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Goodhart’s law

Goodhart’s law (Goodhart’75)

Any observed statistical regularity will tend to

collapse once pressure is placed upon it for

control purposes.

Popular version (Strathern’97)

When a measure becomes a target, it ceases to be a good measure.

I When a feature of the economy is picked as an indicator of the

economy, then it inexorably ceases to function as that indicator

because people start to game it.

I Monetary policies, scientific impact, economic indices, standardized

exams, rankings, ratings, ...
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Goodhart’s law
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Regulatory risk measures

A risk measure ρ maps a risk (via a model) to a number

I regulatory capital calculation ← our main focus

I insurance pricing

I decision making, optimization, portfolio selection, ...

I performance analysis and capital allocation
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Goodhart’s law for risk measures

Goodhart’s law for risk measures: When a risk measure becomes a

target, it ceases to be a good risk measure.

Questions and our work

I Quantitative analysis and explanation

I Comparative results for different risk measures

I Financial consequences and incentives

“Second Goodhart’s law” for risk measures

As regulatory target, all risk measures cease to be good, but some

risk measures, VaR in particular, are much worse than the others.
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VaR and ES

ES0.95

VaR0.95

Value-at-Risk (VaR), p ∈ (0, 1)

VaRp : L0 → R,

VaRp(X ) = F−1X (p)

= inf{x ∈ R : P(X ≤ x) ≥ p}.

(left-quantile)

Expected Shortfall (ES), p ∈ (0, 1)

ESp : L1 → R,

ESp(X ) =
1

1− p

∫ 1

p

VaRq(X )dq

(also: TVaR/CVaR/AVaR)
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VaR and ES

The ongoing co-existence of VaR and ES

I Basel IV - ES (with VaR for backtest)

• ES0.975 replaces VaR0.99

I Solvency II - VaR

I Swiss Solvency Test - ES

I US Solvency Framework (NAIC ORSA) - both
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Development of a new regulatory risk measure

I VaR axiomatization:

Chambers’09 MF, Kou-Peng’16 OR, He-Peng’18 OR, Liu-W.’21 MOR

I ES axiomatization: W.-Zitikis’21 MS
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VaR and ES

Key advantages of ES

I Coherent (Artzner-Delbaen-Eber-Heath’99)

I Capturing the tail risk (Embrechts-Liu-W.’18)

I Proper diversification (Föllmer-Schied’02)

I Convex optimization (Rockafellar-Uryasev’02)

Key advantages of VaR

I Statistical robustness (Cont-Deguest-Scandolo’10)

I Easy to forecast and backtest (Gneiting’11)
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The optimization problem

General setup

I Gn = {measurable functions from Rn to R}

I X ∈ (L0)n is an economic vector, representing all random

sources

I G ⊂ Gn is a decision set

I g(X ) for g ∈ G represents a risky position of an investor

I ρ is an objective functional mapping {g(X ) : g ∈ G} to R

“The optimization problem”

to minimize ρ(g(X )) over g ∈ G
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The optimization problem

Let

GX (ρ) = arg min
g∈G

ρ(g(X )).

We call

I gX ∈ GX (ρ) an optimizing function

I gX (X ) an optimized position

I ρ(gX (X )): minimized risk
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Uncertainty in optimization

I The optimization problem is subject to model uncertainty

I Let Z be a set of possible economic vectors including X

• Z: the set of alternative models

• e.g. a parametric family of models (parameter uncertainty)

I The true economic vector Z ∈ Z is likely different from the

perceived economic vector X

• X : best-of-knowledge model

• Z : true model (unknowable)

I gX ∈ GX (ρ) is a best-of-knowledge decision

• true position gX (Z )

• perceived position gX (X )
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Uncertainty in optimization
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ρ = ES0.975

Figure: ρ(gX (Z )) for Z ∼ Pareto(θ) and X ∼ Pareto(θ̂ = 5). The

function gX minimizes ρ(g(X )) within the class of all measurable

functions g satisfying 0 ≤ g(x) ≤ x and E[Xg(X )] ≥ 1.
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Robust statistics

Statistical robustness addresses the question of “what if the data is

compromised with small error?”

I Originally robustness is defined on estimators (estimation

procedures)

I Models are at most “approximately correct” ⇒ robustness

I (Huber-Hampel’s) robustness of a statistical functional

typically refers to continuity with respect to some metric

General reference: Huber-Ronchetti’07
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Robustness of risk measures

I With respect to weak convergence πW :

• VaRp is continuous at distributions whose quantile is

continuous at p. VaRp is argued as being almost robust.

• ESp is not continuous for any X ⊃ L∞

I ESp is continuous w.r.t. some other (stronger) metric, e.g.,

the Lq metric πq, q ≥ 1 (or the Wasserstein-Lq metric)
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Robustness of risk measures

I Classic robustness: VaR and ES are applied to the same

financial position.

I The regulatory choice of ρ creates certain incentives, effective

before ρ is applied to assess risks.

I Once a specific ρ has been chosen, portfolios will be managed

according to ρ (at least to some extend).

I In reality, VaR and ES will not be applied to the same position.

One cannot decouple the technical properties of a risk measure

from the incentives it creates.
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Uncertainty in optimization

We are interested in the insolvency gap

ρ(gX (Z ))︸ ︷︷ ︸
true risk

− ρ(gX (X ))︸ ︷︷ ︸
perceived risk

not the optimality gap

ρ(gZ (Z ))︸ ︷︷ ︸
true optimum

− ρ(gX (Z ))︸ ︷︷ ︸
true risk

or the optimality shift

ρ(gZ (Z ))︸ ︷︷ ︸
true optimum

− ρ(gX (X ))︸ ︷︷ ︸
perceived optimum
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Uncertainty in optimization

I If the modeling has good quality, Z ≈ X according to some

metric π

I ρ(gX (Z )) ≈ ρ(gX (X )) to make sense of the optimizing

function gX ⇒ some continuity of the mapping

Z 7→ ρ(gX (Z )) at Z = X

I We call (G,Z, π) an uncertainty triplet if G ⊂ Gn and (Z, π)

is a pseudo-metric space of n-random vectors.

I Assume that ρ is compatible: ρ(g(Y )) = ρ(g(Z )) for all

g ∈ G and Y ,Z ∈ Z with π(Y ,Z ) = 0.
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Robustness in optimization

Definition 1

An objective functional ρ is robust against optimization at X ∈ Z
for an uncertainty triplet (G,Z, π) if there exists gX ∈ GX (ρ) such

that the function Y 7→ ρ(gX (Y )) is π-continuous at Y = X .

I Robustness is a joint property of the tuple (ρ,X ,G,Z, π)

I Only a π-neighbourhood of X in Z matters
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Robustness in optimization

Remarks.

I If ρ is robust against optimization at X for (G,Z, π), then it

also holds

• for (G,Z ′, π) if X ∈ Z ′ ⊂ Z;

• for (G,Z, π′) if π′ is stronger than π

I If GX (ρ) = ∅, then ρ is not robust at X

I Alternatives

• One can use topologies instead of metrics

• One can consider uncertainty on the set of probability

measures instead of on the set of random vectors

• One can require the continuity for all g ∈ GX (ρ) instead of

that for some g .
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Functional optimization problems

Setup

I An n-dimensional random vector X

I Two measurable functions v ,w : Rn → R ∪ {−∞}

I A measurable price density γ : Rn → (0,∞)

I A constant x0 ∈ R

Risk minimization under budget constraint

min: ρ(g(X )) subject to v ≤ g ≤ w , E[γ(X )g(X )] ≥ x0.
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Examples

Optimal investment

I S = (St)t∈[0,T ] is a d-dimensional price process with a

martingale measure Q and price density γ = dQ/dP on FS
T

I Q is unique ⇔ completeness of the market

I X with σ(X ) = FS
T represents market randomness

I An investor has budget v0 and an obligation f (X ) at time T

I The investor minimizes ρ(f (X )− VT ), where VT := VT (X ) is

the time-T value of a self-financing trading strategy V

satisfying V0 = E[γ(X )VT ] ≤ v0 and v(X ) ≤ VT ≤ w(X )

I A special case of our setting with g(x) = f (x)− VT (x)
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Examples

Insurance design

I Let X ≥ 0 represent a random future loss to an insured

I f is an insurance indemnity function

I γ ≥ 1 and γE[f (X )] is the price of contract f

I y0 is the budget of the insured

I Standard optimal insurance problem with risk measure ρ:

min: ρ(X − f (X )) subject to 0 ≤ f (X ) ≤ X , γE[f (X )] ≤ y0

I A special case of our setting with g(x) = x − f (x)
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Assumptions

G =
{
g ∈ Gn : v ≤ g ≤ w and E[γ(X )g(X )] ≥ x0

}
Assumption G

E[γ(X )] <∞ and G 6= ∅; the distribution measure µX of X has a

positive density on its support, which is a convex subset of Rn, and

(Z, π) is (L0n, π
W
n ) or (Lqn, π

q
n), q ∈ [1,∞].

A special case (1-d)

min: ρ(g(X )) subject to 0 ≤ g(X ) ≤ X , E[γ(X )g(X )] ≥ x0. (S)
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Robustness of VaR

ρ(X ;G) = inf{ρ(g(X )) : g ∈ G}

Assumption V

ess-sup(v) < ρ(X ;G) < ρ(w(X )) and γ is bounded from above.

Assumption V is quite general and weak.

I the lower bound v is not too large

I the optimization problem is not solved by g = w .

I boundedness of γ can be relaxed
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Robustness of VaR

Theorem 1

For p ∈ (0, 1), under Assumptions G and V, ρ = VaRp is not

robust against optimization at X for (G,Z, π).

I VaRp is not robust for all commonly used metrics and a

general continuously distributed X

I VaRp has the poorest possible robustness in our setup

I Any optimizing function gX always has a jump at the

p-quantile of gX (X )
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Robustness of VaR

Problem (S): 0 ≤ g(X ) ≤ X

q = VaRp(X ;G) and Y = (X − q)γ(X )

Proposition 2

Suppose that Assumptions G and V hold, p ∈ (0, 1), ρ = VaRp,

E[γ(X )X ] <∞ and P(Y ≤ VaRp(Y )) = p. Problem (S) admits a

µX -a.s. unique solution of the form

gX (x) = x1{(x−q)γ(x)>c} + (x ∧ q)1{(x−q)γ(x)≤c},

where c = VaRp(Y ). Moreover, pES1−p(−Y+) = x0 − E[γ(X )X ].

Ruodu Wang (wang@uwaterloo.ca) Goodhart’s Law and Optimization 30/48

wang@uwaterloo.ca


Goodhart’s law Optimization and uncertainty Main results Simulation Conclusion

Robustness of convex risk measures

Assumption P

The functions γ, v and w are µX -a.e. continuous and γ(X ) has a

continuous density. Moreover, −∞ ≤ E[γ(X )v(X )] ≤ x0 ≤
E[γ(X )w(X )] ≤ E[|γ(X )w(X )|] <∞.

Convex risk measures (Follmer-Schied’02)

I monotone

I cash invariant

I convex
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Robustness of convex risk measures

A divergence risk measure is defined as

ρ(Y ) := sup
Q�P

(
EQ[Y ]− Iϕ(Q|P)

)
, Y ∈ L∞, (1)

where

Iϕ(Q|P) =

∫
ϕ
(dQ
dP

)
dP, (2)

is the ϕ-divergence of Q to P, for a proper closed convex function

ϕ : R→ [0,+∞] with 0 = ϕ(1) = minx ϕ(x).

I ϕ(x) = x log x − x + 1: Iϕ is the relative entropy and ρ is an

entropic risk measure

I ϕ =∞ · 1[1/(1−p),∞): ρ = ESp
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Robustness of convex risk measures

Theorem 3

In addition to Assumptions G and P we assume that v and w are

bounded. Then the divergence risk measure ρ is robust against

optimization at X ∈ L0n for (G, L0n, πWn ).

I f has growth index q: |f (x)| ≤ c(1 + |x |q) for some c > 0

Corollary 4

In addition to Assumptions G and P, we assume that both v and

w have growth index q ∈ [1,∞]. Then ESp for p ∈ (0, 1) is robust

against optimization at X ∈ Lqn for (G, Lqn, πqn).

I Sharp contrast between VaR and ES
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Robustness of convex risk measures

For ES, there exists a minimizer gX that has one of the following

two forms, where z∗ ∈ R and c > 0 are suitable constants:

gX (x) = (v(x) ∨ z∗ ∧ w(x))1{0<cγ(x)<1}

or

gX (x) = (v(x) ∨ z∗ ∧ w(x))1{cγ(x)>1}.
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Robustness of convex risk measures

A utility-based shortfall risk measure is given by

ρ(Y ) = inf
{
m ∈ R : E[ `(Y −m)] ≤ x0

}
, Y ∈ L∞

where ` : R→ R is increasing and convex and x0 ∈ int `(R).

Theorem 5

In addition to Assumptions G and P we assume that v and w are

bounded. Then the utility-based shortfall risk measure ρ is robust

against optimization at X ∈ L0n for (G, L0n, πWn ).

I Similar results are obtained for expected utility maximization
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Robustness of convex risk measures

The expectile of Y ∈ L1 at level τ ∈ [0, 1] is the unique solution to

the equation

τE[ (Y − z)+ ] = (1− τ)E[ (Y − z)− ],

which is a shortfall risk measure with `(x) = τx+ − (1− τ)x−.

Corollary 6

In addition to Assumptions G and P, we assume that both v and

w have growth index q ∈ [1,∞]. Then the expectile at level

τ ∈ (1/2, 1] is robust against optimization at X ∈ Lqn for

(G, Lqn, πqn).
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Robustness of convex risk measures

Problem (S): 0 ≤ g(X ) ≤ X

Proposition 7

Let p ∈ (0, 1) and ρ = ESp. Suppose that γ is µX -a.e. continuous,

γ(X ) has a continuous density, and 0 ≤ x0 < E[γ(X )X ]. There

exist constants d > 0 and r ≥ 0 such that the function

gX (x) = x1{γ(x)>d} + (x ∧ r)1{γ(x)≤d}, x ∈ R, (3)

solves Problem (S). Moreover, r is a p-quantile of gX (X ).
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Simulation results

I Problem (S)

I Z ∼ Expo(θ) or Z ∼ Pareto(θ) with unknown parameter

θ > 0

I Estimate θ̂ for θ

I X ∼ Expo(θ̂) or X ∼ Pareto(θ̂)

I Minimizes ρ(g(X )) in Problem (S)

I ρ = VaR0.99 and ρ = ES0.975 (Basel III)

I γ(x) = x

Ruodu Wang (wang@uwaterloo.ca) Goodhart’s Law and Optimization 39/48

wang@uwaterloo.ca


Goodhart’s law Optimization and uncertainty Main results Simulation Conclusion

Simulation results
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Figure: ρ(gX (Z )) for Z ∼ Expo(θ) and X ∼ Expo(θ̂ = 1). The dotted

grey curve corresponds to the VaR of the unoptimized position,

VaR0.99(Z ) ≈ ES0.975(Z ).
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Simulation results

50 100 150 200

0.1

0.2

0.3

0.4

Figure: Mean-squared errors |ρ(gX (Z ))− ρ(gX (X ))|2 of 10,000 independent sample

points of ρ(gX (Z )) and ρ(gX (X )), each with a maximum likelihood estimator θ̂

computed from n iid realizations of the Pareto(5)-distributed risk factor Z . The

horizontal axis shows the number n. The case ρ = VaR0.99 can be found on the left,

ρ = ES0.975 is on the right, both in log scale.
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Simulation results
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Figure: Mean-squared errors |ρ(gX (Z ))− ρ(gX (X ))|2 of 10,000 independent sample

points of ρ(gX (Z )) and ρ(gX (X )), each with a maximum-likelihood estimator θ̂

computed from n iid realizations of the Exp(1)-distributed risk factor Z . The horizontal

axis shows the number n. The case ρ = VaR0.99 can be found on the left, ρ = ES0.975

is on the right, both in log scale.
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Conclusion

On robustness in optimization:

VaR ≺≺ ES

VaR optimized position for Problem (S)

gX (X ) = X1{(X−q)γ(X )>c} + (X ∧ q)1{(X−q)γ(X )≤c}

Observations.

I The discontinuity in Z 7→ gX (Z ) comes from the fact that

optimizing VaR is “too greedy”: always ignores tail risk, and

hopes that the probability of the tail risk is correctly modelled.

Ruodu Wang (wang@uwaterloo.ca) Goodhart’s Law and Optimization 44/48

wang@uwaterloo.ca


Goodhart’s law Optimization and uncertainty Main results Simulation Conclusion

Conclusion

Is risk positions of type gX realistic?

“Starting in 2006, the CDO group at UBS noticed that their

risk-management systems treated AAA securities as essentially

riskless even though they yielded a premium (the proverbial free

lunch). So they decided to hold onto them rather than sell them. ”

I From Feb 06 to Sep 07, UBS increased investment in AAA-rated

CDOs by more than 10 times; many large banks did the same.

• Take a risk of big loss with small probability

• Treat it as free money - profit

• Model uncertainty?

quoted from Acharya-Cooley-Richardson-Walter’10
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AIG

CEO of AIG Financial Products, August 2007:

“It is hard for us, without being flippant, to even see a scenario within any kind of

realm of reason that would see us losing one dollar in any of those transactions.”

I AIGFP sold protection on super-senior tranches of CDOs

I US Financial Crisis Inquiry Commission’11: due to unhedged CDS positions
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Other questions

Many other questions ...

I other risk measures

I other optimization settings

I connection to distributionally robust optimization

I risk measures as constraints instead of objectives
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Thank you

Paul Embrechts

(ETH Zurich)

Alexander Schied

(Waterloo)

I Embrechts-Schied-W., Robustness in the optimization of risk measures

Operations Research, 2021. SSRN: 3254587
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DRO

Connection to distributionally robust optimization

Distributionally robust optimization, for ε > 0:

to minimize: sup
π(Y ,X )≤ε

ρ(g(Y )) subject to g ∈ G.

I GX (ρ, ε): the set of functions g ∈ G solving this problem

I GX (ρ, 0) = GX (ρ), the original setting

I ρ is robust for the ε-problem if there exists gX ∈ GX (ρ, ε) such

that Z 7→ ρ(gX (Z )) is π-continuous at Z = X

e.g., Natarajan-Pachamanova-Sim’08, Zhu-Fukushima’09,
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DRO

Connection to distributionally robust optimization

Problem: to minimize (1-d)

sup
π∞(Y ,X )≤ε

VaRp(g(Y )) subject to g ∈ G,

where G = {g ∈ G1 : E[γ(X )g(X )] ≥ x0, 0 ≤ g ≤ m}. Let

qε = inf

{
sup

π∞(Y ,X )≤ε
VaRp(g(Y )) : g ∈ G

}
.

Assumption D

q > 0, 1/2 ≤ p < 1, X has a decreasing density on its support and

γ is an increasing function of X .
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DRO

Connection to distributionally robust optimization

Proposition 8

Under Assumption D, the above problem admits a solution of the

form

gX (x) = m1{x>c+ε} + qε1{x≤c+ε}, x ∈ R, where c = VaRp(X ).

I Z 7→ VaRp(gX (Z )) is π∞-continuous at Z = X

I VaRp is robust for the ε-problem

I The ε-modification improves the robustness of VaR

I We still get the big-loss-small-probability type of optimizer
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