Simultaneous Optimal Transport

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science
University of Waterloo

Economics Seminar, Bielefeld University November 30, 2021 (online)

Agenda

(1) Optimal transport
(2) Simultaneous transport
(3) Technical properties

4 Wasserstein distance
(5) An equilibrium model
(6) Future directions

Based on joint work with Zhenyuan Zhang (Stanford)

Transport theory

- Pure mathematics theory
- Important applications
- economics
- decision theory

- finance
- engineering
- operations research
- physics
- 1 Nobel Prize laureate

- 2 Fields medalists

Monge's formulation

- Monge's problem: find a transport map $T: X \rightarrow Y$ that attains

$$
\inf \left\{\int_{X} c(x, T(x)) \mathrm{d} \mu(x) \mid T_{\#} \mu=\nu\right\}
$$

where

- X and Y are two Polish spaces (main example: \mathbb{R}^{d})
- Cost function $c: X \times Y \rightarrow[0, \infty]$ or $(-\infty, \infty]$
- probability measures $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$ are given
- $T_{\#} \mu=\mu \circ T^{-1}$ is the push forward of μ by T
- Such T is an optimal transport map

Monge's formulation

Gaspard Monge
1746-1818

Le mémoire sur les déblais et les remblais (The note on land excavation and infill)

Kantorovich's formulation

- Monge's formulation may be ill-posed (e.g., point masses)
- Kantorovich's problem: find a probability measure $\pi \in \mathcal{P}(X \times Y)$ that attains

$$
\inf \left\{\int_{X \times Y} c(x, y) \pi(\mathrm{d} x, \mathrm{~d} y) \mid \pi \in \Pi(\mu, \nu)\right\}
$$

where $\Pi(\mu, \nu)$ is the set of probability measures on $X \times Y$ with marginals μ and ν

- $X \times Y=\mathbb{R} \times \mathbb{R}$: copulas and dependence
- Discrete version: linear programming

Kantorovich's formulation

Resource allocation

Kernel formulation

- Kernel formulation: find a transport kernel $\kappa: X \rightarrow \mathcal{P}(Y)$ that attains

$$
\inf \left\{\int_{X \times Y} c(x, y)(\mu \otimes \kappa)(\mathrm{d} x, \mathrm{~d} y) \mid \kappa \in \mathcal{K}(\mu, \nu)\right\}
$$

where $\mathcal{K}(\mu, \nu)$ is the set of all stochastic kernels κ such that

$$
\kappa \# \mu:=\int_{X} \kappa(x) \mu(\mathrm{d} x)=\nu
$$

- $(\mu \otimes \kappa)(A)=\int_{A} \kappa(x, \mathrm{~d} y) \mu(\mathrm{d} x)$
- $\mu \otimes \kappa=\pi \in \Pi(\mu, \nu)$
- $\kappa(x)=\nu$ for each $x \in X$: independent coupling

Transport duality

If c is non-negative and lower semi-continuous, then duality holds

$$
\min _{\pi \in \Pi(\mu, \nu)} \int_{X \times Y} c \mathrm{~d} \pi=\sup \left(\int_{X} \phi \mathrm{~d} \mu+\int_{Y} \psi \mathrm{~d} \nu\right)
$$

where the supremum runs over all pairs of bounded and continuous functions $\phi: X \rightarrow \mathbb{R}$ and $\psi: Y \rightarrow \mathbb{R}$ such that

$$
\phi(x)+\psi(y) \leqslant c(x, y) .
$$

Economic interpretation

- $x \in X$: the vector of characteristics of a worker
- $y \in Y$: the vector of characteristics of a firm
- $g(x, y)$ the economic output (production) generated by worker x matched with firm y
- Social economic-output maximization

$$
\sup \left\{\int_{X \times Y} g \mathrm{~d} \pi \mid \pi \in \Pi(\mu, \nu)\right\}
$$

- Dual problem $g(x, y) \leqslant \phi(x)+\psi(y)$: social equilibrium
- ϕ : the equilibrium wage function
- ψ : the equilibrium profit function

On the cost function

Assume $X=Y=\mathbb{R}$.

- If c is submodular, i.e.,

$$
c(x, y)+c\left(x^{\prime}, y^{\prime}\right) \leqslant c\left(x, y^{\prime}\right)+c\left(x^{\prime}, y\right) \text { for } x \leqslant x^{\prime} \text { and } y \leqslant y^{\prime}
$$

the optimal transport is comonotone. Examples:

- $c(x, y)=(y-x)^{2}$
- $c(x, y)=-\mathbb{1}_{\left\{(x, y) \leqslant\left(x_{0}, y_{0}\right)\right\}}$
- $c(x, y)=f(x)+g(y)+h(y-x)$ where h is convex
- If c is supermodular, the optimal transport is antitone (counter-monotonic).
- $c(x, y)=\mathbb{1}_{\left\{y-x>d_{0}\right\}}$: probability of transport distance $>d_{0}$

Probabilistic formulation

For random variables $L \sim \mu$ and $R \sim \nu$

- Classic optimal transport (OT)

$$
\inf _{L \sim \mu, R \sim \nu} \mathbb{E}[c(L, R)]
$$

- Martingale optimal transport (MOT)
require: $\mu \preceq_{\mathrm{cx}} \nu$

$$
\inf _{L \sim \mu, R \sim \nu} \mathbb{E}[c(L, R)]: L=\mathbb{E}[R \mid L]
$$

- Supermartingale optimal transport (SMOT)
require: $\mu \succeq_{\text {ssd }} \nu$

$$
\inf _{L \sim \mu, R \sim \nu} \mathbb{E}[c(L, R)]: L \geqslant \mathbb{E}[R \mid L]
$$

- Directional optimal transport (DOT)
require: $\mu \preceq_{\text {st }} \nu$

$$
\inf _{L \sim \mu, R \sim \nu} \mathbb{E}[c(L, R)]: L \leqslant R
$$

MOT: Beiglböck/Henry-Labordère/Penkner'13 F\&S; Beiglböck/Juillet'16 AoP SMOT: Nutz/Stebegg'18 AoP; DOT: Nutz/W.'21 AAP

(1) Optimal transport

(2) Simultaneous transport

4) Wasserstein distance
(5) An equilibrium model
(6) Future directions

Simultaneous transport

- $d \in \mathbb{N}, \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{d}\right) \in \mathcal{P}(X)^{d}, \boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{d}\right) \in \mathcal{P}(Y)^{d}$
- A transport plan from $\boldsymbol{\mu}$ to ν sends μ_{j} to ν_{j} for all $j \in\{1, \ldots, d\}$ simultaneously
- The set of all Monge transports from $\boldsymbol{\mu}$ to $\boldsymbol{\nu}$

$$
\mathcal{T}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\{T: X \rightarrow Y \mid T_{\#} \boldsymbol{\mu}=\boldsymbol{\nu}\right\}
$$

- The set of all transport kernels κ such that $\kappa_{\#} \boldsymbol{\mu}=\boldsymbol{\nu}$

$$
\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})=\bigcap_{j=1}^{d} \mathcal{K}\left(\mu_{j}, \nu_{j}\right)
$$

- Existence not guaranteed; Kantorovich formulation unclear

All equalities and inequalities are component-wise

Motivating example 1: rocket planning

m Mars bases and n space stations

several types of resources to be transported by rockets

Motivating example 1: rocket planning

- Each base j supplies $\mu_{A}(j)$ units of A and $\mu_{B}(j)$ units of B
- Each station k needs $\nu_{A}(k)$ units of A and $\nu_{B}(k)$ units of B
- Assume supply-demand clearance

$$
\sum_{j=1}^{m} \mu_{A}(j)=\sum_{k=1}^{n} \nu_{A}(k)=\sum_{j=1}^{m} \mu_{B}(j)=\sum_{k=1}^{n} \nu_{B}(k)=1
$$

- A transport plan is an arrangement to send resources from bases to stations to meet their needs
- Single trips: cannot transport among stations or among bases
- Transport costs: rockets and fuel (propellant)
- $\mathcal{T}\left(\left(\mu_{A}, \mu_{B}\right),\left(\nu_{A}, \nu_{B}\right)\right)$: one base supplies only one station

Motivating example 1: rocket planning

Figure: Simultaneous transport in the Monge setting; red and blue represent different types of resources

Motivating example 2: product distribution

Transport several types of products from factories to retailers

- Kernel setting $\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$
- Allowing one factory to supply multiple retailers

Assumptions

- supply-demand clearance
- products are bundled and can only divided proportionally
- e.g., personnel, skills, boxed packages, cargo specification

Motivating example 2: product distribution

Figure: Simultaneous transport in the kernel setting

Cost

How do we model the cost?

- Cost function c : $X \times Y \rightarrow[0,+\infty]$
- Classic setting: for $T \in \mathcal{T}(\mu, \nu)$ or $\kappa \in \mathcal{K}(\mu, \nu)$,

$$
\begin{aligned}
\mathcal{C}(T) & =\int_{X} c(x, T(x)) \mu(\mathrm{d} x) \\
\mathcal{C}(\kappa) & =\int_{X \times Y} c \mathrm{~d}(\mu \otimes \kappa)
\end{aligned}
$$

- Simultaneous transport: what should take the place of μ ?
- Choose $\bar{\mu}:=\frac{1}{d} \sum_{j=1}^{d} \mu_{j}$?
- Baseline measure $\eta \in \mathcal{M}(X), \eta \ll \bar{\mu}$ (no transport \Rightarrow no cost)

Cost

- Transport cost for $T \in \mathcal{T}(\boldsymbol{\mu}, \boldsymbol{\nu})$ or $\kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$,

$$
\begin{aligned}
\mathcal{C}_{\eta}(T) & =\int_{X} c(x, T(x)) \eta(\mathrm{d} x) \\
\mathcal{C}_{\eta}(\kappa) & =\int_{X \times Y} c \mathrm{~d}(\eta \otimes \kappa)
\end{aligned}
$$

- η may not be linear in $\boldsymbol{\mu}$, e.g., petrol cost is nonlinear in weights
- If $\mathcal{T}(\boldsymbol{\mu}, \boldsymbol{\nu})$ or $\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$ is empty, then the cost is set to ∞
- Special case: $\eta=\bar{\mu}$
- Optimal transport:

$$
\inf _{T \in \mathcal{T}(\mu, \nu)} \mathcal{C}_{\eta}(T) \quad \text { or } \quad \inf _{\kappa \in \mathcal{K}(\mu, \nu)} \mathcal{C}_{\eta}(\kappa)
$$

Motivating example 3: risk measures

Scenario-based risk measures (W.-Ziegel'21 F\&S)

- \mathcal{X} the space of random variables on Ω and $\mu_{1}, \ldots, \mu_{d} \in \mathcal{P}(\Omega)$
- A $\boldsymbol{\mu}$-based risk measure $\rho: \mathcal{X} \rightarrow \mathbb{R}$ is such that $\rho(L)$ is determined by the distribution of L under $\boldsymbol{\mu}$
- $d=1$: law-invariant under μ
- Define $\mathcal{X}_{\boldsymbol{\mu}}(L)=\left\{R \in \mathcal{X}: R_{\#} \boldsymbol{\mu}=L_{\#} \boldsymbol{\mu}\right\}$
- $R_{\#} \boldsymbol{\mu}=L_{\#} \boldsymbol{\mu}$ means $R \stackrel{\text { law }}{=} L$ under each μ_{i} for $i=1, \ldots, d$
- Any $\boldsymbol{\mu}$-based risk measure is constant on each $\mathcal{X}_{\mu}(L)$

Motivating example 3: risk measures

- For $\eta \ll \bar{\mu}$, the mapping

$$
\rho(L)=\sup \left\{\mathbb{E}^{\eta}[R]: R \in \mathcal{X}_{\mu}(L)\right\}, \quad L \in \mathcal{X}
$$

is a $\boldsymbol{\mu}$-based risk measure (coherent distortion if $d=1$)

- $d=1$: Kusuoka'01 representation of coherent risk measures
- The optimization problem

$$
\rho(L)=\sup \left\{\mathbb{E}^{\eta}[R]: R_{\#} \boldsymbol{\mu}=L_{\#} \boldsymbol{\mu}\right\}
$$

is a Monge transport problem with cost $c(x, y)=-y$,
baseline measure η, and $\boldsymbol{\nu}=L_{\#} \boldsymbol{\mu}$

Motivating example 4: cost-efficient payoffs

- η is a pricing measure
- d agents need to jointly purchase a payoff R
- Agent j needs R to have a distribution ν_{j} and uses model μ_{j}
- Problem: find the cheapest R

$$
\min \left\{\mathbb{E}^{\eta}[R]: R_{\#} \boldsymbol{\mu}=\nu\right\}
$$

- $d=1$: Fréchet-Hoeffding; Dybvig'88 JB

Motivating example 5: Markovian embedding

- An \mathbb{R}^{d}-valued Markov process $\xi=\left(\xi_{t}\right)_{t=1, \ldots, T}$
- ξ has marginal distributions $\mu_{1}, \ldots, \mu_{T} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- The Markov kernel κ_{t} of $\xi:\left(\xi_{t+1} \mid \xi_{t}=x\right) \stackrel{\text { law }}{\sim} \kappa_{t}(x)$
- Time-homogeneity: $\kappa=\kappa_{t}$ does not depend on t
- $\kappa \in \mathcal{K}\left(\mu_{t}, \mu_{t+1}\right)$ for $t=1, \ldots, T-1$
- $\kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$ with $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{T-1}\right)$ and $\boldsymbol{\nu}=\left(\mu_{2}, \ldots, \mu_{T}\right)$
- with fixed marginals, each κ corresponds to a time-homogeneous Markov process
(2) Simultaneous transport
(3) Technical properties

4 Wasserstein distance
(5) An equilibrium model

6 Future directions

Inequalities

- Δ_{d} : the standard simplex in \mathbb{R}^{d}
- Each κ transports each $\boldsymbol{\lambda} \cdot \boldsymbol{\mu}$ to $\boldsymbol{\lambda} \cdot \boldsymbol{\nu}$ for $\boldsymbol{\lambda} \in \Delta_{d}$

$$
\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu}) \subseteq \bigcap_{\boldsymbol{\lambda} \in \Delta_{d}} \mathcal{K}(\boldsymbol{\lambda} \cdot \boldsymbol{\mu}, \boldsymbol{\lambda} \cdot \boldsymbol{\nu})
$$

$$
\inf _{\kappa \in \mathcal{K}(\mu, \nu)} \mathcal{C}_{\eta}(\kappa) \geqslant \sup _{\lambda \in \Delta_{d}} \inf _{\kappa \in \mathcal{K}(\lambda \cdot \mu, \lambda \cdot \nu)} \mathcal{C}_{\eta}(\kappa) \geqslant \inf _{\kappa \in \mathcal{K}(\bar{\mu}, \bar{\nu})} \mathcal{C}_{\eta}(\kappa)
$$

- not sharp in general

Inequalities

- $d=2$
- $\tilde{\mu}_{1}=\left(\mu_{1}-\mu_{2}\right)_{+}$, and similar

$$
\inf _{\kappa \in \mathcal{K}(\mu, \nu)} \mathcal{C}_{\eta}(\kappa) \geqslant \inf _{\substack{\kappa \in \mathcal{K}\left(\mu, \tilde{\nu}_{1}\right) \\ \mu \leqslant \tilde{\mu}_{1}}} \mathcal{C}_{\eta}(\kappa)+\inf _{\substack{\kappa \in \mathcal{K}\left(\mu, \tilde{\nu}_{2}\right) \\ \mu \leqslant \tilde{\mu}_{2}}} \mathcal{C}_{\eta}(\kappa)
$$

Figure: shaded $\tilde{\mu}_{1}$ covers shaded $\tilde{\nu}_{1}$; grey $\tilde{\mu}_{2}$ covers grey $\tilde{\nu}_{2}$

Inequalities

- Both inequalities are sharp if $\boldsymbol{\mu}$ is mutually singular
- Transport problem is back to $d=1$ if
- $\boldsymbol{\mu}$ is mutually singular, or
- μ and $\boldsymbol{\nu}$ both have identical components
- Generally, there is no symmetry between X and Y

The role of η

If $c^{\prime}(x, y)=c(x, y)+\phi(x)+\boldsymbol{\psi}(y) \cdot \frac{\mathrm{d} \mu}{\mathrm{d} \eta}(x)$, then

$$
\int_{X \times Y} c^{\prime} \mathrm{d}(\eta \otimes \kappa)=\int_{X \times Y} c \mathrm{~d}(\eta \otimes \kappa)+\underbrace{\int_{X} \phi \mathrm{~d} \eta+\int_{Y} \psi^{\top} \mathrm{d} \nu}_{\text {does not depend on } \kappa}
$$

Classic setting $(d=1)$: if $c(x, y)=\phi(x)+\psi(y)$ then $\int c \mathrm{~d}(\mu \otimes \kappa)$ does not depend on κ

Example

- $X=Y=[0,1]$
- $\eta=\bar{\mu}=$ Lebesgue, $\mathrm{d} \mu_{1} / \mathrm{d} \bar{\mu}=2 x, \boldsymbol{\nu}$ arbitrary
- Assume $\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$ is nonempty

Figure: An example of densities of $\boldsymbol{\mu}$ and $\boldsymbol{\nu}, \boldsymbol{d}=2$

Examples

- $c(x, y)=(x-y)^{2}$
- take $\phi(x)=x^{2}, \psi_{1}(y)=-y, \psi(y)=y^{2}$

Decomposition holds

$$
c(x, y)=\phi(x)+\underbrace{\psi_{1}(y) \frac{\mathrm{d} \mu_{1}}{\mathrm{~d} \bar{\mu}}(x)}_{-2 x y}+\psi(y)
$$

$\Longrightarrow \int c \mathrm{~d}(\bar{\mu} \otimes \kappa)=\int_{X} x^{2} \bar{\mu}(\mathrm{~d} x)-\int_{Y} y \nu_{1}(\mathrm{~d} y)+\int_{Y} y^{2} \bar{\nu}(\mathrm{~d} y)$

- all transports have the same cost
- no optimal comonotone transport
- the two inequalities are not sharp

Existence

Definition 1 (Shen-Shen-Wang-W.'19 F\&S)

Let $\boldsymbol{\mu} \in \mathcal{P}(X)^{d}$ and $\boldsymbol{\nu} \in \mathcal{P}(Y)^{d}$.

- Write $\boldsymbol{\mu} \succeq_{\mathrm{h}} \boldsymbol{\nu}$ (heterogeneity) if there exist $\mu \gg \boldsymbol{\mu}$ and $\nu \gg \boldsymbol{\nu}$ such that $\mathrm{d} \boldsymbol{\mu} / \mathrm{d} \mu \geqslant_{\mathrm{cx}} \mathrm{d} \boldsymbol{\nu} / \mathrm{d} \nu$ where \geqslant_{cx} is the convex order.
- $\boldsymbol{\mu}$ is jointly atomless if there exist $\mu \gg \boldsymbol{\mu}$ and a random variable L such that under μ, L is continuously distributed and independent of $\mathrm{d} \boldsymbol{\mu} / \mathrm{d} \mu$.
- $d=1$ recovers classic non-atomicity
- called conditional atomless by Shen-Shen-Wang-W.'19
- μ, ν can be chosen as $\bar{\mu}, \bar{\nu}$

Existence

Proposition 1 (Torgersen'91; Shen-Shen-Wang-W.'19)

Let $\boldsymbol{\mu} \in \mathcal{P}(X)^{d}$ and $\boldsymbol{\nu} \in \mathcal{P}(Y)^{d}$.
(i) The set $\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$ is nonempty if and only if $\boldsymbol{\mu} \succeq_{\mathrm{h}} \boldsymbol{\nu}$.
(ii) Assume that $\boldsymbol{\mu}$ is jointly atomless. The set $\mathcal{T}(\boldsymbol{\mu}, \boldsymbol{\nu})$ is nonempty if and only if $\boldsymbol{\mu} \succeq_{\mathrm{h}} \boldsymbol{\nu}$.

- $\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu}), \mathcal{K}(\boldsymbol{\nu}, \boldsymbol{\eta})$ nonempty $\Longrightarrow \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\eta})$ nonempty

Joint non-atomicity

Remarks.

- Let $\boldsymbol{\mu}^{\prime}=\mathrm{d} \boldsymbol{\mu} / \mathrm{d} \bar{\mu}$ and $\boldsymbol{\nu}^{\prime}=\mathrm{d} \boldsymbol{\nu} / \mathrm{d} \bar{\nu}$
- $\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu}), \mathcal{K}(\boldsymbol{\nu}, \boldsymbol{\mu})$ nonempty $\Longleftrightarrow \boldsymbol{\mu}^{\prime} \stackrel{\text { law }}{=} \boldsymbol{\nu}^{\prime}$ (wrt $\bar{\mu}$ and $\bar{\nu}$ resp.)
- $\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$ nonempty and $\boldsymbol{\mu}$ identical $\Longrightarrow \boldsymbol{\nu}$ identical
- $\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$ nonempty and $\boldsymbol{\mu}$ equivalent $\Longrightarrow \boldsymbol{\nu}$ equivalent
- $\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$ nonempty and $\boldsymbol{\nu}$ mutually singular $\Longrightarrow \boldsymbol{\mu}$ mutually singular
- $\boldsymbol{\nu}$ identical $\Longrightarrow \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$ nonempty for all $\boldsymbol{\mu}$
- $\boldsymbol{\mu}$ mutually singular $\Longrightarrow \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$ nonempty for all $\boldsymbol{\nu}$

Joint non-atomicity

Definition 2 (Delbaen'21 F\&S)

Let $(\Omega, \mathcal{G}, \mu)$ be a measure space. We say that (\mathcal{G}, μ) is atomless conditionally to the sub- σ-field $\mathcal{F} \subseteq \mathcal{G}$, if for all $A \in \mathcal{G}$ with $\mu(A)>0$, there exists $A^{\prime} \subseteq A, A^{\prime} \in \mathcal{G}$, such that

$$
\mathbb{E}^{\mu}\left[\mathbb{1}_{A} \mid \mathcal{F}\right]>0 \Longrightarrow 0<\mathbb{E}^{\mu}\left[\mathbb{1}_{A^{\prime}} \mid \mathcal{F}\right]<\mathbb{E}^{\mu}\left[\mathbb{1}_{A} \mid \mathcal{F}\right] .
$$

Lemma 1 (Delbaen'21)

Let μ be any strictly positive convex combination of $\boldsymbol{\mu} \in \mathcal{P}(X)^{d}$. Then $\boldsymbol{\mu}$ is jointly atomless if and only if $(\mathcal{B}(X), \mu)$ is atomless conditionally to $\sigma(\mathrm{d} \boldsymbol{\mu} / \mathrm{d} \mu)$.

Kantorovich formulation

- Define

$$
\Pi_{\eta}(\boldsymbol{\mu}, \boldsymbol{\nu})=\{\eta \otimes \kappa \mid \kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})\}
$$

- If $\eta \sim \bar{\mu}$, it is

$$
\left\{\pi \in \mathcal{P}(X \times Y) \mid \pi_{X}=\eta, \int_{X} \frac{\mathrm{~d} \boldsymbol{\mu}}{\mathrm{~d} \eta}(x) \pi(\mathrm{d} x, \mathrm{~d} y)=\boldsymbol{\nu}(\mathrm{d} y)\right\}
$$

where π_{X} is the first marginal of π

- Omit η if $\eta=\bar{\mu}: \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})=\Pi_{\bar{\mu}}(\boldsymbol{\mu}, \boldsymbol{\nu})$
- Cost

$$
\mathcal{C}(\pi):=\int_{X \times Y} c \mathrm{~d} \pi=\mathcal{C}_{\eta}(\kappa)
$$

- π no longer has specified second marginal, unless η is a linear function of $\boldsymbol{\mu}$

Monge vs Kantorovich

Theorem 1

Suppose that X and Y are compact, μ is jointly atomless, and c is continuous. Then

$$
\inf _{\kappa \in \mathcal{K}(\mu, \nu)} \mathcal{C}_{\eta}(\kappa)=\inf _{T \in \mathcal{T}(\mu, \nu)} \mathcal{C}_{\eta}(T) .
$$

Remarks on joint non-atomicity.

- classic non-atomicity $(d=1) \Longleftrightarrow \exists$ uniform rv joint non-atomicity $\Longleftrightarrow \exists$ uniform rv independent of $\mathrm{d} \boldsymbol{\mu} / \mathrm{d} \bar{\mu}$
- In both settings of non-atomicity
- \exists Monge transport $\Longleftrightarrow \exists$ Kantorovich transport
- Monge infimum = Kantorovich infimum

Duality

Theorem 2

Suppose that X, Y are compact, $\eta \sim \bar{\mu}$, and $c: X \times Y \rightarrow[0,+\infty]$ is lower semi-continuous. Duality holds as

$$
\min _{\pi \in \Pi_{\eta}(\mu, \boldsymbol{\nu})} \int_{X \times Y} c \mathrm{~d} \pi=\sup _{(\phi, \boldsymbol{\psi}) \in \Phi_{c}} \int_{X} \phi \mathrm{~d} \eta+\int_{Y} \psi^{\top} \mathrm{d} \boldsymbol{\nu}
$$

where
$\Phi_{c}=\left\{(\phi, \psi) \in C(X) \times C(Y)^{d} \left\lvert\, \phi(x)+\psi(y) \cdot \frac{\mathrm{d} \boldsymbol{\mu}}{\mathrm{d} \eta}(x) \leqslant c(x, y)\right.\right\}$.

- d=1 and $\eta=\bar{\mu}$: classic duality (but with compactness)
- duality holds for $X=Y=\mathbb{R}^{N}$ if $\mathrm{d} \eta / \mathrm{d} \bar{\mu}$ is bounded

Uniqueness of the transport

- $\boldsymbol{\mu}^{\prime}=\mathrm{d} \boldsymbol{\mu} / \mathrm{d} \bar{\mu}$ and $\boldsymbol{\nu}^{\prime}=\mathrm{d} \boldsymbol{\nu} / \mathrm{d} \bar{\nu}$

Theorem 3

Suppose that both $\Pi(\boldsymbol{\mu}, \boldsymbol{\nu})$ and $\Pi(\boldsymbol{\nu}, \boldsymbol{\mu})$ are nonempty and $\boldsymbol{\mu}^{\prime}$ is injective on the support of $\boldsymbol{\mu}$.
(i) There exist a unique $\pi \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})$ and a unique $\tilde{\pi} \in \Pi(\boldsymbol{\nu}, \boldsymbol{\mu})$.
(ii) $\pi(A \times B)=\tilde{\pi}(B \times A)$ for all $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$.
(iii) $\pi\left(\left\{(x, y) \mid \boldsymbol{\mu}^{\prime}(x) \neq \boldsymbol{\nu}^{\prime}(y)\right\}\right)=0$.

Remarks.

- $\boldsymbol{\mu}^{\prime}$ injective $\Longleftrightarrow \mathcal{B}(X)=\sigma\left(\boldsymbol{\mu}^{\prime}\right) \Longrightarrow \boldsymbol{\mu}$ not jointly atomless
- $d=1: \mu^{\prime}=1$ injective $\Longleftrightarrow X=\{x\}$

Proof of the uniqueness

Figure: Idea of the proof in case $d=2$. The transports are divided into shaded $\left(I_{1}^{1}, J_{1}^{1}\right)$ and unshaded parts $\left(I_{2}^{1}, J_{2}^{1}\right) ; \pi$ must be supported in the gray area

Uniqueness of the transport

Example 1

$X=Y=[0,1], \mu_{2}=\nu_{2}=$ Unif, $\mathrm{d} \mu_{1}=2 x \mathrm{~d} x, \mathrm{~d} \nu_{1}=|2-4 x| \mathrm{d} x$

- μ_{1}^{\prime} strictly increasing
- a transport kernel

$$
\kappa(x)=\frac{1}{2} \delta_{(1+x) / 2}+\frac{1}{2} \delta_{(1-x) / 2}
$$

- $\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}), \Pi(\boldsymbol{\nu}, \boldsymbol{\mu})$ nonempty
- unique transport kernel
- no Monge, $\mathcal{T}(\boldsymbol{\mu}, \boldsymbol{\nu})=\emptyset$

(2) Simultaneous transport
(3) Technical properties
(4) Wasserstein distance

6 Future directions

Wasserstein distance

- $X=Y$ equipped with a metric $\rho ; p \geqslant 1$
- Define

$$
\mathcal{P}(X)_{p, \rho}=\left\{\mu \in \mathcal{P}(X) \mid \exists x_{0} \in X, \int_{X} \rho\left(x, x_{0}\right)^{p} \mu(\mathrm{~d} x)<\infty\right\}
$$

- Classic Wasserstein distance between μ and ν in $\mathcal{P}(X)_{p, \rho}$

$$
\mathcal{W}_{p}(\mu, \nu)=\left(\inf _{\pi \in \Pi(\mu, \nu)} \int_{X^{2}} \rho^{p} \mathrm{~d} \pi\right)^{1 / p}
$$

- Example: $X=\mathbb{R}^{d}, \rho=$ Euclidean and $p=2$
- Wasserstein distance between $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$ in $\mathcal{P}(X)_{p, \rho}^{d}$?

Wasserstein distance

- $\eta=\bar{\mu}$
- For $\boldsymbol{\mu}, \boldsymbol{\nu} \in \mathcal{P}(X)_{p, \rho}^{d}$, define the "Wasserstein distance"

$$
\mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left(\inf _{\pi \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} \int_{X^{2}} \rho^{p} \mathrm{~d} \pi\right)^{1 / p}
$$

- Triangle inequality OK; symmetry NO
- not a metric on $\mathcal{P}(X)_{p, \rho}^{d}$
- Find $\mathcal{E} \subseteq \mathcal{P}(X)_{p, \rho}^{d}$ such that $\mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\mathcal{W}_{p}(\boldsymbol{\nu}, \boldsymbol{\mu})$ on \mathcal{E}

Wasserstein distance

Theorem 4

Let $\boldsymbol{\mu} \in \mathcal{P}(X)^{d}$ and $\boldsymbol{\nu} \in \mathcal{P}(Y)^{d}$. Suppose that both $\Pi(\boldsymbol{\mu}, \boldsymbol{\nu})$ and $\Pi(\boldsymbol{\nu}, \boldsymbol{\mu})$ are nonempty. Then
$\inf _{\pi \in \Pi(\mu, \nu)} \int_{X \times Y} c(x, y) \pi(\mathrm{d} x, \mathrm{~d} y)=\inf _{\tilde{\pi} \in \Pi(\nu, \mu)} \int_{Y \times X} c(x, y) \tilde{\pi}(\mathrm{d} y, \mathrm{~d} x)$.
$\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}), \Pi(\boldsymbol{\nu}, \boldsymbol{\mu})$ nonempty $\Longleftrightarrow \boldsymbol{\mu}^{\prime} \stackrel{\text { law }}{=} \boldsymbol{\nu}^{\prime}$

- If $X=Y$ and c is symmetric, then

$$
\mathcal{I}_{c}(\boldsymbol{\mu}, \boldsymbol{\nu}):=\inf _{\pi \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} \mathcal{C}(\pi)=\inf _{\tilde{\pi} \in \Pi(\boldsymbol{\nu}, \boldsymbol{\mu})} \mathcal{C}(\tilde{\pi})=\mathcal{I}_{c}(\boldsymbol{\nu}, \boldsymbol{\mu})
$$

- $\mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\mathcal{W}_{p}(\boldsymbol{\nu}, \boldsymbol{\mu})$

Wasserstein distance

- An equivalence relation: $\boldsymbol{\mu} \simeq \boldsymbol{\nu}$ if $\bar{\mu} \circ\left(\boldsymbol{\mu}^{\prime}\right)^{-1}=\bar{\nu} \circ\left(\boldsymbol{\nu}^{\prime}\right)^{-1}$
- both $\Pi(\boldsymbol{\mu}, \boldsymbol{\nu})$ and $\Pi(\boldsymbol{\nu}, \boldsymbol{\mu})$ are nonempty
- \mathcal{E}_{P} : equivalent class under \simeq where $P=\bar{\mu} \circ\left(\boldsymbol{\mu}^{\prime}\right)^{-1} \in \mathcal{P}\left(\mathbb{R}_{+}\right)^{d}$
- $\mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})$ is indeed a distance on each \mathcal{E}_{P}
- For $\kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$,

$$
\begin{aligned}
& \int_{X^{2}} c \mathrm{~d}(\bar{\mu} \otimes \kappa)=\frac{1}{d} \sum_{j=1}^{d} \int_{X^{2}} c \mathrm{~d}\left(\mu_{j} \otimes \kappa\right) \\
& \Longrightarrow \quad \mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})^{p} \geqslant \frac{1}{d} \sum_{j=1}^{d} \mathcal{W}_{p}\left(\mu_{j}, \nu_{j}\right)^{p}
\end{aligned}
$$

Wasserstein distance

Degenerate cases

- μ identical and ν identical \Longrightarrow the optimal transport from μ_{1} to ν_{1} is optimal from $\boldsymbol{\mu}$ to $\boldsymbol{\nu}$

$$
\Longrightarrow \quad \mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})^{p}=\frac{1}{d} \sum_{j=1}^{d} \mathcal{W}_{p}\left(\mu_{j}, \nu_{j}\right)^{p}=\mathcal{W}_{p}\left(\mu_{1}, \nu_{1}\right)^{p}
$$

- $d=1 \Longrightarrow \Pi(\mu, \nu), \Pi(\nu, \mu)$ nonempty $\Longrightarrow \mathcal{W}_{p}$ is the classic Wasserstein distance on $\mathcal{P}(X)_{p, \rho}$
- μ mutually singular $\Longrightarrow \mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})^{p}=\frac{1}{d} \sum_{j=1}^{d} \mathcal{W}_{p}\left(\mu_{j}, \nu_{j}\right)^{p}$

Wasserstein distance

- Decompose (P-a.s.) $\bar{\mu}=\int \bar{\mu}_{\mathbf{z}} P(\mathrm{~d} \mathbf{z})$ where $\left\{\mu_{\mathbf{z}}\right\}_{\mathbf{z} \in \mathbb{R}_{+}^{d}}$ is given by $\bar{\mu}_{\mathbf{z}}\left(\left\{x \in X: \boldsymbol{\mu}^{\prime}=z\right\}\right)=1$
- Similarly $\bar{\nu}=\int \bar{\nu}_{\mathbf{z}} P(\mathrm{~d} \mathbf{z})$

Theorem 5

For $\boldsymbol{\mu}, \boldsymbol{\nu} \in \mathcal{E}_{P}$ and $\kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$, the following are equivalent:
(i) κ is an optimal transport from $\boldsymbol{\mu}$ to $\boldsymbol{\nu}$;
(ii) κ is an optimal transport from $\bar{\mu}_{\mathbf{z}}$ to $\bar{\nu}_{\mathbf{z}}$ for each P-a.s. \mathbf{z};
(iii) $\mathcal{C}_{\bar{\mu}}(\kappa)=\int_{\mathbb{R}_{+}^{d}} \mathcal{I}_{c}\left(\bar{\mu}_{\mathbf{z}}, \bar{\nu}_{\mathbf{z}}\right) P(\mathrm{~d} \mathbf{z})$.

Wasserstein distance

- Let $\kappa_{\mathbf{z}}$ be an optimal transport from $\bar{\mu}_{\mathbf{z}}$ to $\bar{\nu}_{\mathbf{Z}}$ for each \mathbf{z}
- Define $\kappa(x):=\kappa_{\mu^{\prime}(x)}(x) \Longrightarrow \kappa$ is optimal and

$$
\mathcal{I}_{c}(\boldsymbol{\mu}, \boldsymbol{\nu})=\int_{\mathbb{R}_{+}^{d}} \mathcal{I}_{c}\left(\bar{\mu}_{\mathbf{z}}, \bar{\nu}_{\mathbf{z}}\right) P(\mathrm{~d} \mathbf{z})
$$

$$
\mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})^{p}=\int_{\mathbb{R}_{+}^{d}} \mathcal{W}_{p}\left(\bar{\mu}_{\mathbf{z}}, \bar{\nu}_{\mathbf{z}}\right)^{p} P(\mathrm{~d} \mathbf{z})
$$

- For $1 \leqslant p<\infty,\left(\mathcal{E}_{P}, \mathcal{W}_{p}\right)$ is a Polish space
- Topology induced by \mathcal{W}_{p} is yet unclear

Wasserstein distance

Corollary 1

Let $\boldsymbol{\mu}, \boldsymbol{\nu} \in \mathcal{E}_{P}, X=\mathbb{R}$ and $c: \mathbb{R}^{2} \rightarrow[0, \infty]$ be submodular. Then

$$
\mathcal{I}_{c}(\boldsymbol{\mu}, \boldsymbol{\nu})=\int_{\mathbb{R}_{+}^{d}} \int_{0}^{1} c\left(F_{\mathbf{z}}^{-1}(t), G_{\mathbf{z}}^{-1}(t)\right) \mathrm{d} t P(\mathrm{~d} \mathbf{z})
$$

where $F_{\mathbf{z}}^{-1}, G_{\mathbf{z}}^{-1}$ are the distribution functions of $\mu_{\mathbf{z}}, \nu_{\mathbf{z}}$ respectively.
If $\rho=$ Euclidean on \mathbb{R}, then

$$
\mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})^{p}=\int_{\mathbb{R}_{+}^{d}} \int_{0}^{1}\left|F_{\mathbf{z}}^{-1}(t)-G_{\mathbf{z}}^{-1}(t)\right|^{p} \mathrm{~d} t P(\mathrm{~d} \mathbf{z})
$$

(1) Optimal transport

(2) Simultaneous transport
(3) Technical properties
4) Wasserstein distance
(5) An equilibrium model
(6) Future directions

An equilibrium model

- Assume $\eta \sim \sum_{i=1}^{d} \mu_{i}, X$ and Y are compact, and $g: X \times Y \rightarrow[-\infty, \infty)$ is upper semi-continuous

Duality holds

$$
\max _{\pi \in \Pi_{\eta}(\mu, \boldsymbol{\nu})} \int_{X \times Y} g \mathrm{~d} \pi=\inf _{(\phi, \psi) \in \Phi_{g}} \int_{X} \phi \mathrm{~d} \eta+\int_{Y} \boldsymbol{\psi}^{\top} \mathrm{d} \boldsymbol{\nu}
$$

where

$$
\Phi_{g}=\left\{(\phi, \boldsymbol{\psi}) \in C(X) \times C^{d}(Y): \phi(x)+\boldsymbol{\psi}(y) \frac{\mathrm{d} \boldsymbol{\mu}}{\mathrm{~d} \eta}(x) \geqslant g(x, y)\right\}
$$

An equilibrium model

- $x \in X$ represents worker labels (characteristics)
- $y \in Y$ represent firms
- η : the distribution of the workers labelled with $x \in X$
- discrete $\eta(x)=1 / n$: each worker has their own label
- d types of skills
- workers with the same label have the same skills
- μ_{i} : supply of type- i skill provided by the workers
- discrete $\mu_{i}(x)$: type- i skill provided by each worker label x
- $\boldsymbol{\mu}^{\prime}=\mathrm{d} \boldsymbol{\mu} / \mathrm{d} \eta$: (per-worker) skill vector
- ν_{i} : demand of type- i skill from the firms
- discrete $\nu_{i}(y)$: type- i skill demanded by each firm y

An equilibrium model

- Assume that demand and supply of each skill are equal
- $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$ are normalized
- A matching is $\kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu}) ; \pi=\eta \otimes \kappa$
- $g(x, y)$: the production of firm y hiring worker x (per unit)
- total production: $\int g \mathrm{~d} \pi$
- $w: X \rightarrow \mathbb{R}$: wage function
- $w(x)$ is the wage of worker x
- $\mathbf{p}: Y \rightarrow \mathbb{R}^{d}$: profit-per-skill function
- assumption: profit is linear in skills employed
- if firm y employs a skill vector $\mathbf{q} \in \mathbb{R}_{+}^{d}$, its profit is $\mathbf{p}(y) \cdot \mathbf{q}$
- the profit generated from hiring worker x is $\mathbf{p}(y) \cdot \boldsymbol{\mu}^{\prime}(x)$
- (w, \mathbf{p}) : a social plan

An equilibrium analysis

The total profit of all firms is

$$
\int_{X \times Y} \mathbf{p}(y) \cdot \boldsymbol{\mu}^{\prime}(x) \mathrm{d} \pi(\mathrm{~d} x, \mathrm{~d} y)=\int_{Y} \mathbf{p}^{\top} \mathrm{d} \boldsymbol{\nu}
$$

For worker x, their objective is to choose a firm to maximize their
wage

$$
y_{x}^{*}=\underset{y \in Y}{\arg \max }\left\{g(x, y)-\mathbf{p}(y) \cdot \boldsymbol{\mu}^{\prime}(x)\right\} .
$$

For firm y, its objective is to hire workers to maximize its profit

$$
x_{y}^{*}=\underset{x \in X}{\arg \max }\{g(x, y)-w(x)\} .
$$

An equilibrium analysis

For a social plan (w, \mathbf{p}) and a matching $\kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})$, an equilibrium is attained if
(a) the social plan is optimal

$$
\begin{aligned}
& w(x)=\max _{y \in Y}\left\{g(x, y)-\mathbf{p}(y) \cdot \boldsymbol{\mu}^{\prime}(x)\right\} \\
& \mathbf{p}(y) \cdot \boldsymbol{\mu}^{\prime}\left(x_{y}^{*}\right)=\max _{x \in X}\{g(x, y)-w(x)\}
\end{aligned}
$$

(b) the total production covers the total wage plus the total profit

$$
\int_{X \times Y} g \mathrm{~d} \pi \geqslant \int_{X} w \mathrm{~d} \eta+\int_{Y} \mathbf{p}^{\top} \mathrm{d} \boldsymbol{\nu}
$$

An equilibrium analysis

$$
\begin{aligned}
\text { (a) } & \Longrightarrow w(x)+\mathbf{p}(y) \cdot \boldsymbol{\mu}^{\prime}(x) \geqslant g(x, y) \\
+ \text { integrate } & \Longrightarrow \int_{X} w \mathrm{~d} \eta+\int_{Y} \mathbf{p}^{\top} \mathrm{d} \boldsymbol{\nu} \geqslant \int_{X \times Y} g \mathrm{~d} \pi \\
+(\mathrm{b}) & \Longrightarrow \int_{X} w \mathrm{~d} \eta+\int_{Y} \mathbf{p}^{\top} \mathrm{d} \boldsymbol{\nu}=\int_{X \times Y} g \mathrm{~d} \pi \\
& \Longrightarrow \text { duality holds and attained }
\end{aligned}
$$

- Equilibrium exists \Longleftrightarrow duality holds and attained
- Discrete setting: equilibrium exists \Longleftrightarrow duality holds

(1) Optimal transport

(2) Simultaneous transport
(3) Technical properties
4) Wasserstein distance
(5) An equilibrium model
(6) Future directions

Homogeneous Gaussian Markov process

Proposition 2

Suppose that $\mu_{t}=\mathrm{N}\left(0, \sigma_{t}^{2}\right), \sigma_{t}>0, t=1, \ldots, T$. If there exists a time-homogeneous Markov process with the above marginals, then the mapping $t \mapsto \sigma_{t}$ is increasing log-concave or decreasing log-convex. If $T \leqslant 3$, then the above condition is also sufficient.

- General result?
- Optimal Markov process?
- Existence and optimality of simultaneous transport between two vectors of Gaussian measures on \mathbb{R}^{N} ?

Future directions

- infinite dimension

$$
d=\infty
$$

- $\boldsymbol{\mu}$ has no dominating measure
- multi-marginal transports
- capacities instead of probabilities
- nonlinear cost in the probability
- constrained transport
- martingale simultaneous transport
- directional simultaneous transport
- Imperfect matching problems
- requires $\boldsymbol{\mu}(X) \geqslant \boldsymbol{\nu}(Y)$ instead of $\boldsymbol{\mu}(X)=\boldsymbol{\nu}(Y)$

Thank you

Thank you for your attention!

Based on (on-going) joint work with

