The Directional Optimal Transport and its Applications

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science

University of Waterloo

School of Management, University of Science and Technology of China June 2021

イロト イボト イヨト イヨト

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

Agenda

- 2 Directional transport
- 3 Formal theory
- Ordered risk aggregation
- 5 An application

6 Future directions

(日)

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

Agenda

Based on

- Nutz-W., The directional optimal transport. <u>arXiv:2002.08717</u>, 2021, Annals of Applied Probability
- Chen-Lin-W., Ordered risk aggregation under dependence uncertainty. <u>arXiv:2104.07718</u>, 2021

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
•0000000	000000000	000000000000000000000000000000000000000	00000000000	00000	00000

Transport theory

- Pure mathematics theory
- Important applications
 - economics
 - decision theory
 - finance
 - engineering
 - operations research
 - physics
- 1 Nobel Prize laureate
- 2 Fields medalists

(日)

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
000000	0000000000		000000000000000000000000000000000000000	00000	00000

Monge's formulation

- X and Y are two Radon spaces (main example: \mathbb{R}^d)
- Cost function $c: X \times Y \to [0, \infty]$ or $(-\infty, \infty]$
- Given probability measures μ on X and ν on Y
- ► Monge's problem: find a transport map T : X → Y that attains

$$\inf\left\{\int_X c(x,T(x))\,\mathrm{d}\mu(x)\,\Big|\, T_*(\mu)=\nu\right\},\,$$

where $T_*(\mu)$ is the push forward of μ by T

Such T is an optimal transport map

< ロ > < 同 > < 三 > < 三 > 、

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
0000000					

Monge's formulation

(日)

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
0000000					

Kantorovich's formulation

- Monge's formulation may be ill-posed (e.g., point masses)
- Kantorovich's problem: find a probability measure P on X × Y that attains

$$\inf \left\{ \int_{X \times Y} c(x, y) \, \mathrm{d} P(x, y) \mid P \in \Gamma(\mu, \nu) \right\},\$$

where $\Gamma(\mu, \nu)$ is the set of probability measures on $X \times Y$ with marginals μ and ν .

- $X \times Y = \mathbb{R} \times \mathbb{R}$: copulas and dependence
- Discrete version: linear programming

周 ト イ ヨ ト イ ヨ ト

Kantorovich's formulation

Э

Optimal transport 00000●00	Directional transport	Formal theory ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Risk aggregation	Application 00000	Future directions
-					

Transport duality

If c is non-negative and lower semi-continuous, then the minimum of the Kantorovich problem is equal to

$$\sup\left(\int_X arphi(x) \,\mathrm{d} \mu(x) + \int_Y \psi(y) \,\mathrm{d}
u(y)
ight),$$

where the supremum runs over all pairs of bounded and continuous functions $\varphi: X \to \mathbb{R}$ and $\psi: Y \to \mathbb{R}$ such that

$$\varphi(x) + \psi(y) \leq c(x, y).$$

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
00000000	0000000000	000000000000000000000000000000000000000	000000000000	00000	00000

Economic interpretation

- $x \in X$: the vector of characteristics of a worker
- $y \in Y$: the vector of characteristics of a firm
- Φ(x, y) the economic output generated by worker x matched with firm y
- Social economic-output maximization problem

$$\sup\left\{\int_{X\times Y}\Phi\left(x,y\right)\mathrm{d}P\left(x,y\right)\mid P\in\Gamma\left(\mu,\nu\right)\right\}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
0000000					

On the cost function

Assume $X = Y = \mathbb{R}$.

If c is submodular, i.e.,

the optimal transport is comonotone. Examples:

•
$$c(x,y) = (y-x)^2$$

•
$$c(x,y) = -\mathbb{1}_{\{(x,y) \le (x_0,y_0)\}}$$

- c(x,y) = f(x) + g(y) + h(y x) where h is convex
- If c is supermodular, the optimal transport is antitone (counter-monotonic).

•
$$c(x,y) = \mathbb{1}_{\{y-x > d_0\}}$$
: probability of transport distance $> d_0$

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
	000000000				

Optimal transport

- 2 Directional transport
- 3 Formal theory
- Ordered risk aggregation
- **5** An application

6 Future directions

<ロト < 同ト < ヨト < ヨト

Optimal transport 00000000	Directional transport 000000000	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

Probabilistic formulation

New notation: $X \sim \mu$ and $Y \sim \nu$ stand for random variables

Classic optimal transport (OT)

 $\inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[c(X, Y)]$

• Martingale optimal transport (MOT) require: $\mu \preceq_{cx} \nu$

$$\inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[c(X, Y)]: \ X = \mathbb{E}[Y|X]$$

• Supermartingale optimal transport (SMOT) require: $\mu \succeq_{ssd} \nu$

$$\inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[c(X, Y)]: \ X \geq \mathbb{E}[Y|X]$$

• Directional optimal transport (DOT) require: $\mu \preceq_{st} \nu$

$$\inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[c(X, Y)]: X \leq Y$$

MOT: Beiglböck/Henry-Labordère/Penkner'13 F&S; Beiglböck/Juillet'16 AoP SMOT: Nutz/Stebegg'18 AoP

13/61

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
00000000	000000000	000000000000000000000000000000000000000	00000000000	00000	00000

Directional transport

- Given $\mu \preceq_{\mathrm{st}} \nu$ on $\mathbb R$ and cost $c: \mathbb R^2 \to \mathbb R$
- $\mathbb{H} = \{(x, y) \in \mathbb{R}^2 : x \leq y\}$

Three formulations:

Monge:

$$\inf\left\{\int_{\mathbb{R}} c(x, T(x)) \mathrm{d}\mu(x): T_*(\mu) =
u, \ T(x) \ge x \ \forall x
ight\}$$

Kantorovich:

$$\inf\left\{\int_{\mathbb{R}\times\mathbb{R}}c(x,y)\mathrm{d}P(x,y):P\in\Gamma(\mu,\nu),\ P(\mathbb{H})=1\right\}$$

Probabilistic:

$$\inf \left\{ \mathbb{E}[c(X, Y)] : X \sim \mu, \ Y \sim \nu, \ X \leq Y \right\}$$

Smith'83 Comm. Stat.; Rogers'99 JLMS; Arnold/Molchanov/Ziegel'20 JMVA 🚊 🧠 🔾

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

Directional transport

 If c is submodular, then OT is attained by comonotonicity. Moreover,

(X, Y) is comonotone and $X \preceq_{\mathrm{st}} Y \Rightarrow X \leq Y$

 \Rightarrow the directional constraint is not binding, $\mathrm{OT}=\mathrm{DOT}$

▶ If *c* is supermodular, then it is unclear:

(X, Y) is antitone and $X \preceq_{\mathrm{st}} Y \Rightarrow X \leq Y$

 \Rightarrow the directional constraint may be binding, $OT \neq DOT$

 $X \preceq_{\mathrm{st}} Y \text{ (or } \mu \preceq_{\mathrm{st}} \nu) \text{ means } \mathbb{P}(X \leq t) \geq \mathbb{P}(Y \leq t) \text{ for all } t \in \mathbb{R}.$

Optimal transport 0000000 Directional transport

Formal theory

Risk aggregation

Application Futu 00000 000

Future directions

Treatment effect analysis

score X (control)
score Y (experimental)

- Marginals of (X, Y):
- ► Effect measurement 𝔼[Y − X]: ✓
- Dependence of (X, Y): unidentifiable (Neyman'1923)

Optimal transport Optimal tran

Treatment effect analysis

- ► Marginals of (X, Y): ✓
- Effect measurement $\mathbb{E}[Y X]$:
- Monotone response assumption: $Y \ge X$
 - e.g., Manski'97 ECMA
- Requires Var(Y X) for uncertainty quantification
 - No unbiased or consistent estimators
 - Or one may want to know $\mathbb{P}(Y X > t)$

For Var(Y - X):

$$\sup \operatorname{Var}(Y - X) \iff \sup \mathbb{E}[(Y - X)^2] \iff \inf \mathbb{E}[XY]$$

 \implies : sup of submodular cost (or inf of supermodular cost)

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions
Goal					

- A coupling (transport) *P* of μ and ν is an element of $\Gamma(\mu, \nu)$
- We will focus on the optimal coupling P_{*} which maximizes a submodular function c

$$P_* = rgmax_{P \in \Gamma(\mu,
u)} \left\{ \int_{\mathbb{R} imes \mathbb{R}} c(x, y) \mathrm{d}P(x, y) : P(\mathbb{H}) = 1
ight\}$$

• Primary example: $c(x, y) = (y - x)^2$

< 同 > < 三 > < 三 > -

Solution in the discrete setting

Simple setting

- $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ and $\nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$
- $x_1 > \cdots > x_n$
- y_1,\ldots,y_n distinct, $S_1 = \{y_1,\ldots,y_n\}$

The coupling P_* and map T:

• Iterate for
$$k = 1, \ldots, n$$
:

(i)
$$T(x_k) := \min\{y \in S_k : y \ge x_k\},$$

(ii) $S_{k+1} := S_k \setminus \{T(x_k)\}.$

- The antitone coupling: omit the inequality in (i)
- ▶ Such P_{*} is unique and universal over c

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution in the discrete setting

Figure: Left panel: An example of P_* , with the *y*-axis shown at the top. Right panel: If atomes are not coupled by P_* , then a rearrangement will improve.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Solution in the discrete setting

- ▶ At each position x_i place "(" and at each position y_i place ")"
- P_{*} couples each "(" to its ")" via the standard rule of algebraic operations
- ▶ If one types several "{" and "}" in \Particle TEX, then P_{*} describes the way \Particle TEX processes these curly brackets

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
		•00000000000000000000000000000000000000			

Optimal transport

- 2 Directional transport
- 3 Formal theory
- Ordered risk aggregation
- **5** An application
- 6 Future directions

<ロト < 同ト < ヨト < ヨト

Optimal transport	Directional transport	Formal theory ⊙●○○○○○○○○○○○○○○○○○	Risk aggregation	Application 00000	Future directions
Notation					

Notation

- μ and ν are probabilities on $\mathbb R$ with cdfs F_μ and F_ν
- A coupling P of μ and ν is directional if $P(\mathbb{H}) = 1$
- Denoting by $\mathcal{D} = \mathcal{D}(\mu, \nu)$ the set of all directional couplings

•
$$\mathcal{D} \neq \emptyset \iff \mu \preceq_{\mathrm{st}} \nu \iff \mathcal{P}_{\mathrm{como}} \in \mathcal{D}$$

- $\mathcal{D} = \Gamma(\mu, \nu) \iff \sup(\operatorname{supp} \mu) \le \inf(\operatorname{supp} \nu) \iff P_{\operatorname{anti}} \in \mathcal{D}$
- For subprobabilities θ_1, θ_2 ,
 - $\theta_1 \preceq_{\mathrm{st}} \theta_2$ means $\theta_1(\mathbb{R}) = \theta_2(\mathbb{R})$ and $F_{\theta_1} \ge F_{\theta_2}$
 - $\theta_1 \leq \theta_2$ means $\theta_1(A) \leq \theta_2(A)$ for all $A \in \mathcal{B}(\mathbb{R})$.

Assume $\mu \preceq_{\mathrm{st}} \nu$ from now on

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Characterizing the optimal coupling

Theorem 1

There exists a unique directional coupling $P_* = P_*(\mu, \nu)$ which couples $\mu|_{(x,\infty)}$ to ν_x for all $x \in \mathbb{R}$, where the subprobability ν_x is defined by its cdf

$$F_{\nu_x} = \sup_{\theta \in S_x} F_{\theta} \quad \text{for} \quad S_x = \{\theta : \mu|_{(x,\infty)} \preceq_{\text{st}} \theta \le \nu\}.$$

The measure ν_x is the unique minimal element of S_x for the order \leq_{st} .

- Theorem 1 formalizes the intuition in the discrete setting
- ▶ P_{*} is called the directional lower (DL) coupling

・ロット (四) (日) (日) (日) (日)

Characterizing the optimal coupling

- A pair $((x, y), (x', y')) \in \mathbb{H}^2$ is improvable if $x < x' \le y < y'$
- (x, y) and (x', y') do not cross, but could be rearranged into ((x, y'), (x', y)) ∈ ℍ² which forms a cross

Optimal transport Directional transport **Formal theory** Risk aggregation Application Future directions

Characterizing the optimal coupling

► c is (μ, ν) -integrable if $|c(x, y)| \le \phi(x) + \psi(y)$ for some $\phi \in L^1(\mu)$ and $\psi \in L^1(\nu)$, implying

$$\sup_{\boldsymbol{P}\in\mathcal{D}}\int \boldsymbol{c}\mathrm{d}\boldsymbol{P}\leq\int\phi\mathrm{d}\boldsymbol{\mu}+\int\psi\mathrm{d}\boldsymbol{\nu}<\infty.$$

For any strictly submodular c,

$$c(x,y) + c(x',y') < c(x,y') + c(x',y)$$

if ((x, y), (x', y')) is improvable

Characterizing the optimal coupling

Theorem 2

For a coupling $P \in \mathcal{D}(\mu, \nu)$, the following are equivalent.

(i) $F_P \leq F_Q$ on \mathbb{R}^2 for all $Q \in \mathcal{D}(\mu, \nu)$, where F_Q is the cdf of Q.

(ii) P is optimal for all (μ, ν) -integrable and submodular c.

 (iii) P is optimal for some (μ, ν)-integrable and strictly submodular c.

(iv) P is supported by a set A ⊆ H with no improvable pairs.
(v) P = P_{*}.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal transport 00000000	Directional transport 0000000000	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

Invariance

Corollary 1

Let $\phi : \mathbb{R} \to \mathbb{R}$ be a strictly increasing function. Then

$$\mathsf{P}_*(\mu,
u)=\mathsf{P}_*(\mu\circ\phi^{-1},
u\circ\phi^{-1})\circ(\phi,\phi).$$

- ► Copulas of P_{*}(µ, ν) are precisely those of P_{*}(µ ∘ φ⁻¹, ν ∘ φ⁻¹)
- For this invariance property, the same transformation must be applied to both axes, in contrast to the classic OT setting

< ロ > < 同 > < 三 > < 三 > 、

Distribution function

Corollary 2

The cdf of P_* is given by

$$F_*(x,y) = \begin{cases} F_{\nu}(y) & \text{if } y \leq x, \\ F_{\mu}(x) - \inf_{z \in [x,y]} (F_{\mu}(z) - F_{\nu}(z)) & \text{if } y > x. \end{cases}$$

cf. Arnold/Molchanov/Ziegel'20 JMVA

Э

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

Continuity

Corollary 3

Consider marginals $\mu_n \preceq_{st} \nu_n$, $n \ge 1$ with $\mu_n \xrightarrow{w} \mu$ and $\nu_n \xrightarrow{w} \nu$, and suppose that μ and ν are atomless. Then $P_*(\mu_n, \nu_n) \xrightarrow{w} P_*(\mu, \nu)$.

Example 1 (Continuity fails in the presence of atoms)

For $n \in \mathbb{N}$, let μ_n and ν_n be such that $\mu_n\{0\} = \mu_n\{1\} = 1/2$ and $\nu_n\{1-1/n\} = \nu_n\{2\} = 1/2$. Then $\mu_n \preceq_{st} \nu_n$ and $\nu_n \xrightarrow{w} \nu$ with $\nu\{1\} = \nu\{2\} = 1/2$, and $\mu_n \equiv \mu$ is constant. We see that $P_*(\mu_n, \nu_n)$ is the comonotone coupling, $P_*(\mu, \nu)$ is the antitone coupling, and $P_*(\mu_n, \nu_n) \xrightarrow{w} P_*(\mu, \nu)$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

Decomposition

• The common part $\mu \wedge \nu$ of μ and ν is given by

$$\frac{\mathrm{d}(\mu \wedge \nu)}{\mathrm{d}(\mu + \nu)} := \frac{\mathrm{d}\mu}{\mathrm{d}(\mu + \nu)} \wedge \frac{\mathrm{d}\nu}{\mathrm{d}(\mu + \nu)}$$

• The mutually singular parts of μ and ν are

$$\mu'=\mu-\mu\wedge\nu \ \, \text{and} \ \, \nu'=\nu-\mu\wedge\nu$$

Proposition 1

The optimal coupling $P_*(\mu, \nu)$ satisfies

$$\mathsf{P}_*(\mu,
u) = \mathbb{I}(\mu \wedge
u) + \mathsf{P}_*(\mu',
u')$$

where $\mathbb{I}(\cdot) \in \Gamma(\cdot, \cdot)$ is the identical coupling.

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
		000000000000000000000000000000000000000			

Decomposition

Optimal transport 00000000	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

- A coupling P is of Monge-type if P(Y|X) = T(X) is a deterministic function T of X which is then called a Monge map (transport map) of P
- P_{*} may be randomized (not of Monge-type) even in the absence of atoms, in contrast to the classic OT setting

- 4 同 ト 4 国 ト

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
		000000000000000000000000000000000000000			

Theorem 3

Let μ, ν be atomless and $\mu \wedge \nu = 0$. Then P_* is of Monge-type with transport map T given by

$$\Gamma(x) = \inf\{y \ge x : (y, F(x)) \notin H\}$$

where
$$F = F_{\mu} - F_{\nu}$$
 and $H = \{(x, z) : z \leq F(x)\}.$

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
		000000000000000000000000000000000000000			

Corollary 4

Let μ, ν be atomless. Then

$$P_*(\mu,\nu) = (\mu \wedge \nu) \otimes_x \delta_x + \mu' \otimes_x \delta_{\mathcal{T}(x)}$$

where $\mu' = \mu - \mu \wedge \nu$. In particular, P_* is of Monge-type if and only if μ' and $\mu \wedge \nu$ are mutually singular.

▶ The "coin flip" is the only source of randomization in P_{*}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

<u>Remarks.</u>

- Previous results hold if ν' has atoms
- If μ' has atoms, it can be addressed by "stretching"

If T is the map of P_{*}(μ, ν), then T^φ := φ ∘ T ∘ φ⁻¹ is that of P_{*}(μ ∘ φ⁻¹, ν ∘ φ⁻¹); in other words, T^φ transports φ(x) to φ(y) whenever T transports x to y

Optimal transport 00000000	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions

Distribution function

Corollary 5

We have $H^{\wedge} \leq F_* \leq H^{\vee}$ where

$$egin{aligned} & H^\wedge(x,y) = F_
u(y) - [(F_\mu(y) - F_\mu(x)) \wedge (F_
u(y) - F_
u(x))]_+, \ & H^ee(x,y) = F_\mu(x) \wedge F_
u(y). \end{aligned}$$

Moreover,

(i) $F_* = H^{\wedge}$ if and only if $F = F_{\mu} - F_{\nu}$ is unimodal.

(ii) $F_* = H^{\vee}$ if and only if $\mathcal{D}(\mu, \nu)$ is a singleton. If, in addition, F is continuous, these conditions are further equivalent to $\mu = \nu$.

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
		000000000000000000000000000000000000000			

Decomposition

Proposition 2

Let μ, ν satisfy $\mu \wedge \nu = 0$. Then P_* is the sum of countably many antitone couplings.

Example 2 (Multiple-crossing densities)

Assume that μ and ν are atomless and that $F = F_{\mu} - F_{\nu}$ is piecewise monotone (with finitely many pieces). Then P_* is the sum of the identical coupling of $\mu \wedge \nu$ and finitely many antitone couplings between pairs of disjoint intervals.

< 口 > < 同 > < 三 > < 三 > 、

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
		000000000000000000000000000000000000000			

Other properties

Example 3 (Absence of antitone intervals)

Let μ be the Cantor distribution on [0, 1] (i.e. uniform on the Cantor ternary set *C*) and ν be uniform on [0, 2]. Clearly $\mu \wedge \nu = 0$.

- Each x ∈ C can be represented in base 3 as x = 2∑_{n=1}[∞] x_n3⁻ⁿ where x_n ∈ {0,1}. The comonotone transport T_C given by T_C(x) = 2∑_{n=1}[∞] x_n2⁻ⁿ is directional from μ to ν. Hence, μ ≤_{st} ν.
- Assume for contradiction that there exists an interval [a, b] ⊆ [0, 1] such that µ([a, b]) > 0 and T|_[a,b] is antitone between µ|_[a,b] and its image. There exists c such that µ([a, c]) > 0 and T transports µ|_[a,c] to a distribution on (c,∞). By Theorem 1, T transports µ|_(a,∞) to a distribution ν_a with ν_a([a, c]) > 0, a contradiction.

・ロ・・ 日・ ・ 日・ ・ 日・

Optimal transport	Directional transport	Formal theory 0000000000000000000	Risk aggregation	Application 00000	Future directions
Classic O	т				

 \blacktriangleright Consider $\mu \preceq_{\rm st} \nu$ and the classic OT problem

$$\inf_{P\in\Gamma(\mu,\nu)}\int c(|y-x|)P(\mathrm{d}x,\mathrm{d}y) \tag{1}$$

Let c : ℝ → ℝ₊ be increasing and concave
 ⇒ c(|y − x|) is supermodular on ℍ but typically not on ℝ²

Proposition 3

If $F = F_{\mu} - F_{\nu}$ is unimodal, then $P_*(\mu, \nu)$ is an optimal coupling for the unconstrained problem (1). If c is strictly concave, the optimizer is unique.

< 口 > < 同 > < 三 > < 三 > 、

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
			•0000000000		

Optimal transport

- 2 Directional transport
- 3 Formal theory
- Ordered risk aggregation
- **5** An application

6 Future directions

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation ○●○○○○○○○○○	Application 00000	Future directions

Ordered risk aggregation

- \mathcal{M} is the set of cdfs on \mathbb{R}
- \mathcal{X} is a set of random variables in $(\Omega, \mathcal{A}, \mathbb{P})$
- ▶ For $F \preceq_{st} G$, let

$$\mathcal{F}_2^o(F,G) = \{(X,Y) : X \sim F, Y \sim G, X \leq Y\}$$

•
$$\rho: \mathcal{X} \to \mathbb{R} \text{ or } \rho: \mathcal{M} \to \mathbb{R}$$

Goal: compute

$$\overline{\rho}(\mathcal{F}_2^o(F,G)) := \sup\{\rho(X+Y) : (X,Y) \in \mathcal{F}_2^o(F,G)\}$$

$$\underline{\rho}(\mathcal{F}_2^o(F,G)) := \inf\{\rho(X+Y) : (X,Y) \in \mathcal{F}_2^o(F,G)\}$$

Risk aggregation (OT): W'/Peng/Yang'13 F&S; Embrechts/Wang/W₁'15 F&S = ∽ ۹ €

00000000 000000000 0000000000000000000	Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
				0000000000		

Lemma 1

For
$$(X, Y), (X^c, Y^c), (X', Y') \in \mathcal{F}_2^o(F, G)$$
 such that (X^c, Y^c) is comonotone and (X', Y') is DL-coupled, we have

$$X^{c} + Y^{c} \preceq_{\mathrm{cv}} X + Y \preceq_{\mathrm{cv}} X' + Y',$$

where \leq_{cv} is the concave order (i.e., \succeq_{cx}).

- If ρ is increasing in ≤_{cx}, then ρ is minimized by the DL coupling and maximized by comonotonicity
 - law-invariant convex risk measures
 - consistent risk measures (Mao/W.'20 SIFIN)
 - Var(X + Y) and Var(Y X)

< ロ > < 同 > < 三 > < 三 > 、

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
			0000000000000000		

- ► The important cases of VaR_p(X + Y), VaR_p(Y X), P(X + Y > t) and P(Y - X > t) are not included
- Goal: compute

$$\overline{\operatorname{VaR}}_p(\mathcal{F}_2^o(F,G))$$
 and $\underline{\operatorname{VaR}}_p(\mathcal{F}_2^o(F,G))$

where

$$\operatorname{VaR}_{p}(F) = F^{-1}(p+) = \inf\{t \in \mathbb{R} : F(t) > p\}$$

More generally,

$$\overline{\rho}(\mathcal{F}_2^o(F,G))$$
 and $\underline{\rho}(\mathcal{F}_2^o(F,G))$

for a tail risk measure ρ (e.g., VaR, ES, RVaR)

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation 0000●000000	Application 00000	Future directions

▶ Idea: let *F*^[*p*,1] be the upper *p*-tail distribution of *F*, namely

$$F^{[p,1]}(x) = rac{(F(x)-p)_+}{1-p}, \quad x \in \mathbb{R}$$

• Let ρ^* be the generator of ρ , i.e., $\rho(F) = \rho^*(F^{[p,1]})$

- Generator of VaR_p: ess-inf; that of ES_p: \mathbb{E}
- Generators of VaR, ES and RVaR are all increasing in $\leq_{\rm cv}$
- Guess: if ρ is monotone, then

$$\overline{\rho}(\mathcal{F}_2^o(F,G)) = \overline{\rho^*}(\mathcal{F}_2^o(F^{[p,1]},G^{[p,1]}))$$

True in classic OT: Liu/W.'21 MOR

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
			00000000000		

To show

$$\overline{\rho}(\mathcal{F}_2^o(F,G)) = \overline{\rho^*}(\mathcal{F}_2^o(F^{[p,1]},G^{[p,1]}))$$

we need to prove, for any $(X, Y) \in \mathcal{F}_2^o(F, G)$, there exists $(X', Y') \in \mathcal{F}_2^o(F^{[p,1]}, G^{[p,1]})$ s.t. $\rho(X + Y) \le \rho^*(X' + Y')$

- ► Let *A* be a *p*-tail event of *X* + *Y* (W'/Zitikis'21 MS), then $\rho(X + Y) = \rho^*(\hat{X} + \hat{Y})$ for some $\hat{X} \stackrel{d}{=} X | A$ and $\hat{Y} \stackrel{d}{=} Y | A$
- We can show $\hat{X} \preceq_{\mathrm{st}} F^{[p,1]}$ and $\hat{Y} \preceq_{\mathrm{st}} G^{[p,1]}$
- In OT: take (X', Y') with the same dependence as (\hat{X}, \hat{Y})
- ▶ In DOT: cannot guarantee $(X', Y') \in \mathcal{F}_2^o(F^{[p,1]}, G^{[p,1]})$

・ 「 ・ ・ 」 ・ ・ 「 ・ ・

The monotone embedding theorem

For F, G ∈ M, we say F is smaller than G in strong stochastic order if G(y) - G(x) ≥ F(y) - F(x) for all y ≥ x ≥ G⁻¹(0), denoted by F ≺_{ss} G.

Proposition 4

The strong stochastic order satisfies the following properties:

(i) If
$$F \leq_{ss} G$$
 then $F \leq_{st} G$;

(ii) Assuming
$$F^{-1}(0) = G^{-1}(0)$$
, $F \leq_{ss} G$ if and only if $F = G$;

(iii) If
$$G^{-1}(0) = -\infty$$
, then $F \leq_{ss} G$ means $F = G$;

(iv) The relation \leq_{ss} is a partial order.

(日)

The monotone embedding theorem

The problem of monotone embedding: Suppose that

 $F \leq_{st} F' \leq_{st} G$ and $(X, Y) \in \mathcal{F}_2^o(F, G)$. The question is whether there exists $X' \sim F'$ such that $X \leq X' \leq Y$ holds.

Example 4

Let *G* be the Bernoulli(1/2) distribution. Take $Y \sim G$, let X = -Y, and *F* be the distribution of *X*. Clearly, (X, Y) is countermonotonic, and hence (X, Y) is DL-coupled. Take another random variable $X' \sim F' = U[-1, 1]$. It is easy to see that $F \leq_{st} F' \leq_{st} G$. Since $\mathbb{P}(X = Y) = 1/2$ but $\mathbb{P}(X' = Y) = 0$, we know that $X \leq X' \leq Y$ cannot hold for any $X' \sim F'$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The monotone embedding theorem

Let D^{F,G} be the DL coupling of F and G with transport map T^{F,G}

Theorem 4 (Monotone embedding)

Suppose that $F \leq_{ss} F' \leq_{st} G$, and $(X, Y) \sim D_*^{F,G}$. Then there exists $X' \sim F'$ such that $X \leq X' \leq Y$ almost surely and (X', Y) is DL-coupled.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal transport 0000000 Directional transport

Formal theory

Risk aggregation

Application Future directions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bounds on tail risk measures

Theorem 5

Suppose that $F \leq_{st} G$, $p \in (0,1)$, (ρ, ρ^*) is a p-tail pair of risk measures, and ρ^* is monotone and \leq_{cv} -increasing. We have

$$\overline{\rho}(\mathcal{F}_2^o(F,G)) = \overline{\rho^*}\left(\mathcal{F}_2^o\left(F^{[p,1]},G^{[p,1]}\right)\right) = \rho^*(X+Y), \quad (2)$$

where $(X, Y) \sim D_*^{F^{[p,1]}, G^{[p,1]}}$

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
			0000000000		

VaR bounds

Proposition 5

For continuous distributions F and G such that F \leq_{st} G and $p \in (0,1),$ we have

$$\overline{\operatorname{VaR}}_{p}(\mathcal{F}_{2}^{o}(F,G)) = \min\left\{\inf_{x \in [a,b]}\left\{T^{F^{[p,1]},G^{[p,1]}}(x) + x\right\}, 2b\right\},\$$

where $a = F^{-1}(p+)$ and $b = G^{-1}(p+)$.

- The lower bound is also available
- Bounds on left and right VaR are the same if the marginal distributions are continuous and strictly increasing
- Invert bounds on VaR to get bounds on $\mathbb{P}(X + Y > t)$

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
				00000	

Optimal transport

- 2 Directional transport
- 3 Formal theory
- Ordered risk aggregation
- **5** An application

6 Future directions

<ロト < 同ト < ヨト < ヨト

An applic	ation					
Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions	

- - A health insurance portfolio
 - The aggregate loss: S = X + Y where X ~ F and Y ~ G represent the losses caused by females and males, respectively, from a portfolio of 50 males and 50 females
 - $F \preceq_{st} G$ can be verified
 - $X \leq Y$ is reasonable due to many common risk factors

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A	-1'				
Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions

- Data from the Nationwide Inpatient Sample of the Healthcare Cost and Utilization Project (NIS-HCUP)
- ▶ 500 observations with 244 males and 256 females
- Testing the bootstrap sample \hat{F} and \hat{G} cannot reject $\hat{F} \preceq_{\text{st}} \hat{G}$
- ► Use the isotonic distributional regression to get F and G with F ≤_{st} G (Henzi/Ziegel/Gneiting'21 JRSSB)

 Data: Frees'09 Regression Modeling with Actuarial and Financial Applications
 Image: Constraint of the second s

An application

Ruodu Wang

(wang@uwaterloo.ca)

Optimal transport 00000000	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 0000●	Future directions

An application

æ

Optimal transport	Directional transport	Formal theory	Risk aggregation	Application	Future directions
					00000

Optimal transport

- 2 Directional transport
- 3 Formal theory
- Ordered risk aggregation
- **5** An application

イロト イボト イヨト イヨト

Optimal transport	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions 0●000

Future directions

- Higher dimension
- Higher number of marginals
- Statistical inference on variance bounds
 - Aronow/Green/Lee'14 AoS for classic OT (Fréchet-Hoeffding)
- Bounds on $\mathbb{P}(Y X > t)$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Optimal transport 00000000	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application	Future directions 00●00

Future directions

Higher dimension.

$$\max_{P \in \mathcal{D}(\mu,\nu)} \int c \mathrm{d}P \quad \text{and} \quad \min_{P \in \mathcal{D}(\mu,\nu)} \int c \mathrm{d}P$$

where μ and ν are probability measures on \mathbb{R}^d and $g : \mathbb{R}^{d+d} \to \mathbb{R}$ is submodular. Possible formulations for \mathcal{D} :

- $x \leq T(x)$ component-wise
- $T(x) x \in K$ for some set K (e.g., specific directions)

(人間) トイヨ ト (日) ト (日)

Optimal transport 00000000	Directional transport	Formal theory 000000000000000000000000000000000000	Risk aggregation	Application 00000	Future directions 000●0

Future directions

Higher number of marginals.

$$\max_{P \in \mathcal{D}(\mu_1, \dots, \mu_T)} \int c dP \quad \text{and} \quad \min_{P \in \mathcal{D}(\mu_1, \dots, \mu_T)} \int c dP$$

where $\mathcal{D}(\mu_1, \ldots, \mu_T)$ is the set of directional couplings of μ_1, \ldots, μ_T , and $c : \mathbb{R}^d \to \mathbb{R}$ is submodular.

- Even the unconstrained OT with $T \ge 3$ is very difficult
 - $c(x) = -(x_1 + \cdots + x_T)^2 \Rightarrow \text{ joint mixability (Wang/W.'16)}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you

Thank you for your attention!

Э

< ロ > < 同 > < 回 > < 回 > < 回 > <