Risk backtests

Merging e-values via martingales and e-backtesting

IE-merging

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

Workshop: "Safe, Anytime-Valid Inference (SAVI) and Game-theoretic Statistics" Eindhoven, Netherlands, May 31, 2022

(日)

Agenda				
E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000	000000	00000	0000000000000000000

- 3 Merging independent e-values
- Merging dependent e-values and the e-BH procedure
- 5 Risk forecasts and backtests

E-values ••••• SE-merging

IE-merging

Risk backtests

E-values

Aaditya Ramdas Vladimir Vovk (Carnegie Mellon) (Roval Hollowav)

Bin Wang (CAS Beijing)

Qiuqi Wang (Waterloo)

Johanna F. Ziegel (Bern)

Vovk/W., E-values: Calibration, combination, and applications.

Annals of Statistics, 2021, arXiv:1912.06116

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.

Annals of Statistics, 2022, arXiv:2007.14208

< ロ > < 同 > < 三 > < 三 > < 三 > <

- Vovk/W., Merging sequential e-values via martingales. 2022, arXiv:2007.06382
- W./Ramdas, False discovery rate control with e-values. JRSSB, 2022, arXiv:2009.02824
- Wang/W./Ziegel, E-statistics, model-free tests, and backtesting the Expected Shortfall.

2022, working paper

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
⊙●00000		000000	00000	000000000000000000
What is	an e-value?			

A hypothesis H: a set of probability measures

Definition (e-variables, e-values, and e-processes)

(1) An e-variable for testing H is a non-negative random variable $E: \Omega \to [0, \infty]$ that satisfies $\int E \, dQ \leq 1$ for all $Q \in H$.

• Realized values of e-variables are e-values.

(2) Given a filtration, an e-process for testing H is a non-negative process (E_t)_{t=0,1,...,n} such that ∫ E_τdQ ≤ 1 for all stopping times τ and all Q ∈ H.

► For simple hypothesis {P}

- precise e-variable: random variable \geq 0 with mean 1
- precise e-process: supermartingale ≥ 0 with initial value 1

What is an e-value?

SE-merging

E-values

0000000

A p-variable for testing H is a random variable P : Ω → [0,∞) that satisfies sup_{Q∈H} Q(P ≤ α) ≤ α for all α ∈ (0,1)

E-merging and e-BH

Risk backtests

- E-test: e(data) large \iff reject \mathcal{H}
- P-test: p(data) small \iff reject \mathcal{H}
- E stands for expectation; P stands for probability

IE-merging

An e-process has retrospective validity (Ville's inequality):

$$\mathbb{P}\left(\sup_{t\geq 0} X_t \geq \frac{1}{\alpha}\right) \leq \alpha \implies \inf_{t\geq 0} X_t^{-1} \text{ is a p-value}$$

Bayes factors (simple hypothesis) and likelihood ratios:

$$e(\mathsf{data}) = rac{\Pr(\mathsf{data} \mid \mathbb{Q})}{\Pr(\mathsf{data} \mid \mathbb{P})}$$

 E-values
 SE-merging
 IE-merging
 E-merging and e-BH
 Risk backtests

 0000000
 0000000
 000000
 000000
 000000

E for Expectation (or Evidence)

	requirement	specific interpretation	representative forms	keyword
p-value P	$\mathbb{P}(P \leq \alpha) \leq \alpha$ for $\alpha \in (0, 1)$	probability of a more extreme observation	$\mathbb{P}(\mathcal{T}' \leq \mathcal{T}(\mathbf{X}) \mathbf{X})$	(conditional) probability
e-value E	$\mathbb{E}^{\mathbb{P}}[E] \leq 1$ and $E \geq 0$	likelihood ratios, stopped martingales, and betting scores	$\mathbb{E}^{\mathbb{P}}\left[rac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}ig \mathbf{X} ight] \ \mathbb{E}^{\mathbb{P}}[M_{ au} \mathbf{X}]$	(conditional) expectation

An analogy of p-variables and e-variables for a simple hypothesis $\{\mathbb{P}\}$

- X is data
- T(X) is any test statistic
- T' is an independent copy of T(X) under \mathbb{P}
- \blacktriangleright \mathbb{Q} is any probability measure
- M is a test supermartingale under $\mathbb P$ and au a stopping time

(not to be confused with other objects bearing the name of e-values)

< ロ > < 同 > < 回 > < 回 > .

Example in testing multiple hypotheses

Multi-armed bandit problems

- ► K arms
- null hypothesis k: arm k has mean reward at most 1
- strategy (k_t) : at time $t \ge 1$, pull arm k_t , obtain an iid reward $X_{k_t,t} \ge 0$
- ▶ aim: quickly detect arms with mean > 1
 - or maximize profit, minimize regret, etc ...
- running reward: $M_{k,t} = \prod_{j=1}^{t} X_{k,j} \mathbb{1}_{\{k_j=k\}}$
- complicated dependence due to exploration/exploitation
- $M_{1, au}, \ldots, M_{K, au}$ are e-values for any stopping time au

< 口 > < 同 > < 三 > < 三 > 、

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
00000●0		000000	00000	000000000000000000
Calibrat	ion			

- Admissible p-to-e calibrators
 - Power calibrators: $f_{\kappa}(p) = \kappa p^{\kappa-1}$ for $\kappa \in (0,1)$
 - Shafer's: $f(p) = p^{-1/2} 1$
 - Averaging f_{κ} : $\int_0^1 \kappa p^{\kappa-1} d\kappa = \frac{1-p+p \ln p}{p(-\ln p)^2}$
- \blacktriangleright the only admissible e-to-p calibrator: $e
 ightarrow e^{-1} \wedge 1$

Sir Jeffreys

"Users of these tests speak of the 5 per cent. point [p-value of 5%] in much the same way as I should speak of the $K = 10^{-1/2}$ point [e-value of $10^{1/2}$], and of the 1 per cent. point [p-value of 1%] as I should speak of the $K = 10^{-1}$ point [e-value of 10]." (Theory of Probability, p.435, 3rd Ed.)

< ロ > < 同 > < 回 > < 回 > < 回 > <

E-variables E_1, \ldots, E_K are sequential if E_k is an e-variable conditional on E_1, \ldots, E_{k-1} for each k.

- $\mathbb{E}[E_k \mid E_1, \dots, E_{k-1}] \leq 1$ for all $k \in [K] := \{1, \dots, K\}$
- E-values e_1, \ldots, e_K are obtained by laboratories $1, \ldots, K$
- ► Laboratory k makes sure that its result ek is a valid e-value given the previous results e1,..., ek-1
- Independent e-variables are sequential

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
	••••••			

Progress

- 2 Merging sequential e-values
- 3 Merging independent e-values
- 4 Merging dependent e-values and the e-BH procedure
- 5 Risk forecasts and backtests

E-values SE-merging IE-merging and e-BH Risk backtests

One little philosophical slide

P-values can be avoided if one only aims for a binary decision

- If $\alpha = 0.05$ is set a priori, then p = 0.049 and p = 0.001 carry the same significance
- > If α is not set a priori, then we cannot reject anything after we see the data
- ▶ When we need to operate on p-values, the abstract p-value becomes convenient
 - p-combination, Bonferroni, closed testing, FDR (Benjamini-Hochberg), FCR, meta analysis ...

(日)

E-values SE-merging IE-merging E-merging and e-BH Risk backtests

One little philosophical slide

P-values can be avoided if one only aims for a binary decision

- If $\alpha = 0.05$ is set a priori, then p = 0.049 and p = 0.001 carry the same significance
- > If α is not set a priori, then we cannot reject anything after we see the data
- When we need to operate on p-values, the abstract p-value becomes convenient
 - p-combination, Bonferroni, closed testing, FDR (Benjamini-Hochberg), FCR, meta analysis ...

Same for e-values?

- The abstract notion is needed when we operate on e-values
 - e-combination, e/p-calibration, closed testing, FDR (e-BH), FCR (e-BY), meta analysis ...
 - out-come level, study level, or multiple hypotheses
- We do not specify how they are obtained or the target statistical problem

э.

E-values 0000000	SE-merging 00000000000000	IE-merging	E-merging and e-BH 00000	Risk backtests		
Handling e-values						

- We are supplied with K e-values for a hypothesis H_0
 - Obtained from other papers/talks ...
 - They may be sequential, independent, or arbitrarily dependent

How do we come up with one output e-value?

Handling	e-values			
E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	00●0000000000	000000	00000	0000000000000000000

- We are supplied with K e-values for a hypothesis H_0
 - Obtained from other papers/talks ...
 - They may be sequential, independent, or arbitrarily dependent

How do we come up with one output e-value?

Definition (e/ie/se-merging functions)

An e-merging/ie-merging/se-merging function is a Borel function $F : [0, \infty)^K \to [0, \infty)$ such that $F(E_1, \ldots, E_K)$ is an e-variable for all/all independent/all sequential e-variables E_1, \ldots, E_K .

 $\{\text{e-merging}\} \subsetneq \{\text{se-merging}\} \subsetneq \{\text{ie-merging}\}$

Sequential vs independent e-variables

- An iid sample (X₁,...,X_K) from θ_{tr} ∈ Θ are sequentially revealed
- Test $H_0: \theta_{tr} = 0$ against $H_1: \theta_{tr} \in \Theta_1$ where $0 \notin \Theta_1 \subseteq \Theta$.

• It does not hurt to think about testing $\mathrm{N}(heta,1)$

• Let ℓ be the likelihood ratio function

$$\ell(x;\theta) = \frac{\mathrm{d}Q_{\theta}}{\mathrm{d}Q_{0}}(x),$$

where Q_{θ} is the probability measure corresponds to $\theta \in \Theta$ $\ell(X_k; \theta)$ for any $\theta \in \Theta$ and $k \in [K]$ is an e-variable for H_0

E-values SE-merging IE-merging and e-BH Risk backtests

Sequential vs independent e-variables

The scientist may choose two difference strategies:

- (a) Fix $\theta_1, \ldots, \theta_K \in \Theta_1$
 - One may simply choose all θ_k to be the same
- (b) Adaptively update $\theta_1, \ldots, \theta_K$, where θ_k is estimated from (X_1, \ldots, X_{k-1}) for each k.
 - E.g., Bayesian update or point estimates

In either case:

- Define the e-variables $E_k := \ell(X_k; \theta_k)$ for $k \in [K]$
 - In (a), E₁,..., E_K are independent e-variables
 - in (b), E_1, \ldots, E_K are sequential e-variables

• Combine $(E_k)_{k \in [K]}$ to get an output e-variable, e.g., $\prod_{k=1}^{K} E_k$

E-values SE-merging IE-merging E-merging and e-BH Risk backtests 0000000 000000 000000 000000 000000 000000

Sequential vs independent e-variables

• An iid sample (X_1, \ldots, X_K) from $N(\theta_{tr}, 1)$

•
$$H_0: \theta_{tr} = 0$$
 against $H_1: \theta_{tr} > 0$

- Set $\theta_{\rm tr} = 0.3$
- Five ways to obtain $E_k = \ell(X_k; \theta_k)$

(i) $\theta_k = \theta_{tr} = 0.3$: true alternative, growth-optimal

- (ii) $\theta_k = \theta_0 = 0.1$: misspecified alternative
- (iii) θ_k follows an iid uniform distribution on [0, 0.5]
- (iv) $heta_k$ follows a Bayesian update rule with a prior $heta \sim \mathrm{N}(heta_0, 0.2^2)$
- (v) θ_k is MLE based on (X_1, \ldots, X_{k-1}) with $\theta_1 = \theta_0$
- ► (i)-(iii): independent e-variables; (iv)-(v): sequential
- Report $\prod_{k=1}^{K} E_k$

Sequential vs independent e-variables

Figure: A few ways of constructing e-processes from likelihood ratio. Left: one run; Right: the average (log) of 1000 runs.

Trade-off: sequential vs independent

< ロ > < 同 > < 三 > < 三 >

 E-values
 SE-merging
 IE-merging
 E-merging and e-BH
 Risk backtests

 0000000
 000000
 000000
 00000
 000000
 000000

Merging with U-statistics

The U-statistics for $n \in \{0, 1, \dots, K\}$:

$$U_n(e_1,\ldots,e_K):=\frac{1}{\binom{K}{n}}\sum_{\{k_1,\ldots,k_n\}\subseteq\{1,\ldots,K\}}e_{k_1}\ldots e_{k_n}.$$

• product
$$(n = K)$$

- arithmetic average $M_{\mathcal{K}}$ (n = 1)
- constant 1 (n = 0)

Proposition 1

Each of the U-statistics and their convex mixtures is an admissible

ie-merging function and an admissible se-merging function.

Admissibility: not strictly dominated by any

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
	00000000000000			

Merging with U-statistics

Proposition 2

For the product function P_K : $(e_1, \ldots, e_K) \mapsto \prod_{k=1}^K e_k$ and any ie-merging function F, it holds

$$(e_1,\ldots,e_{\mathcal{K}})\in [1,\infty)^{\mathcal{K}}\Longrightarrow \mathcal{F}(e_1,\ldots,e_{\mathcal{K}})\leq \mathcal{P}_{\mathcal{K}}(e_1,\ldots,e_{\mathcal{K}}).$$

< ロ > < 同 > < 回 > < 回 > .

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
000000	00000000000000	000000	00000	000000000000000000000000000000000000000

Merging with U-statistics

Proposition 2

For the product function P_K : $(e_1, \ldots, e_K) \mapsto \prod_{k=1}^K e_k$ and any ie-merging function F, it holds

$$(e_1,\ldots,e_K)\in [1,\infty)^K \Longrightarrow F(e_1,\ldots,e_K)\leq P_K(e_1,\ldots,e_K).$$

In the setting that all e-variables are independent and have mean ≥ 1 under the alternative, the product function P_K is

- uniformly "the most powerful" among all ie-merging functions
 - largest expected value under the alternative
- uniformly "the least stable" among all se-merging functions
 - largest second moment under the alternative

< 口 > < 同 > < 三 > < 三 > 、

E-merging and e-BH 00000 Risk backtests

Merging independent e-values

Example

The function

$$(e_1,e_2)\mapsto rac{1}{2}\left(rac{e_1}{1+e_1}+rac{e_2}{1+e_2}
ight)(1+e_1e_2)$$

is

- an admissible ie-merging function;
- not a convex mixture of U-statistics;
- not an se-merging function.

< ロ > < 同 > < 三 > < 三 >

-values	SE-merging
	000000000000000000000000000000000000000

IE-merging

E-merging and e-BH 00000 Risk backtests

Sequential e-merging

(each card has an evalue face down)

<ロト < 同ト < ヨト < ヨト

-values SE-merging 000000 000000000000000000

IE-mergii 000000 E-merging and e-BH 00000 Risk backtests

Sequential e-merging

(each card has an evalue face down)

(bet on the first card)

<ロト < 同ト < ヨト < ヨト

SE-merging

IE-merging

Risk backtests

Sequential e-merging

(each card has an evalue face down)

(bet on the first card)

(reveal the card and proceed)

<ロ> (日) (日) (日) (日) (日)

Ruodu Wang

(wang@uwaterloo.ca)

E-merging and e-backtesting

<u> </u>				
	000000000000000			
E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests

Sequential e-merging

▶
$$\mathbf{e} := (e_1, \ldots, e_K); \ \mathbf{e}_{(k)} := (e_1, \ldots, e_k); \ \mathbf{e}_{(0)} := \emptyset$$

▶ For some functions $\lambda_1, \ldots, \lambda_K$, define $S_0 = 1$ and

$$\mathcal{S}_k(\mathbf{e}) = \prod_{i=1}^k \left(1 - \lambda_j(\mathbf{e}_{(j-1)})(e_j - 1)
ight), \quad k \in [K]$$

The sequence of functions $(S_k)_{k \in \{0,1,\dots,K\}}$ is a test martingale

- $(S_k(\mathbf{E}))_{k \in \{0,1,\dots,K\}}$ is an e-process
- Define the martingale merging function $F(\mathbf{e}) = S_{\mathcal{K}}(\mathbf{e})$
- ► *F* and *S_k* are connected via

$$S_k(e_1,\ldots,e_K)=F(e_1,\ldots,e_k,1,\ldots,1).$$

F is generally not monotone

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000000	000000	00000	00000000000000000

Sequential e-merging

Theorem 1

- (i) A convex combination of martingale e-merging functions is a martingale e-merging function.
- (ii) A martingale e-merging function is an se-merging function.
- (iii) Each se-merging function is dominated by a martingale e-merging function.
 - Arithmetic average, product, and U-statistics are all special cases of martingale e-merging functions

イロト イヨト イヨト イヨト

• An e-variable *E* is precise if $\mathbb{E}[E] = 1$

Theorem 2

For a sequence of functions $F = (F_k)_{k=1,...,K}$, equivalent are:

- (i) F is a test martingale;
- (ii) F(E) is a martingale (wrt. the natural filtration of E) for any vector E of precise and sequential e-values;
- (iii) F is anytime valid and precise; i.e., it satisfies
 - (a) $F_{\tau}(\mathbf{E})$ is an e-variable for any vector \mathbf{E} of sequential e-values and any stopping time τ ;
 - (b) For each $k \in [K]$, $\mathbb{E}[F_k(\mathbf{E})] = 1$ for any vector **E** of precise and sequential e-variables.

イロン 人間 とくほ とうど

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
		000000		

Progress

- 2 Merging sequential e-values
- 3 Merging independent e-values
- 4 Merging dependent e-values and the e-BH procedure
- 5 Risk forecasts and backtests

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000	0●0000	00000	

Independent e-merging

(choose a card to bet on)

Э

values SE-merging

nerging

IE-merging 0●0000 E-merging and e-BH 00000 Risk backtests

Independent e-merging

(choose a card to bet on)

(choose both the next card and the bet)

<ロト < 同ト < ヨト < ヨト

E-values SE-m

IE-merging 0●0000 E-merging and e-BH 00000 Risk backtests

Independent e-merging

(choose a card to bet on)

(choose both the next card and the bet)

(one could also bet several cards simultaneously - mixed strategy)

<ロト < 同ト < ヨト < ヨト

Ruodu Wang (

(wang@uwaterloo.ca)

E-merging and e-backtesting

- Write $\mathbf{e}_{(k)}^{\pi} = (e_{\pi_1}, \dots, e_{\pi_k})$ where π_j may be a function
- A reading strategy $\pi = (\pi_k)_{k \in [K]}$ is such that

•
$$\pi_k: [0,\infty)^{k-1} \to [K]$$

• $\pi_k(\mathbf{e}_{(k-1)}^{\pi}) \neq \pi_j(\mathbf{e}_{(j-1)}^{\pi})$ for all $\mathbf{e} \in [0, \infty)^K$ and $j \neq k$; i.e., you can only read the same e-value once

Lemma 1

Let E_1, \ldots, E_K be independent e-variables, and π a reading strategy. Recursively define $E_k^{\pi} = E_{\pi_k(E_1^{\pi}, \ldots, E_{k-1}^{\pi})}$ for $k \in [K]$. Then $E_1^{\pi}, \ldots, E_K^{\pi}$ are sequential e-variables. If E_1, \ldots, E_K are iid, then so are $E_1^{\pi}, \ldots, E_K^{\pi}$.

• A reordered test martingale: $S_0 = 1$,

$$\mathcal{S}_k^{\lambda,\pi}(\mathbf{e}) = \prod_{i=1}^k \left(1+\lambda_j(\mathbf{e}_{(j-1)}^\pi)(e_{\pi_j(\mathbf{e}_{(j-1)})}-1)
ight), \quad k\in [\mathcal{K}]$$

A generalized martingale merging function (GMMF) is a mixture of S^{λ,π}_K above

Proposition 3

Any GMMF is an ie-merging function.

• A reordered test martingale: $S_0 = 1$,

$$S_k^{\lambda,\pi}(\mathbf{e}) = \prod_{i=1}^k \left(1+\lambda_j(\mathbf{e}_{(j-1)}^\pi)(e_{\pi_j(\mathbf{e}_{(j-1)})}-1)
ight), \quad k\in [\mathcal{K}]$$

A generalized martingale merging function (GMMF) is a mixture of S^{λ,π}_K above

Proposition 3

Any GMMF is an ie-merging function.

Are all ie-merging function dominated by some GMMF, like se-merging functions dominated by MMF?

(日) (同) (三) (三) (二)

Merging	independent e	-values		
E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000	0000●0	00000	0000000000000000000

Example

Fix a constant c > 1 and define the function $G : [0,\infty)^2 \to \mathbb{R}$ by

$$G(\mathbf{e}) = \mathbb{1}_{[0,c)^2}(\mathbf{e}) + (2c-1)\mathbb{1}_{[c,\infty)^2}(\mathbf{e}).$$

This counter-example is provided by Zhenyuan Zhang $\langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle + \langle \Xi \rangle + \langle \Xi \rangle + \langle \Box \land + \langle \Box \rangle + \langle \Box \land + \langle$

Merging independent e-values

Open questions:

- What are all (precise, increasing) ie-merging functions?
- Does the set of precise ie-merging functions coincide with GMMF?
- Are there useful ie-merging functions beyond GMMF?
- After all, what is the value of independence (if any)?

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000		000000	●0000	0000000000000000000
Progress				

E-values

- 2 Merging sequential e-values
- 3 Merging independent e-values

Merging dependent e-values and the e-BH procedure

5 Risk forecasts and backtests

• • = • • = •

E-values SE-merging IE-merging and e-BH Risk backtests

Arbitrarily dependent e-values

Theorem 3

Suppose that F is a symmetric e-merging function. Then $F \leq \lambda + (1 - \lambda)M_K$ for some $\lambda \in [0, 1]$, and F is admissible if and only if $F = \lambda + (1 - \lambda)M_K$ with $\lambda = F(\mathbf{0})$.

► For any symmetric e-merging function *F*:

$$F(\mathbf{e}) > 1 \implies M_{\mathcal{K}}(\mathbf{e}) \geq F(\mathbf{e}).$$

Asymmetric e-merging: e → λ · e for λ ∈ Δ_K where Δ_K is the standard K-simplex

Vovk-W., E-values: Calibration, combination, and applications. Annals of Statistics, 2021, Theorem 3.2 (relaxing monotonicity: Proposition E.3)

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000	000000	00●00	00000000000000000000

Connection to p-merging

Theorem 4

For any admissible p-merging function F and $\epsilon \in (0, 1)$, there exist $(w_1, \ldots, w_K) \in \Delta_K$ and admissible calibrators f_1, \ldots, f_K such that

$$\mathcal{F}(\mathbf{p}) \leq \epsilon \iff \sum_{k=1}^{K} w_k f_k(p_k) \geq \frac{1}{\epsilon}.$$

If F is symmetric, then there exists an admissible calibrator f such that

$$\mathsf{F}(\mathbf{p}) \leq \epsilon \iff rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} f(p_k) \geq rac{1}{\epsilon}.$$

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence. Annals of Statistics, 2022, Theorem 5.1

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	00000000000000	000000	000●0	0000000000000000000
F_RH pr	ocedure			

▶ e_1, \ldots, e_K : e-values associated to H_1, \ldots, H_K , respectively

•
$$e_{[1]} \geq \cdots \geq e_{[K]}$$
: order statistics

• The rough relation $e \sim 1/p \Rightarrow$ use 1/e in the BH procedure

E-BH procedure

The e-BH procedure $\mathcal{G}_{\alpha} : [0,\infty]^{\mathcal{K}} \to 2^{\mathcal{K}}$ for $\alpha > 0$ rejects

hypotheses with the largest k^* e-values, where

$$k^* = \max\left\{k \in \mathcal{K} : rac{ke_{[k]}}{K} \geq rac{1}{lpha}
ight\}.$$

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000		000000	0000●	000000000000000000
E-BH pro	ocedure			

Theorem 5

The e-BH procedure \mathcal{G}_{α} applied to arbitrary e-values has FDR at most $K_0 \alpha/K$.

	nice cases	general (AD)
p-BH	$\frac{K_0}{K} \alpha$	penalty
e-BH	boosting	$\frac{K_0}{K}\alpha$

• The catch: for the same data set, $e \leq 1/p$ and often e < 1/p

W.-Ramdas, False discovery rate control with e-values.

JRSSB, 2022, Theorem 2

< ロ > < 同 > < 回 > < 回 > .

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	00000000000000	000000	00000	•000000000000000000

Progress

- 2 Merging sequential e-values
- 3 Merging independent e-values
- 4 Merging dependent e-values and the e-BH procedure
- 5 Risk forecasts and backtests

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000	000000	00000	o●ooooooooooooooooo
VaR and	FS			

Value-at-Risk (VaR), $p \in (0,1)$	Expected Shortfall (ES), $p \in (0,1)$
$\operatorname{VaR}_{p}: L^{0} \to \mathbb{R},$	$\mathrm{ES}_{p}:L^{1} ightarrow\mathbb{R}$,
$\operatorname{VaR}_{p}(X) = q_{p}(X)$ = $\inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) \ge p\}$	$\mathrm{ES}_p(X) = rac{1}{1-p} \int_p^1 \mathrm{VaR}_q(X) \mathrm{d}q$
(left-quantile)	(also: TVaR/CVaR/AVaR)

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	00000000000000	000000	00000	00●000000000

An example

- Negated log-returns (in %) of the NASDAQ Composite index from Jan, 2000 to Dec 2021
- Fitted (AR(1)-GARCH(1,1)) or empirical ES_{0.975} forecasts with moving window of 500

E-values SE-merging IE-merging E-merging and e-BH Risk backtests 0000000 0000000 00000 00000 00000 000000000000

Backtesting risk measures

- Risk measure ρ to backtest
- Define

$$\mathcal{F}_{t-1} := \sigma(L_s : s \le t-1)$$

- Daily observations
 - risk measure forecast r_t for $\rho(L_t)$ given \mathcal{F}_{t-1}
 - realized loss L_t
- non-iid, non-stationary observations

Hypothesis to test

$$H_0: rac{ ext{conditional on } \mathcal{F}_{t-1}:}{r_t \geq
ho(L_t | \mathcal{F}_{t-1})} ext{ for } t = 1, \dots, T$$

Э

イロト イボト イヨト イヨト

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000	000000	00000	00000000000000000
Some su	mmary			

- ES is the standard risk measure in banking
- VaR is easy to backtest and model-free methods are available
- ES is difficult to backtest and no model-free methods are available

• • = • • = •

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000	000000	00000	0000000000000000000000000000000000

E-backtesting ES

Daily observations

- ES forecast r_t
- VaR forecast z_t
- realized loss L_t

Hypothesis to test

$$\begin{aligned} & \text{H}_0: \quad \frac{\text{conditional on } \mathcal{F}_{t-1}:}{r_t \geq \mathrm{ES}_p(L_t | \mathcal{F}_{t-1}) \text{ and } z_t = \mathrm{VaR}_p(L_t | \mathcal{F}_{t-1})} \quad \text{for } t = 1, \dots, T \end{aligned}$$

A weaker hypothesis

$$\begin{array}{l} \text{conditional on } \mathcal{F}_{t-1}:\\ H_0': \ r_t - z_t \geq \mathrm{ES}_p(L_t | \mathcal{F}_{t-1}) - \mathrm{VaR}_p(L_t | \mathcal{F}_{t-1}) \quad \text{for } t = 1, \ldots, T\\ \text{and } z_t \geq \mathrm{VaR}_p(L_t | \mathcal{F}_{t-1}) \end{array}$$

 E-values
 SE-merging
 IE-merging
 E-merging and e-BH
 Risk backtests

 0000000
 000000
 000000
 000000
 000000
 000000

Obtaining sequential e-values

Define the function

$$e_p(x,r,z)=rac{(x-z)_+}{(1-p)(r-z)},\quad x\in\mathbb{R},\,\,z\leq r,$$

Theorem 6

For H_0 or H'_0 , $e_p(L_t, r_t, z_t)$, t = 1, ..., T are sequential e-variables.

- Proof: based on Rockafellar/Uryasev'02
- \triangleright e_p is the only choice in this procedure in some sense

< ロ > < 同 > < 三 > < 三 > 、

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000	000000	00000	00000000000000000
Backtest	ing ES			

The general protocol for $t \in \mathbb{N}$

- The bank announces ES forecast r_t and VaR forecast z_t
- Decide predictable $\lambda_t(r_t, z_t) \in [0, 1]$
 - Choosing λ_t: many papers/talks ...
- Observe realized loss L_t
- Obtain the e-value $x_t = e_p(L_t, r_t, z_t)$
- ▶ Compute the e-process (E₀ = 1)

$$E_t = E_{t-1}(1 - \lambda_t + \lambda_t x_t) = \prod_{s=1}^t (1 - \lambda_s + \lambda_s x_s).$$

model free, anytime valid, and allowing for intermediate assessments

Data generating process (Nolde/Ziegel'17)

► AR(1)-GARCH(1,1) process:

$$L_t = \mu_t + \epsilon_t, \quad \epsilon_t = \sigma_t Z_t,$$

$$\mu_t = -0.05 + 0.3L_{t-1}, \ \ \sigma_t^2 = 0.01 + 0.1\epsilon_{t-1}^2 + 0.85\sigma_{t-1}^2$$

- ► The innovations $\{Z_t\}_{t \in \mathbb{N}_+}$ are iid skew-t with shape parameter $\nu = 5$ and skewness parameter $\gamma = 1.5$
- simulate 5500 daily losses (one run)

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000		000000	00000	000000000000000000
Simulatio	on studies			

Forecasters

- Fit AR(1)-GARCH(1,1) everyday with a moving window of 500 days
- Innovations: normal, t and skew-t
- Strategies: under-report, point forecast, over-report

Average point forecast over 5000 days

	$\widehat{\mathrm{VaR}}_{0.95}$	$\widehat{\mathrm{VaR}}_{0.99}$	$\widehat{\mathrm{VaR}}_{0.875}$	$\widehat{\mathrm{ES}}_{0.875}$	$\widehat{\mathrm{VaR}}_{0.975}$	$\widehat{\mathrm{ES}}_{0.975}$
normal	0.605	0.883	0.403	0.606	0.734	0.888
t	0.528	0.974	0.300	0.566	0.709	1.034
skewed-t	0.658	1.217	0.365	0.701	0.888	1.281
true	0.658	1.242	0.359	0.706	0.897	1.312
				4 🗆		

Figure: (Log) e-processes testing $ES_{0.975}$ with respect to number of days. Left: constant Kelly; right: functional Kelly

< ロ > < 同 > < 三 > < 三 >

Backtesting ES (constant Kelly)

	constant Kelly				
	-10% ES	-10% both	exact	+10% both	+10% ES
normal	42	76	167	313	313
	(58.25)	(59.94)	(39.70)	(23.81)	(25.41)
t	296	296	728	1958	1832
	(33.71)	(37.97)	(19.03)	(6.417)	(8.665)
skewed-t	1914	1921	_	_	_
	(5.490)	(5.497)	(-0.3122)	(0.1477)	(0.06787)

Table: Number of days taken to reject $\mathrm{ES}_{0.975}$ forecasts; "–" means no rejection is detected till day 5000; numbers in brackets are final (log) e-values

(日)

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
				00000000000

Backtesting ES (functional Kelly)

	functional Kelly				
	-10% ES	-10% both	exact	+10% both	+10% ES
normal	27	41	41	42	209
	(50.66)	(52.92)	(36.93)	(24.45)	(25.84)
t	167	167	544	1405	1326
	(31.67)	(35.38)	(20.32)	(9.477)	(11.71)
skewed-t	1914	1866	_	_	_
	(6.370)	(7.185)	(-1.524)	(-5.566)	(-6.044)

Table: Number of days taken to reject $\mathrm{ES}_{0.975}$ forecasts; "–" means no rejection is detected till day 5000; numbers in brackets are final (log) e-values

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

E-values	SE-merging	IE-merging	E-merging and e-BH	Risk backtests
0000000	0000000000000	000000	00000	0000000000000000

Empirical setting

- Negated log-returns of the NASDAQ Composite index from Jan 2000 to Dec 2021
- ▶ Fitted to an AR(1)-GARCH(1,1) model with moving window of 500
- Sample size after initial training: n = 5,536

Jan 2005 - Dec 2021, functional Kelly, $ES_{0.875}$ (log scale)

<ロ> (日) (日) (日) (日) (日)

Jan 2005 - Dec 2021, functional Kelly, $ES_{0.975}$ (log scale)

number of days

E-values 0000000 SE-merging

IE-merging

E-merging and e-BH 00000 Risk backtests

Thank you

Working paper series on e-values www.alrw.net/e

