

Simulation studies

Data generating process (Nolde/Ziegel'17)

- $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ process:

$$
\begin{gathered}
L_{t}=\mu_{t}+\epsilon_{t}, \quad \epsilon_{t}=\sigma_{t} Z_{t} \\
\mu_{t}=-0.05+0.3 L_{t-1}, \quad \sigma_{t}^{2}=0.01+0.1 \epsilon_{t-1}^{2}+0.85 \sigma_{t-1}^{2}
\end{gathered}
$$

- The innovations $\left\{Z_{t}\right\}_{t \in \mathbb{N}_{+}}$are iid skew-t with shape parameter $\nu=5$ and skewness parameter $\gamma=1.5$
- simulate 5500 daily losses (one run)

Simulation studies

Forecasters

- Fit $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ everyday with a moving window of 500 days
- Innovations: normal, t and skew-t
- Strategies: under-report, point forecast, over-report

Average point forecast over 5000 days

	$\widehat{\mathrm{VaR}}_{0.95}$	$\widehat{\mathrm{VaR}}_{0.99}$	$\widehat{\mathrm{VaR}}_{0.875}$	$\widehat{\mathrm{ES}}_{0.875}$	$\widehat{\mathrm{VaR}}_{0.975}$	$\widehat{\mathrm{ES}}_{0.975}$
normal	0.605	0.883	0.403	0.606	0.734	0.888
t	0.528	0.974	0.300	0.566	0.709	1.034
skewed-t	0.658	1.217	0.365	0.701	0.888	1.281
true	0.658	1.242	0.359	0.706	0.897	1.312

Backtesting ES (e-process)

Figure: (Log) e-processes testing $\mathrm{ES}_{0.975}$ with respect to number of days.
Left: constant Kelly; right: functional Kelly

Backtesting ES (constant Kelly)

	constant Kelly				
	$-10 \% \mathrm{ES}$	-10% both	exact	$+10 \%$ both	$+10 \% \mathrm{ES}$
normal	42	76	167	313	313
	(58.25)	(59.94)	(39.70)	(23.81)	(25.41)
t	296	296	728	1958	1832
	(33.71)	(37.97)	(19.03)	(6.417)	(8.665)
skewed-t	1914	1921	-	-	-
	(5.490)	(5.497)	(-0.3122)	(0.1477)	(0.06787)

Table: Number of days taken to reject $\mathrm{ES}_{0.975}$ forecasts; "-" means no rejection is detected till day 5000; numbers in brackets are final (log) e-values

Backtesting ES (functional Kelly)

	functional Kelly				
	$-10 \% \mathrm{ES}$	-10% both	exact	$+10 \%$ both	$+10 \%$ ES
normal	27 (50.66)	41 (52.92)	41 (36.93)	42 (24.45)	(25.84)
t	167 (31.67)	167 (35.38)	544 (20.32)	1405 (9.477)	1326 skewed-t1914 (6.370)

Table: Number of days taken to reject $\mathrm{ES}_{0.975}$ forecasts; "-" means no rejection is detected till day 5000; numbers in brackets are final (log) e-values

Empirical setting

- Negated log-returns of the NASDAQ Composite index from Jan 2000 to Dec 2021
- Fitted to an $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ model with moving window of 500
- Sample size after initial training: $n=5,536$

Jan 2005 - Dec 2021, functional Kelly, $\mathrm{ES}_{0.875}$ (log scale)

Impact of financial crisis

	normal	t	skewed-t
average $\widehat{\mathrm{ES}}_{0.875}$	1.823	1.829	1.965
rejection day	1344	1345	2645
final (\log) e-value	14.70	14.91	4.722

Jan 2005 - Dec 2021, functional Kelly, $\mathrm{ES}_{0.975}$ (log scale)

Impact of financial crisis

	normal	t	skewed-t
average $\widehat{\mathrm{ES}}_{0.975}$	2.624	2.979	3.218
rejection day	650	1344	2676
final (\log) e-value	23.84	10.56	4.825

Thank you

Working paper series on e-values www.alrw.net/e

