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Transport theory

I Pure mathematics theory

I Important applications

• economics

• decision theory

• finance

• engineering

• operations research

• physics

I 1 Nobel Prize laureate

I 2 Fields medalists
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Monge’s formulation

I X and Y are two Radon spaces (main example: Rd)

I Cost function c : X × Y → [0,∞] or (−∞,∞]

I Given probability measures µ on X and ν on Y

I Monge’s problem: find a transport map T : X → Y that

attains

inf

{∫
X
c(x ,T (x))dµ(x)

∣∣∣∣ T∗(µ) = ν

}
,

where T∗(µ) is the push forward of µ by T

I Such T is an optimal transport map
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Monge’s formulation
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Kantorovich’s formulation

I Monge’s formulation may be ill-posed (e.g., point masses)

I Kantorovich’s problem: find a probability measure P on

X × Y that attains

inf

{∫
X×Y

c(x , y) dP(x , y) | P ∈ Γ(µ, ν)

}
,

where Γ(µ, ν) is the set of probability measures on X × Y

with marginals µ and ν.

I X × Y = R× R : copulas and dependence

I Discrete version: linear programming
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Kantorovich’s formulation
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Transport duality

If c is non-negative and lower semi-continuous, then the minimum

of the Kantorovich problem is equal to

sup

(∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y) dν(y)

)
,

where the supremum runs over all pairs of bounded and continuous

functions ϕ : X → R and ψ : Y → R such that

ϕ(x) + ψ(y) ≤ c(x , y).
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Economic interpretation

I x ∈ X : the vector of characteristics of a worker

I y ∈ Y : the vector of characteristics of a firm

I Φ(x , y) the economic output generated by worker x matched

with firm y

I Social economic-output maximization problem

sup

{∫
X×Y

Φ (x , y) dP (x , y) | P ∈ Γ (µ, ν)

}
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On the cost function

Assume X = Y = R.

I If c is submodular, i.e.,

c(x , y) + c(x ′, y ′) ≤ c(x , y ′) + c(x ′, y) for x ≤ x ′ and y ≤ y ′,

the optimal transport is comonotone. Examples:

• c(x , y) = (y − x)2

• c(x , y) = −1{(x,y)≤(x0,y0)}
• c(x , y) = f (x) + g(y) + h(y − x) where h is convex

I If c is supermodular, the optimal transport is antitone

(counter-monotonic).

I c(x , y) = 1{y−x>d0}: probability of transport distance > d0
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Probabilistic formulation

New notation: X ∼ µ and Y ∼ ν stand for random variables

I Classic optimal transport (OT)

inf
X∼µ,Y∼ν

E[c(X ,Y )]

I Martingale optimal transport (MOT) require: µ �cx ν

inf
X∼µ,Y∼ν

E[c(X ,Y )] : X = E[Y |X ]

I Supermartingale optimal transport (SMOT) require: µ �ssd ν

inf
X∼µ,Y∼ν

E[c(X ,Y )] : X ≥ E[Y |X ]

I Directional optimal transport (DOT) require: µ �st ν

inf
X∼µ,Y∼ν

E[c(X ,Y )] : X ≤ Y

MOT: Beiglböck/Henry-Labordère/Penkner’13 F&S; Beiglböck/Juillet’16 AoP

SMOT: Nutz/Stebegg’18 AoP
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Directional transport

I Given µ �st ν on R and cost c : R2 → R

I H = {(x , y) ∈ R2 : x ≤ y}

Three formulations:

I Monge:

inf

{∫
R
c(x ,T (x))dµ(x) : T∗(µ) = ν, T (x) ≥ x ∀x

}
I Kantorovich:

inf

{∫
R×R

c(x , y)dP(x , y) : P ∈ Γ(µ, ν), P(H) = 1

}
I Probabilistic:

inf {E[c(X ,Y )] : X ∼ µ, Y ∼ ν, X ≤ Y }

Smith’83 Comm. Stat.; Rogers’99 JLMS; Arnold/Molchanov/Ziegel’20 JMVA
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Directional transport

I If c is submodular, then OT is attained by comonotonicity.

Moreover,

(X ,Y ) is comonotone and X �st Y ⇒ X ≤ Y

⇒ the directional constraint is not binding, OT = DOT

I If c is supermodular, then it is unclear:

(X ,Y ) is antitone and X �st Y 6⇒ X ≤ Y

⇒ the directional constraint may be binding, OT 6= DOT

X �st Y (or µ �st ν) means P(X ≤ t) ≥ P(Y ≤ t) for all t ∈ R.
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Treatment effect analysis

score X (control)

score Y (experimental)

I Marginals of (X ,Y ):

I Effect measurement

E[Y − X ]:

I Dependence of (X ,Y ):

unidentifiable

(Neyman’1923)
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Treatment effect analysis

I Marginals of (X ,Y ):

I Effect measurement E[Y − X ]:

I Monotone response assumption: Y ≥ X

• e.g., Manski’97 ECMA

I Requires Var(Y − X ) for uncertainty quantification

• No unbiased or consistent estimators

• Or one may want to know P(Y − X > t)

For Var(Y − X ):

supVar(Y − X ) ⇐⇒ supE[(Y − X )2] ⇐⇒ inf E[XY ]

=⇒: sup of submodular cost (or inf of supermodular cost)
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Goal

I A coupling (transport) P of µ and ν is an element of Γ(µ, ν)

I We will focus on the optimal coupling P∗ which maximizes a

submodular function c

P∗ = arg max
P∈Γ(µ,ν)

{∫
R×R

c(x , y)dP(x , y) : P(H) = 1

}
I Primary example: c(x , y) = (y − x)2
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Solution in the discrete setting

Simple setting

I µ = 1
n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi

I x1 > · · · > xn

I y1, . . . , yn distinct, S1 = {y1, . . . , yn}

The coupling P∗ and map T :

I Iterate for k = 1, . . . , n:

(i) T (xk) := min{y ∈ Sk : y ≥ xk},
(ii) Sk+1 := Sk \ {T (xk)}.

I The antitone coupling: omit the inequality in (i)

I Such P∗ is unique and universal over c
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Solution in the discrete setting

xj xi

yk y`

x1x2x4 x3

y1y2y3y4

Figure: Left panel: An example of P∗, with the y -axis shown at the top.

Right panel: If atomes are not coupled by P∗, then a rearrangement will

improve.
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Solution in the discrete setting
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I At each position xi place “(” and at each position yi place “)”

I P∗ couples each “(” to its “)” via the standard rule of

algebraic operations

I If one types several “{” and “}” in LATEX, then P∗ describes

the way LATEX processes these curly brackets

Ruodu Wang (wang@uwaterloo.ca) Directional Optimal Transport 21/61

wang@uwaterloo.ca


Optimal transport Directional transport Formal theory Risk aggregation Application Future directions

1 Optimal transport

2 Directional transport

3 Formal theory

4 Ordered risk aggregation

5 An application

6 Future directions

Ruodu Wang (wang@uwaterloo.ca) Directional Optimal Transport 22/61

wang@uwaterloo.ca


Optimal transport Directional transport Formal theory Risk aggregation Application Future directions

Notation

Notation

I µ and ν are probabilities on R with cdfs Fµ and Fν

I A coupling P of µ and ν is directional if P(H) = 1

I Denoting by D = D(µ, ν) the set of all directional couplings

• D 6= ∅ ⇐⇒ µ �st ν ⇐⇒ Pcomo ∈ D
• D = Γ(µ, ν) ⇐⇒ sup(suppµ) ≤ inf(suppν) ⇐⇒ Panti ∈ D

I For subprobabilities θ1, θ2,

• θ1 �st θ2 means θ1(R) = θ2(R) and Fθ1 ≥ Fθ2

• θ1 ≤ θ2 means θ1(A) ≤ θ2(A) for all A ∈ B(R).

Assume µ �st ν from now on
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Characterizing the optimal coupling

Theorem 1

There exists a unique directional coupling P∗ = P∗(µ, ν) which

couples µ|(x ,∞) to νx for all x ∈ R, where the subprobability νx is

defined by its cdf

Fνx = sup
θ∈Sx

Fθ for Sx = {θ : µ|(x ,∞) �st θ ≤ ν}.

The measure νx is the unique minimal element of Sx for the order

�st.

I Theorem 1 formalizes the intuition in the discrete setting

I P∗ is called the directional lower (DL) coupling
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Characterizing the optimal coupling

I A pair ((x , y), (x ′, y ′)) ∈ H2 is improvable if x < x ′ ≤ y < y ′

I (x , y) and (x ′, y ′) do not cross, but could be rearranged into

((x , y ′), (x ′, y)) ∈ H2 which forms a cross

x x ′

y y ′
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Characterizing the optimal coupling

I c is (µ, ν)-integrable if |c(x , y)| ≤ φ(x) + ψ(y) for some

φ ∈ L1(µ) and ψ ∈ L1(ν), implying

sup
P∈D

∫
cdP ≤

∫
φdµ+

∫
ψdν <∞.

I For any strictly submodular c ,

c(x , y) + c(x ′, y ′) < c(x , y ′) + c(x ′, y)

if ((x , y), (x ′, y ′)) is improvable
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Characterizing the optimal coupling

Theorem 2

For a coupling P ∈ D(µ, ν), the following are equivalent.

(i) FP ≤ FQ on R2 for all Q ∈ D(µ, ν), where FQ is the cdf of Q.

(ii) P is optimal for all (µ, ν)-integrable and submodular c.

(iii) P is optimal for some (µ, ν)-integrable and strictly

submodular c.

(iv) P is supported by a set A ⊆ H with no improvable pairs.

(v) P = P∗.
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Invariance

Corollary 1

Let φ : R→ R be a strictly increasing function. Then

P∗(µ, ν) = P∗(µ ◦ φ−1, ν ◦ φ−1) ◦ (φ, φ).

I Copulas of P∗(µ, ν) are precisely those of P∗(µ ◦ φ−1, ν ◦ φ−1)

I For this invariance property, the same transformation must be

applied to both axes, in contrast to the classic OT setting
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Distribution function

Corollary 2

The cdf of P∗ is given by

F∗(x , y) =


Fν(y) if y ≤ x ,

Fµ(x)− inf
z∈[x ,y ]

(Fµ(z)− Fν(z)) if y > x .

x

Fµ(x)

y

inf
z∈[x ,y ]

F (z)

F (x) := Fµ(x)− Fν(x)

cf. Arnold/Molchanov/Ziegel’20 JMVA
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Continuity

Corollary 3

Consider marginals µn �st νn, n ≥ 1 with µn
w→ µ and νn

w→ ν, and

suppose that µ and ν are atomless. Then P∗(µn, νn)
w→ P∗(µ, ν).

Example 1 (Continuity fails in the presence of atoms)

For n ∈ N, let µn and νn be such that µn{0} = µn{1} = 1/2 and

νn{1− 1/n} = νn{2} = 1/2. Then µn �st νn and νn
w→ ν with

ν{1} = ν{2} = 1/2, and µn ≡ µ is constant. We see that

P∗(µn, νn) is the comonotone coupling, P∗(µ, ν) is the antitone

coupling, and P∗(µn, νn)
w9 P∗(µ, ν).
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Decomposition

I The common part µ ∧ ν of µ and ν is given by

d(µ ∧ ν)

d(µ+ ν)
:=

dµ

d(µ+ ν)
∧ dν

d(µ+ ν)
.

I The mutually singular parts of µ and ν are

µ′ = µ− µ ∧ ν and ν ′ = ν − µ ∧ ν

Proposition 1

The optimal coupling P∗(µ, ν) satisfies

P∗(µ, ν) = I(µ ∧ ν) + P∗(µ
′, ν ′)

where I(·) ∈ Γ(·, ·) is the identical coupling.
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Decomposition
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µ = Unif[0, 1]

ν = Unif[0, 2]

µ = Unif[0, 2]

ν = Unif[1, 3]
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Transport maps

I A coupling P is of Monge-type if P(Y |X ) = T (X ) is a

deterministic function T of X which is then called a Monge

map (transport map) of P

I P∗ may be randomized (not of Monge-type) even in the

absence of atoms, in contrast to the classic OT setting

Ruodu Wang (wang@uwaterloo.ca) Directional Optimal Transport 33/61

wang@uwaterloo.ca


Optimal transport Directional transport Formal theory Risk aggregation Application Future directions

Transport maps

Theorem 3

Let µ, ν be atomless and µ ∧ ν = 0. Then P∗ is of Monge-type

with transport map T given by

T (x) = inf{y ≥ x : (y ,F (x)) /∈ H}

where F = Fµ − Fν and H = {(x , z) : z ≤ F (x)}.

x

F (x)

x T (x)

G

H

Hc
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Transport maps

Corollary 4

Let µ, ν be atomless. Then

P∗(µ, ν) = (µ ∧ ν)⊗x δx + µ′ ⊗x δT (x)

where µ′ = µ− µ ∧ ν. In particular, P∗ is of Monge-type if and

only if µ′ and µ ∧ ν are mutually singular.

I The “coin flip” is the only source of randomization in P∗

Ruodu Wang (wang@uwaterloo.ca) Directional Optimal Transport 35/61

wang@uwaterloo.ca


Optimal transport Directional transport Formal theory Risk aggregation Application Future directions

Transport maps

Remarks.

I Previous results hold if ν ′ has atoms

I If µ′ has atoms, it can be addressed by “stretching”

x
x

F (x)

j(x−)
z

F ′(z)

j(x) T ′(j(x)) T ′(j(x−))

I If T is the map of P∗(µ, ν), then Tφ := φ ◦ T ◦ φ−1 is that of

P∗(µ ◦ φ−1, ν ◦ φ−1); in other words, Tφ transports φ(x) to

φ(y) whenever T transports x to y
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Distribution function

Corollary 5

We have H∧ ≤ F∗ ≤ H∨ where

H∧(x , y) = Fν(y)− [(Fµ(y)− Fµ(x)) ∧ (Fν(y)− Fν(x))]+,

H∨(x , y) = Fµ(x) ∧ Fν(y).

Moreover,

(i) F∗ = H∧ if and only if F = Fµ − Fν is unimodal.

(ii) F∗ = H∨ if and only if D(µ, ν) is a singleton. If, in addition, F

is continuous, these conditions are further equivalent to µ = ν.
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Decomposition

Proposition 2

Let µ, ν satisfy µ ∧ ν = 0. Then P∗ is the sum of countably many

antitone couplings.

Example 2 (Multiple-crossing densities)

Assume that µ and ν are atomless and that F = Fµ − Fν is

piecewise monotone (with finitely many pieces). Then P∗ is the

sum of the identical coupling of µ ∧ ν and finitely many antitone

couplings between pairs of disjoint intervals.
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Other properties

Example 3 (Absence of antitone intervals)

Let µ be the Cantor distribution on [0, 1] (i.e. uniform on the Cantor

ternary set C ) and ν be uniform on [0, 2]. Clearly µ ∧ ν = 0.

I Each x ∈ C can be represented in base 3 as x = 2
∑∞

n=1 xn3−n

where xn ∈ {0, 1}. The comonotone transport TC given by

TC (x) = 2
∑∞

n=1 xn2−n is directional from µ to ν. Hence, µ �st ν.

I Assume for contradiction that there exists an interval [a, b] ⊆ [0, 1]

such that µ([a, b]) > 0 and T |[a,b] is antitone between µ|[a,b] and its

image. There exists c such that µ([a, c]) > 0 and T transports

µ|[a,c] to a distribution on (c ,∞). By Theorem 1, T transports

µ|(a,∞) to a distribution νa with νa([a, c]) > 0, a contradiction.
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Classic OT

I Consider µ �st ν and the classic OT problem

inf
P∈Γ(µ,ν)

∫
c(|y − x |)P(dx ,dy) (1)

I Let c : R→ R+ be increasing and concave

⇒ c(|y − x |) is supermodular on H but typically not on R2

Proposition 3

If F = Fµ − Fν is unimodal, then P∗(µ, ν) is an optimal coupling

for the unconstrained problem (1). If c is strictly concave, the

optimizer is unique.
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Ordered risk aggregation

I M is the set of cdfs on R

I X is a set of random variables in (Ω,A,P)

I For F �st G , let

Fo
2 (F ,G ) = {(X ,Y ) : X ∼ F , Y ∼ G , X ≤ Y }

I ρ : X → R or ρ :M→ R

Goal: compute

ρ(Fo
2 (F ,G )) := sup{ρ(X + Y ) : (X ,Y ) ∈ Fo

2 (F ,G )}

ρ(Fo
2 (F ,G )) := inf{ρ(X + Y ) : (X ,Y ) ∈ Fo

2 (F ,G )}

Risk aggregation (OT): W’/Peng/Yang’13 F&S; Embrechts/Wang/W.’15 F&S

Ruodu Wang (wang@uwaterloo.ca) Directional Optimal Transport 42/61

wang@uwaterloo.ca


Optimal transport Directional transport Formal theory Risk aggregation Application Future directions

Risk aggregation

Lemma 1

For (X ,Y ), (X c ,Y c), (X ′,Y ′) ∈ Fo
2 (F ,G ) such that (X c ,Y c) is

comonotone and (X ′,Y ′) is DL-coupled, we have

X c + Y c �cv X + Y �cv X ′ + Y ′,

where �cv is the concave order (i.e., �cx).

I If ρ is increasing in �cx, then ρ is minimized by the DL

coupling and maximized by comonotonicity

• law-invariant convex risk measures

• consistent risk measures (Mao/W.’20 SIFIN)

• Var(X + Y ) and Var(Y − X )
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Risk aggregation

I The important cases of VaRp(X + Y ), VaRp(Y − X ),

P(X + Y > t) and P(Y − X > t) are not included

I Goal: compute

VaRp(Fo
2 (F ,G )) and VaRp(Fo

2 (F ,G ))

where

VaRp(F ) = F−1(p+) = inf{t ∈ R : F (t) > p}

I More generally,

ρ(Fo
2 (F ,G )) and ρ(Fo

2 (F ,G ))

for a tail risk measure ρ (e.g., VaR, ES, RVaR)
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Risk aggregation

I Idea: let F [p,1] be the upper p-tail distribution of F , namely

F [p,1](x) =
(F (x)− p)+

1− p
, x ∈ R

I Let ρ∗ be the generator of ρ, i.e., ρ(F ) = ρ∗(F [p,1])

• Generator of VaRp: ess-inf; that of ESp: E
• Generators of VaR, ES and RVaR are all increasing in �cv

I Guess: if ρ is monotone, then

ρ(Fo
2 (F ,G )) = ρ∗(Fo

2 (F [p,1],G [p,1]))

True in classic OT: Liu/W.’21 MOR
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Risk aggregation

I To show

ρ(Fo
2 (F ,G )) = ρ∗(Fo

2 (F [p,1],G [p,1]))

we need to prove, for any (X ,Y ) ∈ Fo
2 (F ,G ), there exists

(X ′,Y ′) ∈ Fo
2 (F [p,1],G [p,1]) s.t. ρ(X + Y ) ≤ ρ∗(X ′ + Y ′)

I Let A be a p-tail event of X + Y (W’/Zitikis’21 MS), then

ρ(X + Y ) = ρ∗(X̂ + Ŷ ) for some X̂
d
= X |A and Ŷ

d
= Y |A

I We can show X̂ �st F
[p,1] and Ŷ �st G

[p,1]

I In OT: take (X ′,Y ′) with the same dependence as (X̂ , Ŷ )

I In DOT: cannot guarantee (X ′,Y ′) ∈ Fo
2 (F [p,1],G [p,1])
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The monotone embedding theorem

I For F , G ∈M, we say F is smaller than G in strong

stochastic order if G (y)− G (x) ≥ F (y)− F (x) for all

y ≥ x ≥ G−1(0), denoted by F �ss G .

Proposition 4

The strong stochastic order satisfies the following properties:

(i) If F ≤ss G then F ≤st G;

(ii) Assuming F−1(0) = G−1(0), F ≤ss G if and only if F = G;

(iii) If G−1(0) = −∞, then F ≤ss G means F = G;

(iv) The relation ≤ss is a partial order.
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The monotone embedding theorem

The problem of monotone embedding: Suppose that

F ≤st F
′ ≤st G and (X ,Y ) ∈ Fo

2 (F ,G ). The question is whether

there exists X ′ ∼ F ′ such that X ≤ X ′ ≤ Y holds.

Example 4

Let G be the Bernoulli(1/2) distribution. Take Y ∼ G , let

X = −Y , and F be the distribution of X . Clearly, (X ,Y ) is

countermonotonic, and hence (X ,Y ) is DL-coupled. Take another

random variable X ′ ∼ F ′ = U[−1, 1]. It is easy to see that

F ≤st F
′ ≤st G . Since P(X = Y ) = 1/2 but P(X ′ = Y ) = 0, we

know that X ≤ X ′ ≤ Y cannot hold for any X ′ ∼ F ′.
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The monotone embedding theorem

I Let DF ,G
∗ be the DL coupling of F and G with transport map

T F ,G

Theorem 4 (Monotone embedding)

Suppose that F ≤ss F
′ ≤st G, and (X ,Y ) ∼ DF ,G

∗ . Then there

exists X ′ ∼ F ′ such that X ≤ X ′ ≤ Y almost surely and (X ′,Y ) is

DL-coupled.
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Bounds on tail risk measures

Theorem 5

Suppose that F ≤st G, p ∈ (0, 1), (ρ, ρ∗) is a p-tail pair of risk

measures, and ρ∗ is monotone and �cv-increasing. We have

ρ(Fo
2 (F ,G )) = ρ∗

(
Fo

2

(
F [p,1],G [p,1]

))
= ρ∗(X + Y ), (2)

where (X ,Y ) ∼ DF [p,1],G [p,1]

∗ .
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VaR bounds

Proposition 5

For continuous distributions F and G such that F ≤st G and

p ∈ (0, 1), we have

VaRp(Fo
2 (F ,G )) = min

{
inf

x∈[a,b]

{
T F [p,1],G [p,1]

(x) + x
}
, 2b

}
,

where a = F−1(p+) and b = G−1(p+).

I The lower bound is also available

I Bounds on left and right VaR are the same if the marginal

distributions are continuous and strictly increasing

I Invert bounds on VaR to get bounds on P(X + Y > t)

Ruodu Wang (wang@uwaterloo.ca) Directional Optimal Transport 51/61

wang@uwaterloo.ca


Optimal transport Directional transport Formal theory Risk aggregation Application Future directions

1 Optimal transport

2 Directional transport

3 Formal theory

4 Ordered risk aggregation

5 An application

6 Future directions

Ruodu Wang (wang@uwaterloo.ca) Directional Optimal Transport 52/61

wang@uwaterloo.ca


Optimal transport Directional transport Formal theory Risk aggregation Application Future directions

An application

I A health insurance portfolio

I The aggregate loss: S = X + Y where X ∼ F and Y ∼ G

represent the losses caused by females and males, respectively,

from a portfolio of 50 males and 50 females

I F �st G can be verified

I X ≤ Y is reasonable due to many common risk factors
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An application

I Data from the Nationwide Inpatient Sample of the Healthcare

Cost and Utilization Project (NIS-HCUP)

I 500 observations with 244 males and 256 females

I Testing the bootstrap sample F̂ and Ĝ cannot reject F̂ �st Ĝ

I Use the isotonic distributional regression to get F and G with

F �st G (Henzi/Ziegel/Gneiting’21 JRSSB)

Data: Frees’09 Regression Modeling with Actuarial and Financial Applications
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An application
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An application
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Future directions

I Higher dimension

I Higher number of marginals

I Statistical inference on variance bounds

• Aronow/Green/Lee’14 AoS for classic OT (Fréchet-Hoeffding)

I Bounds on P(Y − X > t)
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Future directions

Higher dimension.

max
P∈D(µ,ν)

∫
cdP and min

P∈D(µ,ν)

∫
cdP

where µ and ν are probability measures on Rd and g : Rd+d → R
is submodular. Possible formulations for D:

I x ≤ T (x) component-wise

I T (x)− x ∈ K for some set K (e.g., specific directions)
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Future directions

Higher number of marginals.

max
P∈D(µ1,...,µT )

∫
cdP and min

P∈D(µ1,...,µT )

∫
cdP

where D(µ1, . . . , µT ) is the set of directional couplings of

µ1, . . . , µT , and c : Rd → R is submodular.

I Even the unconstrained OT with T ≥ 3 is very difficult

• c(x) = −(x1 + · · ·+ xT )2 ⇒ joint mixability (Wang/W.’16)
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Thank you

Thank you for your attention!

Ruodu Wang (wang@uwaterloo.ca) Directional Optimal Transport 61/61

wang@uwaterloo.ca

