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Transport theory

» Pure mathematics theory

» Important applications Ho T ('>

® economics X

® decision theory

® finance
® engineering

® operations research

physics

> 1 Nobel Prize laureate A=f: TREB)

» 2 Fields medalists
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Monge's formulation

>

X and Y are two Radon spaces (main example: R9)

v

Cost function ¢ : X x Y — [0, 00] or (—o0, 0]

v

Given probability measures i on X and v on Y

v

Monge's problem: find a transport map T : X — Y that

attains

inf { /X c(x, T(x))du(x)

To(p) = V},

where T, (u) is the push forward of p by T

v

Such T is an optimal transport map
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Monge's formulation

-- Le mémoire sur les déblais et les remblais

Gaspard-l\-/longe- . .
1746-1818 ( The note on land excavation and infill )

Ruodu Wang  (wang@uwaterloo.ca) Directional Optimal Transport


wang@uwaterloo.ca

Optimal transport
000®0000

Kantorovich's formulation

» Monge's formulation may be ill-posed (e.g., point masses)

» Kantorovich's problem: find a probability measure P on
X X Y that attains

nf { [ ctuy)dPlan)| Perun .

where I'(u, V) is the set of probability measures on X x Y

with marginals p and v.
» X XY =R xR : copulas and dependence

> Discrete version: linear programming
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Kantorovich's formulation

U1
Y2

20
Y3

)

Leonid Kantorovich Resource allocation
1912-1986
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Transport duality

If ¢ is non-negative and lower semi-continuous, then the minimum

of the Kantorovich problem is equal to

i < [ etdauto+ [ w(y>du(y)) |

where the supremum runs over all pairs of bounded and continuous
functions ¢ : X =+ R and 9 : Y — R such that

o(x) +P(y) < c(x, y).
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Economic interpretation

v

x € X: the vector of characteristics of a worker

v

y € Y: the vector of characteristics of a firm

» ®(x,y) the economic output generated by worker x matched

with firm y

» Social economic-output maximization problem

sp{ [ @GPy Per(un)]

Ruodu Wang  (wang@uwaterloo.ca) Directional Optimal Transport


wang@uwaterloo.ca

Optimal transport
0000000e

On the cost function

Assume X = Y = R.

» If c is submodular, i.e.,
c(x,y)+c(x,y) <clx,y)+c(xsy) for x <x"and y <y,

the optimal transport is comonotone. Examples:

* c(x,y)=(y —x)?

* (6 ¥) = ~Lin<iom)
® c(x,y) =1(x)+ g(y) + h(y — x) where h is convex

» If ¢ is supermodular, the optimal transport is antitone

(counter-monotonic).

> c(x,y) = 1{y_x>q,): probability of transport distance > do
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Probabilistic formulation

New notation: X ~ p and Y ~ v stand for random variables
> Classic optimal transport (OT)
o inf_ E[e(X. V)]
> Martingale optimal transport (MOT) require: it <cx V
inf  E[c(X,Y)]: X =E[Y|X]
Xe~p,Y~v
> Supermartingale optimal transport (SMOT) require: [t =gsq V
inf  E[c(X,Y)]: X >E[Y|X]
Xe~p,Y~v
> Directional optimal transport (DOT) require: p =g V
inf  E[c(X,Y)]: X<Y
Xe~op,Y~v

MOT: Beiglbdck/Henry-Labordere/Penkner'13 F&S; Beiglbock/Juillet'16 AoP
SMOT: Nutz/Stebegg'18 AoP
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Directional transport

> Given u <g v on R and cost ¢ : RZ 5 R
» H={(x,y) e R*: x <y}
Three formulations:

> Monge:
inf {/ c(x, T(x))du(x) : Tu(u) =v, T(x) > x Vx}
R
» Kantorovich:
inf {/ c(x,y)dP(x,y) : P € I'(u,v), P(H) = 1}
RxR
» Probabilistic:

inf {E[c(X,Y)]: X ~p, Y ~v, X< Y}

Smith’83 Comm. Stat.; Rogers’99 JLMS; Arnold/Molchanov/Ziegel20 JMVA
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Directional transport

> If ¢ is submodular, then OT is attained by comonotonicity.

Moreover,
(X,Y) is comonotone and X <t ¥ = X <Y

= the directional constraint is not binding, OT = DOT

> If ¢ is supermodular, then it is unclear:
(X,Y)is antitone and X <&t ¥ # X <Y

= the directional constraint may be binding, OT # DOT

X =Zst Y (or p =gt v) means P(X < t) > P(Y < t) forall t &R.
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Treatment effect analysis

EXPERIMENTAL

score X (control)
score Y (experimental)
» Marginals of (X, Y): v
» Effect measurement
E[Y — X]: v

» Dependence of (X, Y):

A
unidentifiable &
&
2

(Neyman'1923)

©
@R 2

=
\/-.s'.tor§ Or‘bnon B
16/61
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Treatment effect analysis

>

Marginals of (X, Y): v
Effect measurement E[Y — X]: v

v

v

Monotone response assumption: Y > X
® e.g., Manski'97 ECMA

v

Requires Var(Y — X) for uncertainty quantification

® No unbiased or consistent estimators
® Or one may want to know P(Y — X > t)

For Var(Y — X):
supVar(Y — X) <= supE[(Y — X)?] < infE[XY]

= sup of submodular cost (or inf of supermodular cost)
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>

>

A coupling (transport) P of u and v is an element of '(u, V)

We will focus on the optimal coupling P, which maximizes a

submodular function ¢

P, = arg max { /R _cly)dPle,y)  P(E) = 1}

Per(u,v)

Primary example: c(x,y) = (y — x)?
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Solution in the discrete setting

Simple setting
> p= 0 and v =130, 6y,
> X1 > > Xp
> Y1,...,Yn distinct, S1 = {y1,...,¥n}
The coupling P, and map T:
> lterate for k=1,...,n:

(i) T(xi) :==min{y € S 2 y > xic},
(II) 5k+1 = Sk \ {T(Xk)}

» The antitone coupling: omit the inequality in (i)

» Such P, is unique and universal over ¢
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Solution in the discrete setting

X3 X3 X2 xi
Figure: Left panel: An example of P,, with the y-axis shown at the top.
Right panel: If atomes are not coupled by P,, then a rearrangement will

improve.
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Solution in the discrete setting

(bt odod)

» At each position x; place “(" and at each position y; place “)”

» P, couples each “(" to its “)" via the standard rule of
algebraic operations

> If one types several “{" and "}" in IATEX, then P, describes
the way IATEX processes these curly brackets
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Notation

Notation
» 1 and v are probabilities on R with cdfs F, and F,
» A coupling P of u and v is directional if P(H) =1

v

Denoting by D = D(u, ) the set of all directional couplings
L D#@ < MjstV <~ 'DcomOED
® D="T(u,v) < sup(suppp) < inf(suppr) <= Pan € D

v

For subprobabilities 61, 65,
® 01 =g 02 means 61(R) = 62(R) and Fy, > Foy,
® 01 < 0; means 01(A) < 6(A) for all A € B(R).

Assume p =4 v from now on
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Characterizing the optimal coupling

There exists a unique directional coupling P, = P.(u,v) which

couples ,u|(x,oo) to vy for all x € R, where the subprobability vy is
defined by its cdf

F,, = sup Fp for Sy ={0: ptf(x,00) Zst 0 < v}
0 S«

The measure vy is the unique minimal element of S, for the order
fst-

> Theorem 1 formalizes the intuition in the discrete setting

» P, is called the directional lower (DL) coupling
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Characterizing the optimal coupling

» A pair ((x,y),(X',y’)) € H? is improvable if x < x' <y <y
» (x,y) and (x’,y’) do not cross, but could be rearranged into

((x,¥),(x',y)) € H?2 which forms a cross

Y y
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Characterizing the optimal coupling

» cis (p, v)-integrable if |c(x, y)| < ¢(x) + ¢(y) for some
¢ € LY(u) and ¢ € L1(v), implying

sup/ch§/¢du+/wdu<oo.
PeD
» For any strictly submodular c,

c(x,y) +c(x,y") < clx.y') + c(x,y)

if ((x,y),(x’,y")) is improvable
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Characterizing the optimal coupling

For a coupling P € D(u,v), the following are equivalent.
(i) Fp < Fg onR? for all Q € D(y,v), where Fg is the cdf of Q.
(i) P is optimal for all (1, v)-integrable and submodular c.

(i) P is optimal for some (i, v)-integrable and strictly

submodular c.
(iv) P is supported by a set A C H with no improvable pairs.
(v) P=P,.

Ruodu Wang  (wang@uwaterloo.ca) Directional Optimal Transport 27/61


wang@uwaterloo.ca

Formal theory
000000800000 0000000

Invariance

Let ¢ : R — R be a strictly increasing function. Then

Pi(p,v) = Pu(po ¢t ,vog 1) o(e,9).

» Copulas of P,(u,v) are precisely those of P,(10 ¢, vop™1)

» For this invariance property, the same transformation must be

applied to both axes, in contrast to the classic OT setting
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Distribution function

The cdf of Py is given by

Fu(y) if y < X,
Ful) = inf (Fu(2) = Fu(2)) if y>x

€[x

F(x,y) =

F(x) = Fu(x) = Fu(x)

inf F(z) .
z€[x,y]

| X I%

cf. Arnold/Molchanov/Ziegel’20 JMVA
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Continuity

Consider marginals fi, <« Vn, n > 1 with p, — p and v, — v, and
suppose that ju and v are atomless. Then Py(jin, vn) — Py(pt, ).

Example 1 (Continuity fails in the presence of atoms)

For n € N, let p, and v, be such that p,{0} = pu,{1} =1/2 and
vo{l —1/n} = v,{2} = 1/2. Then u, =<4 vy and v, — v with
v{1} = v{2} =1/2, and pu, = p is constant. We see that

P.(ttn, vn) is the comonotone coupling, P.(u,v) is the antitone

coupling, and P, (jin, vn) ~ Py(p,v).
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Decomposition

» The common part 4 A v of p and v is given by

d(p Av) dp dv

Aoy ) )

» The mutually singular parts of y and v are

W=p—pAv and vV =v—puAv

The optimal coupling P.(u,v) satisfies

Pi(p,v) = I Av) + Pu(i/, V)

where I(-) € T(-,-) is the identical coupling.
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Decomposition

Singular part of ug

Common part of e and pg Singular part of pg
< < <
S S °
o
3 3
2 2 z
§ S H g S
3 3 3
s
° ° °
3 T T T T 3 T T T T 3 T T T T
-2 4 2 4 -2 0 2 4 -2 0 2 4

v = Unif[1, 3] v = Unif[0, 2]

i

w = Unif[0, 2]

32/61

Ruodu Wang

ang@uwaterloo


wang@uwaterloo.ca

Formal theory
00000000000e0000000

Transport maps

> A coupling P is of Monge-type if P(Y|X) = T(X) is a
deterministic function T of X which is then called a Monge

map (transport map) of P

» P, may be randomized (not of Monge-type) even in the

absence of atoms, in contrast to the classic OT setting
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Transport maps

Let u,v be atomless and A v = 0. Then P, is of Monge-type
with transport map T given by

T(x) =inf{y = x: (y,F(x)) ¢ H}

where F = F, — F, and H = {(x,z) : z < F(x)}.

F(x)
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Transport maps

Corollary 4

Let pu,v be atomless. Then
Pi(p,v) = (1 Av) @x 0x + 1’ ®x 0T(x)

where ' = — p A v. In particular, P, is of Monge-type if and

only if i’ and u A\ v are mutually singular.

» The “coin flip" is the only source of randomization in P,
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Transport maps

Remarks.
» Previous results hold if v/ has atoms

» If 1/ has atoms, it can be addressed by “stretching”

F(x) F'(2)

! x T ) i) T'((x)) T'(i(x=)) :

» If T is the map of P.(u,v), then T? := ¢o T 0o ¢~ 1 is that of
P.(pro ¢~ v 0 ¢™1); in other words, T¢ transports ¢(x) to
¢(y) whenever T transports x to y
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Distribution function

We have H" < F, < HY where

H(x,y) = Fu(y) = [(Fu(y) = Fu()) A (Fuly) = Fu(x)]+,
HY(x,y) = Fu(x) A Fu(y).

Moreover,
(i) F« = H" if and only if F = F,, — F, is unimodal.
(it) Fx = HY if and only if D(u,v) is a singleton. If, in addition, F

is continuous, these conditions are further equivalent to y = v.
V.
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Decomposition

Proposition 2
Let p,v satisfy yw A v =0. Then Py is the sum of countably many

antitone couplings.

Example 2 (Multiple-crossing densities)

Assume that ;1 and v are atomless and that F = F, — F, is
piecewise monotone (with finitely many pieces). Then P, is the

sum of the identical coupling of u A v and finitely many antitone

couplings between pairs of disjoint intervals.

A\
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Other properties

Example 3 (Absence of antitone intervals)

Let u be the Cantor distribution on [0, 1] (i.e. uniform on the Cantor
ternary set C) and v be uniform on [0,2]. Clearly p A v = 0.

> Each x € C can be represented in base 3as x =2> 7 x,37"
where x, € {0,1}. The comonotone transport T¢ given by
Tc(x) =237, x,27" is directional from y to v. Hence, p =g v.

> Assume for contradiction that there exists an interval [a, b] C [0, 1]
such that p([a, b]) > 0 and T/, ) is antitone between p[, 5 and its
image. There exists ¢ such that u([a,c]) > 0 and T transports
#]{a,c] to a distribution on (c,00). By Theorem 1, T transports

#](a,00) to a distribution v, with v,([a, c]) > 0, a contradiction.
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Classic OT

» Consider i <4 v and the classic OT problem

inf /c(\y—x)P(dx, dy) (1)

Perl(p,v)

> Let ¢ : R — R be increasing and concave
= ¢(]y — x|) is supermodular on H but typically not on R?

Proposition 3
If F = F, — F, is unimodal, then P,(y,v) is an optimal coupling

for the unconstrained problem (1). If ¢ is strictly concave, the

optimizer is unique.
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@ Ordered risk aggregation
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Ordered risk aggregation

» M is the set of cdfs on R
» X is a set of random variables in (22, 4, P)

» For F < G, let
F(F,G)={(X,Y): X~F, Y~G, XY}

»p: X —>Rorp: M—R

Goal: compute
p(F3(F,G)) == sup{p(X + Y): (X,Y) € F3(F, G)}

p(F3(F,G)) =inf{p(X +Y):(X,Y) e F5(F,G)}

Risk aggregation (OT): W’/Peng/Yang'13 F&S; Embrechts/Wang/W.'15F&S
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Risk aggregation

For (X, Y), (X, Y), (X, Y') € FS(F, G) such that (X<, Y€) is

comonotone and (X', Y") is DL-coupled, we have

X4 Y 2w X+Y 2 X +Y,

where <.y is the concave order (i.e., =cx).

> If p is increasing in <., then p is minimized by the DL
coupling and maximized by comonotonicity
® law-invariant convex risk measures
® consistent risk measures (Mao/W.'20 SIFIN)
® Var(X + Y) and Var(Y — X)
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Risk aggregation

» The important cases of VaR,(X + Y), VaR,(Y — X),
P(X+Y >t) and P(Y — X > t) are not included

» Goal: compute
VaR,(F3(F,G)) and VaR,(F7(F,G))
where
VaR,(F) = F}(p+) = inf{t € R: F(t) > p}
> More generally,
p(F2(F,G)) and p(F3(F,G))

for a tail risk measure p (e.g., VaR, ES, RVaR)
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Risk aggregation

> Idea: let FIP1] be the upper p-tail distribution of F, namely

F[p,l](x) — (F(X) — P)+

eR
1—-p 7 X

> Let p* be the generator of p, i.e., p(F) = p*(FlP1)
® Generator of VaR,: ess-inf; that of ES,: E

® Generators of VaR, ES and RVaR are all increasing in <.y

» Guess: if p is monotone, then
p(FL(F, G)) = p*(FS(FIP1, glp1ly)

True in classic OT: Liu/W.'21 MOR
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Risk aggregation

» To show
2(FS(F, G)) = p*(FS(FIP, glrlly)

we need to prove, for any (X, Y) € F5(F, G), there exists

(X', Y") € F(FlPU GIP) st p(X + Y) < p*(X' 4+ Y)
> Let A be a p-tail event of X + Y (W'/Zitikis'21 MS), then

p(X +Y) = p*(X + Y) for some X 4 X|A and Y 4 Y|A
» We can show X < FIP and Yy =<4 GlPl

> In OT: take (X’, Y’) with the same dependence as (X, Y)
» In DOT: cannot guarantee (X', Y') € Fg(Flp1l Gle1l)
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The monotone embedding theorem

> For F, G € M, we say F is smaller than G in strong
stochastic order if G(y) — G(x) > F(y) — F(x) for all
y > x> G71(0), denoted by F =4 G.

Proposition 4

The strong stochastic order satisfies the following properties:
(i) If F <4 G then F <4 G;

(ii)

(i) If G71(0) = —oo, then F <¢ G means F = G;

(iv)

The relation <y is a partial order.

Assuming F~1(0) = G=1(0), F <« G ifand only if F = G;
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The monotone embedding theorem

The problem of monotone embedding: Suppose that

F <s F' <& G and (X, Y) € F9(F, G). The question is whether
there exists X’ ~ F’ such that X < X’ < Y holds.

Example 4

Let G be the Bernoulli(1/2) distribution. Take Y ~ G, let

X = =Y, and F be the distribution of X. Clearly, (X, Y) is

countermonotonic, and hence (X, Y) is DL-coupled. Take another

random variable X’ ~ F/ = U[—1,1]. It is easy to see that
F <s F' <4 G. Since P(X =Y)=1/2 but P(X' = Y) =0, we
know that X < X’ < Y cannot hold for any X’ ~ F’.
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The monotone embedding theorem

> Let DI¢ be the DL coupling of F and G with transport map
TF,G

Theorem 4 (Monotone embedding)

Suppose that F < F' < G, and (X,Y) ~ Df’G. Then there
exists X' ~ F' such that X < X' <Y almost surely and (X', Y) is
DL-coupled.
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Bounds on tail risk measures

Suppose that F <y G, p € (0,1), (p, p*) is a p-tail pair of risk

measures, and p* is monotone and =<.y-increasing. We have

PFS(F, 6)) =7 (75 (FP, 6PPY)) = o (X +¥), (2)

[p,1] glp,1l
where (X, Y) ~ D767
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VaR bounds

Proposition 5

For continuous distributions F and G such that F <y G and
p € (0,1), we have

VaR,(F2(F, G)) = min {X inf, (TR0 4 ¢, 2b} :

where a = F~Y(p+) and b = G~ Y(p+).

» The lower bound is also available

» Bounds on left and right VaR are the same if the marginal

distributions are continuous and strictly increasing

> Invert bounds on VaR to get bounds on P(X + Y > t)
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Application
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An application

>

A health insurance portfolio

» The aggregate loss: S =X + Y where X ~ F and Y ~ G
represent the losses caused by females and males, respectively,

from a portfolio of 50 males and 50 females

v

F =4 G can be verified

» X < Y is reasonable due to many common risk factors
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An application

v

Data from the Nationwide Inpatient Sample of the Healthcare
Cost and Utilization Project (NIS-HCUP)

v

500 observations with 244 males and 256 females

v

Testing the bootstrap sample F and G cannot reject F=y6

v

Use the isotonic distributional regression to get F and G with
F =st G (Henzi/Ziegel /Gneiting'21 JRSSB)

Data: Frees'09 Regression Modeling with Actuarial andFinancial Applications
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An application

Empirical CDFs of X and Y Estimated CDFs of X and Y by IDR
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An application

VaR bounds
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Reduction of DU-spread

0.90

T
0.92

0.94 0.96

P

0.98



wang@uwaterloo.ca

Appli Future directions

90000

@ Future directions

angQuwaterloo.ca) Directional Optimal Transport 57/61


wang@uwaterloo.ca

Future directions
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Future directions

| 2

Higher dimension

v

Higher number of marginals
Statistical inference on variance bounds

® Aronow/Green/Lee'14 AoS for classic OT (Fréchet-Hoeffding)
Bounds on P(Y — X > t)

v

v
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Future directions

Higher dimension.

max /ch and min /ch
PeD(p,v) PeD(u,v)

where 11 and v are probability measures on R and g : R9t4 — R

is submodular. Possible formulations for D:
» x < T(x) component-wise

» T(x) —x € K for some set K (e.g., specific directions)
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Future directions

Higher number of marginals.

max /ch and min /ch
PED(Nlﬂ"'vuT) PED(Nla---vNT)

where D(p1, ..., uT) is the set of directional couplings of

Ui, .., 7, and ¢ : RY — R is submodular.
» Even the unconstrained OT with T > 3 is very difficult
® ¢(x) =—(x1 + -+ x7)? = joint mixability (Wang/W."16)
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Future directions
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Thank you for your attention!
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