Star-shaped and Quasi-star-shaped Risk Measures

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

Workshop on Actuarial Science, East China Normal University December 27, 2021 (online)

< ロ > < 同 > < 三 > < 三 >

- 1 Recap: Coherent and convex risk measures
- 2 Star-shaped risk measures
- 3 Quasi-star-shaped risk measures

Based on the following joint work

► Castagnoli[†]/Cattelan/Maccheroni/Tabaldi/W., Star-shaped risk measures.

Working paper, 2021, arXiv:2103.15790

► Han/Wang/W./Xia, Cash-subadditive risk measures without quasi-convexity.

Working paper, 2021, <u>arXiv:2110.12198</u>

Coherent risk measures

Artzner/Delbaen/Eber/Heath'99

- A risk measure $\rho : \mathcal{X} \to \mathbb{R}$
 - \mathcal{X} : a convex cone of random losses
 - Default choice: the set of bounded rvs on $(\Omega, \mathcal{F}, \mathbb{P})$
- A coherent risk measure satisfies
 - Monotonicity: $\rho(X) \leq \rho(Y)$ if $X \leq Y$
 - ▶ Cash additivity: ho(X + c) =
 ho(X) + c for all $c \in \mathbb{R}$
 - Subadditivity: $\rho(X + Y) \le \rho(X) + \rho(Y)$
 - Positive homogeneity: ρ(λX) = λρ(X) for all λ > 0

 \implies Normalization: $\rho(0) = 0$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 三 > 、 三 > 、 三 > 、 二 □ > 、 □ > ∞ □

Convex risk measures

Föllmer/Schied'02; Frittelli/Rosazza Gianin'02

- A (normalized) monetary risk measure satisfies
 - monotonicity, cash additivity, and normalization
- A convex risk measure is monetary and convex
 - ► $\rho(\lambda X + (1 \lambda)Y) \le \lambda \rho(X) + (1 \lambda)\rho(Y)$ for all $\lambda \in [0, 1]$
 - ► With positive homogeneity (PH): convexity ⇐⇒ subadditivity

Motivations for convexity relaxed from coherence

- Liquidity risk: $\rho(\lambda X) > \lambda \rho(X)$ for $\lambda > 1$ (violating PH)
- A merge may create extra risk: violating subadditivity

イロト イポト イヨト イヨト 三日

Acceptance sets

Acceptance set of a monetary risk measure

$$\mathcal{A}_{
ho} = \{X \in \mathcal{X} :
ho(X) \leq 0\}$$

- $0 \in \partial A_{\rho} =$ boundary of A_{ρ} (normalization)
- $X \leq Y$ and $Y \in \mathcal{A}_{
 ho} \Longrightarrow X \in \mathcal{A}_{
 ho}$ (monotonicity)
- \mathcal{A}_{ρ} is convex $\iff \rho$ is convex
- \mathcal{A}_{ρ} is convex and conic $\iff \rho$ is coherent
- ▶ $\rho(X) = \inf\{m \in \mathbb{R} : X m \in \mathcal{A}_{\rho}\}, X \in \mathcal{X} \text{ (cash additivity)}$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 三 > 、 三 > 、 三 > 、 二 □ > 、 □ > ∞ □

VaR and ES

Value-at-Risk (VaR), $p \in (0,1)$	Expected Shortfall (ES), $p \in (0,1)$
$\operatorname{VaR}^{\mathcal{Q}}_{\rho}: L^{0} \to \mathbb{R},$	$\mathrm{ES}^Q_ ho:L^1 o\mathbb{R},$
$\begin{aligned} \operatorname{VaR}_p^Q(X) &= F_X^{-1}(p) \\ &= \inf\{x \in \mathbb{R} : Q(X \leq x) \geq p\}. \end{aligned}$	$\mathrm{ES}_p^Q(X) = \frac{1}{1-\rho} \int_\rho^1 \mathrm{VaR}_q^Q(X) \mathrm{d}q$
(left-quantile)	(also: TVaR/CVaR/AVaR/CTE)

<ロ> <問> <問> < 目> < 目> < 目>

æ

3 Quasi-star-shaped risk measures

< ロ > < 同 > < 三 > < 三 > < 三 > <

A star-shaped risk measure is monetary and star-shaped

• Star-shapedness: $\rho(\lambda X) \ge \lambda \rho(X)$ for all $\lambda > 1$

Equivalent conditions:

- ▶ $\rho(\lambda X) \le \lambda \rho(X)$ for all $\lambda \in (0,1)$ (\Leftrightarrow convexity at 0)
- The risk-to-exposure ratio $\rho(\lambda X)/\lambda$ is increasing in $\lambda > 0$
- \mathcal{A}_{ρ} is star-shaped at 0: $X \in \mathcal{A}_{\rho} \Longrightarrow \lambda X \in \mathcal{A}_{\rho}$ for all $\lambda \in [0, 1]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A star-shaped risk measure is monetary and star-shaped

• Star-shapedness: $\rho(\lambda X) \ge \lambda \rho(X)$ for all $\lambda > 1$

Equivalent conditions:

- $\rho(\lambda X) \leq \lambda \rho(X)$ for all $\lambda \in (0,1)$ (\Leftrightarrow convexity at 0)
- The risk-to-exposure ratio $\rho(\lambda X)/\lambda$ is increasing in $\lambda > 0$
- \mathcal{A}_{ρ} is star-shaped at 0: $X \in \mathcal{A}_{\rho} \Longrightarrow \lambda X \in \mathcal{A}_{\rho}$ for all $\lambda \in [0, 1]$

Star-shapedness is

- weaker than convexity or positive homogeneity
- satisfied by all monetary risk measures in practice
 - distortion risk measures: VaR, ES, RVaR, GS, Wang's premium
 - convex risk measures: expectiles, entropic, entropic-VaR, shortfall, optimized certainty equivalents, higher-moment
 - benchmark-adjusted VaR and ES
 - robustification of risk measures
 - scenario-based risk measures
- For a subadditive monetary risk measure
 - ► Star-shapedness ⇔ convexity ⇔ positive homogeneity ⇔ coherence

Motivation I: Liquidity risk

A dealer needs to clear a position X with some central clearing counterparties (CCPs)

- *n* CCPs with price functions ρ_1, \ldots, ρ_n
- Liquidity cost $\implies \rho_i(\lambda X)/\lambda$ increases in $\lambda > 0$
- ▶ C: possible compositions of CCPs (subsets of {1,..., n})

Dealer's optimal clearing problem (Glasserman/Moallemi/Yuan'16)

$$\min_{A \in \mathcal{C}} \min_{\substack{X_i \in \mathcal{X} \\ \text{s.t. } i \in A}} \left\{ \sum_{i \in A} \rho_i(X_i) \mid \sum_{i \in A} X_i = X \right\} =: \rho(X)$$

• ρ is star-shaped but not convex (even if ρ_1, \ldots, ρ_n are convex)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation II: Aggregation of opinions or prices

- ▶ ρ_i , $i \in I$: convex risk measures, expert opinions/prices
- Most conservative (convex)

 $\max_{i\in I}\rho_i(X)$

Most competitive (star-shaped but non-convex)

 $\min_{i\in I}\rho_i(X)$

α-max-min (star-shaped but non-convex)

$$\alpha \max_{i \in I} \rho_i(X) + (1 - \alpha) \min_{i \in I} \rho_i(X)$$

Median (star-shaped but non-convex)

 $\mathsf{median}\{\rho_i(X) \mid i \in I\}$

A A > < 3</p>

Motivation III: Non-concave utilities

Utility-based shortfall risk measures (Föllmer/Schied'02)

$$\rho_u(X) = \inf\{m \in \mathbb{R} \mid \mathbb{E}_{\mathbb{P}}[u(m-X)] \ge u(0)\}, \qquad X \in \mathcal{X}$$

• *u* is concave $\Leftrightarrow \rho_u$ is convex $u(x)^{\mu}$ \Leftrightarrow strong risk aversion (empirically challengeable) Star-shaped at 0 utility functions × (Landsberger/Meilijson'90): $\lambda \mapsto u(\lambda)/\lambda$ is decreasing on $(0,\infty)$ and $(-\infty,0)$; u(0) = 0• *u* star-shaped $\Leftrightarrow \rho_u$ star-shaped < ロ > < 同 > < 回 > < 回 > < 回 > <

Representation I

Theorem

For a mapping $\rho : \mathcal{X} \to \mathbb{R}$, the following are equivalent:

- (i) ρ is a star-shaped (resp. positively homogeneous and monetary) risk measure;
- (ii) there exists a collection Γ of convex (resp. coherent) risk measures such that

$$\rho(X) = \min_{\gamma \in \Gamma} \gamma(X), \qquad X \in \mathcal{X}.$$

<u>Proof:</u> Any star-shaped acceptance set \mathcal{A} (with $0 \in \partial \mathcal{A}$) is the union of convex acceptance sets \mathcal{A}_{γ} (with $0 \in \partial \mathcal{A}_{\gamma}$)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quasi-star-shapedness

Proof sketch

The intuition behind the representation in case $\Omega = \{\omega_1, \omega_2\}$, where $\mathcal{A}_Y = \{X \in \mathcal{X} : X \leq \lambda(Y - \rho(Y)) \text{ for some } \lambda \in [0, 1]\}$

Representation II

- \mathcal{P} : probability measures $Q \ll \mathbb{P}$ on (Ω, \mathcal{F}) ; $\mathcal{X} = L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$
- ▶ A normalized panelty is $\alpha_{\gamma} : \mathcal{P} \to [0,\infty]$ with $\inf_{Q \in \mathcal{P}} \alpha_{\gamma}(Q) = 0$
- A convex risk measure γ on X satisfying Fatou continuity has representation (Föllmer-Schied'02), for some normalized penalty α_γ,

$$\gamma(X) = \sup_{Q \in \mathcal{P}} \left\{ \mathbb{E}_{Q}[X] - \alpha_{\gamma}(Q) \right\}, \qquad X \in \mathcal{X}$$

Proposition

A mapping $\rho : \mathcal{X} \to \mathbb{R}$ is a star-shaped risk measure if and only if there exists a collection $\{\alpha_{\gamma}\}_{\gamma \in \Gamma}$ of normalized penalties such that

$$\rho(X) = \min_{\gamma \in \Gamma} \sup_{Q \in \mathcal{P}} \left\{ \mathbb{E}_Q[X] - \alpha_\gamma(Q) \right\}, \qquad X \in \mathcal{X}.$$

Closure under operations

Theorem

For a collection of star-shaped risk measures, their average, supremum, infimum, and inf-convolution (when defined) are star-shaped risk measures.

- ► A closure property useful for many operations in finance
- This closure property also holds for
 - law-invariant star-shaped risk measures
 - SSD-consistent star-shaped risk measures
 - positively homogeneous risk measures

but not for convex or coherent risk measures

물 🕨 🖌 물 🕨 👘

Image: Image:

Example I: scenario-based VaR and ES

- Scenario-based risk measures of W./Ziegel'21
- Q: a finite collection Q of probability measures

$$\begin{aligned} \operatorname{MaxVaR}^{\mathcal{Q}}_{\beta}(X) &= \max\{\operatorname{VaR}^{\mathcal{Q}}_{\beta}(X) \mid \mathcal{Q} \in \mathcal{Q}\} \\ \operatorname{MaxES}^{\mathcal{Q}}_{\beta}(X) &= \max\{\operatorname{ES}^{\mathcal{Q}}_{\beta}(X) \mid \mathcal{Q} \in \mathcal{Q}\} \\ \operatorname{MedVaR}^{\mathcal{Q}}_{\beta}(X) &= \operatorname{median}\{\operatorname{VaR}^{\mathcal{Q}}_{\beta}(X) \mid \mathcal{Q} \in \mathcal{Q}\} \\ \operatorname{MedES}^{\mathcal{Q}}_{\beta}(X) &= \operatorname{median}\{\operatorname{ES}^{\mathcal{Q}}_{\beta}(X) \mid \mathcal{Q} \in \mathcal{Q}\} \end{aligned}$$

- MaxVaR, MedVaR and MedES are star-shaped but not convex
- MaxES is star-shaped and convex

Example II: benchmark VaR

The benchmark-loss VaR of Bignozzi/Burzoni/Munari'20

$$\mathrm{LVaR}_{g}^{Q}(X) = \sup_{\alpha \in (0,1)} \{ \mathrm{VaR}_{\alpha}^{Q}(X) - g(\alpha) \}$$

where $g:(0,1)
ightarrow \mathbb{R}$ is increasing with $\sup_{g \in \mathcal{G}} g\left(0+
ight) = 0$

- LVaR^Q_g is a star-shaped risk measure
- neither positively homogeneous nor convex

The adjusted ES of Burzoni/Munari/W.'22

$$\mathrm{ES}_g^Q(X) = \sup_{\alpha \in (0,1)} \{ \mathrm{ES}_\alpha^Q(X) - g(\alpha) \}$$

is convex (hence star-shaped)

Consistent risk measures

- ► A risk measure is SSD-consistent if $\rho(X) \le \rho(Y)$ whenever $X \preceq_2 Y$
 - $X \preceq_2 Y$: $\mathbb{E}_{\mathbb{P}}[f(X)] \leq \mathbb{E}_{\mathbb{P}}[f(Y)]$ for all increasing convex f
- A SSD-consistent monetary risk measure ρ on X = L[∞](Ω, F, P) has representation (Mao/W.'20) as an infimum of adjusted ES

$$\rho(X) = \inf_{g \in \mathcal{G}} \sup_{\alpha \in (0,1)} \{ \mathrm{ES}^{\mathbb{P}}_{\alpha}(X) - g(\alpha) \} \qquad X \in \mathcal{X} \tag{MW}$$

for some set $\mathcal G$ of increasing $g:(0,1)\to\mathbb R$ with $\sup_{g\in\mathcal G}g(0+)=0$

Theorem

A mapping $\rho : \mathcal{X} \to \mathbb{R}$ is an SSD-consistent star-shaped risk measure if and only if its has a representation (MW) in which \mathcal{G} is a star-shaped set.

イロト 人間 とくほ とくほう

Quasi-star-shaped risk measures

Cash-subadditive risk measures

El Karoui/Ravanelli'09

(Always assume monotonicity for a risk measure)

- Cash additivity: \$1 more loss \Rightarrow \$1 more capital (time 0)
- No problem if interest rate is a constant
- Stochastic discount factor $D \leq 1$
- $\rho(X) = \rho_0(DX)$ with cash-additive ρ_0
- $\blacktriangleright \rho(X+c) = \rho_0(DX+Dc) \le \rho_0(DX+c) = \rho(X) + c$

Giving rise to

▶ Cash subadditivity: $ho(X + c) \le
ho(X) + c$ for all $c \ge 0$

Quasi-convexity

Cerreia-Vioglio/Maccheroni/Marinacci/Montrucchio'11

For cash-subadditive risk measures, convexity is no longer natural

- Quasi-convexity: $\rho(\lambda X + (1 \lambda)Y) \le \max\{\rho(X), \rho(Y)\}$ for all $\lambda \in [0, 1]$
- For monetary ρ , convexity \Leftrightarrow quasi-convexity
- ▶ Representation (*P_f*: set of finitely additive probabilities)

$$ho(X) = \max_{Q \in \mathcal{P}_f} R\left(\mathbb{E}_Q[X], Q\right), \;\; X \in \mathcal{X}$$

for some $R:\mathbb{R} imes\mathcal{P}_f
ightarrow\mathbb{R}$ satisfying some conditions

イロン 不同 とくほう イロン 一日

Example I: Expected insured claim

Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ be 1-Lipschitz (insured or retained loss)

• $\rho(X) = \mathbb{E}_{\mathbb{P}}[f(X)]$ is a cash-subadditive risk measure

Example: $\rho(X) = \mathbb{E}_{\mathbb{P}}[\min\{(X - d)_+, L\}]$

- insured loss with deductible and limit
- cash subadditive
- not quasi-convex or quasi-concave
- its range $D_{\rho} = [0, L]$
- \blacktriangleright $\mathbb{E}_{\mathbb{P}}$ can be replaced by any monetary risk measure

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example II: A-VaR

A-Value-at-Risk (Frittelli/Maggis/Peri'14)

$$\Lambda \operatorname{VaR}(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) \ge \Lambda(x)\}, \quad X \in \mathcal{X}$$

for some decreasing function $\Lambda:\mathbb{R}\to [0,1]$ not constantly 0

- A is a constant $\alpha \in (0,1) \Longrightarrow AVaR = VaR^{\mathbb{P}}_{\alpha}$
- Cash subadditive, not cash additive
- Not quasi-convex

Quasi-star-shapedness and quasi-normalization

For a monetary $\rho,$

• Star-shapedness: $\rho(\lambda X) \leq \lambda \rho(X)$ for all $\lambda \in [0, 1]$

is equivalent to convexity at each constant $t \in \mathbb{R}$

$$\blacktriangleright \ \rho(\lambda X + (1-\lambda)t) \leq \lambda \rho(X) + (1-\lambda)\rho(t) \text{ for all } \lambda \in [0,1]$$

Quasi-star-shapedness (QSS): quasi-convexity at each constant $t \in \mathbb{R}$

• QSS:
$$\rho(\lambda X + (1 - \lambda)t) \le \max\{\rho(X), \rho(t)\}$$
 for all $\lambda \in [0, 1]$

Normalization (
ho(t) = t for all $t \in \mathbb{R})$ is extended to

• Quasi-normalization: $\rho(t) = t$ for all t in the range D_{ρ} of ρ

イロン 不良 とうほう イロン 一日

Quasi-star-shapedness

Quasi-star-shapedness and quasi-normalization

Proposition

For cash-additive risk measures,

- (i) normalization ⇔ quasi-normalization;
- (ii) star-shapedness ⇔ quasi-star-shapedness;
- (iii) convexity \Leftrightarrow quasi-convexity.
- In contrast, for cash-subadditive risk measures, the above equivalence does not hold.

Properties of Λ-VaR

Proposition

The risk measure ΛVaR has the representation, for all $X \in \mathcal{X}$,

$$\Lambda \mathrm{VaR}(X) = \inf_{x \in \mathbb{R}} \left\{ \mathrm{VaR}^{\mathbb{P}}_{\Lambda(x)}(X) \lor x \right\} = \sup_{x \in \mathbb{R}} \left\{ \mathrm{VaR}^{\mathbb{P}}_{\Lambda(x)}(X) \land x \right\}.$$

Moreover, $\Lambda \mathrm{VaR}$ is

- cash subadditive but generally not cash additive;
- quasi-star-shaped but generally not star-shaped;
- quasi-normalized but generally not normalized.

27/31

Representation I

	a () risk measure	is an infimum of () risk measures
Mao/W.'20	CA, SSD-consistent	CA, convex, law-invariant
Jia/Xia/Zhao'20	CA	CA, convex
Castagnoli et al.'21	CA, star-shaped, normalized	CA, convex, normalized
Han et al.'21	CS, SSD-consistent	CS, quasi-convex, law-invariant
	CS	CS, quasi-convex
	CS, QSS, normalized	CS, quasi-convex, normalized
	CS, QSS, quasi-normalized	CS, quasi-convex, quasi-normalized

CA: cash additive; CS: cash subadditive

< ロ > < 同 > < 三 > < 三 > < 三 > <

Representation II

Proposition

A functional $\rho : \mathcal{X} \to \mathbb{R}$ is a cash-subadditive risk measure if and only if there exists a set \mathcal{R} of upper semi-continuous, quasi-concave, increasing and 1-Lipschitz in the first argument functions $R : \mathbb{R} \times \mathcal{P}_f \to \mathbb{R}$ such that

 $\rho(X) = \min_{R \in \mathcal{R}} \max_{Q \in \mathcal{P}_f} R\left(\mathbb{E}_Q[X], Q\right), \text{ for all } X \in \mathcal{X}.$

Some references

Artzner/Delbaen/Eber/Heath'99 Coherent measures of risk. MF Föllmer/Schied'02 Convex measures of risk and trading constraints. F&S Frittelli/Rosazza Gianin'02 Putting order in risk measures. JBF Glasserman/Moallemi/Yuan'16 Hidden illiquidity with multiple central counterparties. OR Landsberger/Meilijson'90 Lotteries, insurance, and star-shaped utility functions. JET W./Ziegel'21 Scenario-based risk evaluation. F&S Bignozzi/Burzoni/Munari'20 Risk measures based on benchmark loss distributions. JRI Burzoni/Munari/W.'22 Adjusted Expected Shortfall. JBF Mao/W.'20 Risk aversion in regulatory capital calculation. SIFIN El Karoui/Ravanelli'09 Cash subadditive risk measures and interest rate ambiguity. MF Cerreia-Vioglio/Maccheroni/Marinacci/Montrucchio'11 Risk measures: Rationality and diversification. MF Frittelli/Maggis/Peri'14 Risk measures on $\mathcal{P}(\mathbb{R})$ and value at risk with probability/loss function MF

Jia/Xia/Zhao'20 Monetary risk measures. arXiv: 2012.06751

Thank you

Thank you for your kind attention

Based on the following joint work

► Castagnoli[†]/Cattelan/Maccheroni/Tabaldi/W., Star-shaped risk measures.

Working paper, 2021, arXiv:2103.15790

► Han/Wang/W./Xia, Cash-subadditive risk measures without quasi-convexity.

Working paper, 2021, arXiv:2110.12198

Working papers series on the theory of risk measures http://sas.uwaterloo.ca/~wang/pages/WPS1.html

31/31