Multiple hypothesis testing with e-values and dependence

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science
University of Waterloo

Neyman Seminar
Department of Statistics, UC Berkeley April 7, 2021 (Online)

Agenda

(1) E-values
(2) Theoretical properties
(3) The e-BH procedure

4 Simulation illustrations
(5) Further results
(6) Concluding remarks

A little bit of what I do

$$
\text { A random vector } \mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)
$$

Assumptions

marginals may be known; dependence is unknown/arbitrary

- properties of $\Psi(\mathbf{X})$ for some $\Psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$
- $\mathbb{P}(\mathbf{X} \in A)$ for some $A \subseteq \mathbb{R}^{n}$

Questions:

- "optimal" dependence structures of \mathbf{X}
- statistical decisions based on \mathbf{X}

Dates back to Fréchet-Hoeffding; has roots in Monge-Kantorovich

A little bit of what I do

Closely related problems

- Robust financial risk management
- Mass transportation
- Optimal scheduling
- Nash equilibria in resource allocation games
- Treatment effect analysis

Multiple hypothesis testing

- A (large) set of p-values is only one vector: little hope to test/verify the dependence model
- Efron'10, Large-scale Inference, p50-p51:
"independence among the p-values ... usually an unrealistic assumption. ... even PRD [positive regression dependence] is unlikely to hold in practice."
- Benjamini-Yekutieli'01: arbitrarily dependent p-values
- Blanchard-Roquain'09, Barber-Candès'15, Fithan-Lei'20, ...
- Complicated/strange dependence arises when tests statistics across experiments are generated by some adaptive procedure

Some references to e-values

Vladimir Vovk (Royal Holloway)

Aaditya Ramdas (Carnegie Mellon)

Bin Wang (CAS Beijing)

- Vovk-W., E-values: Calibration, combination, and applications. arXiv:1912.06116, 2021, Annals of Statistics
- Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence. arXiv:2007.14208, 2020
- W.-Ramdas, False discovery rate control with e-values. arXiv:2009.02824, 2020

Hypotheses testing with e-values: http://www.alrw.net/e/

What is an e-value?

- A hypothesis \mathcal{H} : a set of probability measures

Definition (e-variables and p-variables)

(1) An e-variable for testing \mathcal{H} is a non-negative extended random variable $E: \Omega \rightarrow[0, \infty]$ that satisfies $\sup _{H \in \mathcal{H}} \int E \mathrm{~d} H \leq 1$.

- Realized values of e-variables are e-values.
(2) A p-variable for testing \mathcal{H} is a random variable $P: \Omega \rightarrow[0, \infty)$ that satisfies $\sup _{H \in \mathcal{H}} H(P \leq \alpha) \leq \alpha$ for all $\alpha \in(0,1)$.
- Realized values of p -variables are p -values.
- For simple hypothesis $\{\mathbb{P}\}$: non-negative E with mean ≤ 1
- E-test: $e($ data $)$ large \Longrightarrow reject

P-hacking

Typical scientific research

- Group A tests a medication; gets "promising but not conclusive" results
- Group B continues with new data; even more promising
- Group C continues with new data ...
- Sweep all data together to recalculate p-value \Rightarrow p-hacking

Many problems

- Data dependence and random stopping
- Cherry-picking
- Competitive research

What is an e-value?

- A test supermartingale: a supermartingale $X=\left(X_{t}\right)$ under the null with $X_{0}=1$
- Optional validity (Doob's optional stopping theorem):
X_{τ} is an e-value for any stopping time τ
- Retrospective validity (Ville's inequality):

$$
\mathbb{P}\left(\sup _{t \geq 0} X_{t} \geq \frac{1}{\alpha}\right) \leq \alpha
$$

- Bayes factors (simple hypothesis) and likelihood ratios:

$$
e(\text { data })=\frac{\operatorname{Pr}(\text { data } \mid \mathbb{Q})}{\operatorname{Pr}(\text { data } \mid \mathbb{P})}
$$

- Betting scores (Shafer-Vovk'19, Shafer'21)

E for Expectation

	requirement	specific interpretation	representative forms	keyword
p-value P	$\mathbb{P}(P \leq \alpha) \leq \alpha$ for $\alpha \in(0,1)$	probability of a more extreme observation	$\mathbb{P}\left(T^{\prime} \leq T(\mathbf{X}) \mid \mathbf{X}\right)$	(conditional) probability
e-value				
E	$\mathbb{E}^{\mathbb{P}}[E] \leq 1$ and $E \geq 0$	likelihood ratios, stopped martingales, and betting scores	$\mathbb{E}^{\mathbb{P}}\left[\left.\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}} \right\rvert\, \mathbf{X}\right]$	
$\mathbb{E}^{\mathbb{P}}\left[M_{\tau} \mid \mathbf{X}\right]$	(conditional) expectation			

An analogy of p-variables and e-variables for a simple hypothesis $\{\mathbb{P}\}$

- X is data
- $T(\mathbf{X})$ is any test statistic
- T^{\prime} is an independent copy of $T(\mathbf{X})$ under \mathbb{P}
- \mathbb{Q} is any probability measure
- M is a test supermartingale under \mathbb{P} and τ a stopping time
(not to be confused with VanderWeele-Ding'17)

Example in testing multiple hypotheses

Multi-armed bandit problems

- K arms
- null hypothesis k : arm k has mean reward at most 1
- strategy $\left(k_{t}\right)$: at time $t \geq 1$, pull arm k_{t}, obtain an iid reward $X_{k_{t}, t} \geq 0$
- aim: quickly detect arms with mean >1
- or maximize profit, minimize regret, etc ...
- running reward: $M_{k, t}=\prod_{j=1}^{t} X_{k, j} \mathbb{1}_{\left\{k_{j}=k\right\}}$
- complicated dependence due to exploration/exploitation
- $M_{1, \tau}, \ldots, M_{K, \tau}$ are e-values for any stopping time τ

Progress

(2) Theoretical properties

4 Simulation illustrations
(5) Further results
(6) Concluding remarks

Calibration

- Admissible p-to-e calibrators
- Power calibrators: $f_{\kappa}(p)=\kappa p^{\kappa-1}$ for $\kappa \in(0,1)$
- Shafer's: $f(p)=p^{-1 / 2}-1$
- Averaging $f_{\kappa}: \int_{0}^{1} \kappa p^{\kappa-1} \mathrm{~d} \kappa=\frac{1-p+p \ln p}{p(-\ln p)^{2}}$
- the only admissible e-to-p calibrator: $e \rightarrow e^{-1} \wedge 1$

Sir Jeffreys

"Users of these tests speak of the 5 per cent. point [p-value of 5%] in much the same way as I should speak of the $K=$ $10^{-1 / 2}$ point [e-value of $10^{1 / 2}$], and of the 1 per cent. point [p -value of 1%] as I should speak of the $K=10^{-1}$ point [e-value of 10]." (Theory of Probability, p.435, 3rd Ed.)

Calibration and combination

- The only admissible e-to-p calibrator: $e \rightarrow(1 / e) \wedge 1$
- Very roughly: $p \sim 1$ /e
- E-merging functions
- arithmetic average M_{K} : arbitrary dependent
- product P_{K} : independent, sequential
- Using $p \sim 1 / e$
- arithmetic average of $\mathrm{e} \approx$ harmonic average of p (Wilson'19)
- product of $\mathrm{e} \approx$ product of p (Fisher'48)

E-merging functions

Theorem 1

Suppose that F is a symmetric e-merging function. Then $F \leq \lambda+(1-\lambda) M_{K}$ for some $\lambda \in[0,1]$, and F is admissible if and only if $F=\lambda+(1-\lambda) M_{K}$ with $\lambda=F(\mathbf{0})$.

- For any symmetric e-merging function F :

$$
F(\mathbf{e})>1 \Longrightarrow M_{K}(\mathbf{e}) \geq F(\mathbf{e})
$$

- Asymmetric e-merging: $\mathbf{e} \mapsto \boldsymbol{\lambda} \cdot \mathbf{e}$ for $\boldsymbol{\lambda} \in \Delta_{K}$ where Δ_{K} is the standard K-simplex

Vovk-W., E-values: Calibration, combination, and applications.
Annals of Statistics, 2021, Theorem 3.2

Connection to p-merging

Theorem 2

For any admissible p-merging function F and $\epsilon \in(0,1)$, there exist $\left(\lambda_{1}, \ldots, \lambda_{K}\right) \in \Delta_{K}$ and admissible calibrators f_{1}, \ldots, f_{K} such that

$$
F(\mathbf{p}) \leq \epsilon \Longleftrightarrow \sum_{k=1}^{K} \lambda_{k} f_{k}\left(p_{k}\right) \geq \frac{1}{\epsilon}
$$

If F is symmetric, then there exists an admissible calibrator f such that

$$
F(\mathbf{p}) \leq \epsilon \Longleftrightarrow \frac{1}{K} \sum_{k=1}^{K} f\left(p_{k}\right) \geq \frac{1}{\epsilon}
$$

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence. arXiv: 2007.14208, 2020, Theorem 5.1

Merging sequential e-values

E-variables E_{1}, \ldots, E_{K} are sequential if E_{k} is an e-variable conditional on E_{1}, \ldots, E_{k-1} for each k.

- $\mathbb{E}\left[E_{k} \mid E_{1}, \ldots, E_{k-1}\right] \leq 1$ for all $k \in\{1, \ldots, K\}$
- E-values e_{1}, \ldots, e_{K} are obtained by laboratories $1, \ldots, K$
- Laboratory k makes sure that its result e_{k} is a valid e-value given the previous results e_{1}, \ldots, e_{k-1}

Definition (se-merging functions)

An se-merging function is an increasing Borel function $F:[0, \infty]^{K} \rightarrow[0, \infty]$ such that $F\left(E_{1}, \ldots, E_{K}\right)$ is an e-variable for all sequantial e-variables E_{1}, \ldots, E_{K}.

$$
\{\text { e-merging }\} \subset\{\text { se-merging }\} \subset\{\text { ie-merging }\}
$$

Test martingales

- Gaming system: a measurable function $\lambda:[0, \infty)^{<K} \rightarrow[0,1]$
- The test martingale associated with the gaming system s and initial capital $c \in[0,1]$ is the sequence $S_{k}:[0, \infty)^{K} \rightarrow[0, \infty)$ defined by $S_{0}=c$ and

$$
S_{k+1}(\mathbf{e})=S_{k}(\mathbf{e})\left(\lambda\left(e_{1}, \ldots, e_{k}\right) e_{k+1}+1-\lambda\left(e_{1}, \ldots, e_{k}\right)\right)
$$

for $k=0, \ldots, K-1$

- A martingale e-merging function is $F=S_{K}$ for some test martingale S.
- F and S_{k} are connected via

$$
S_{k}\left(e_{1}, \ldots, e_{K}\right)=F\left(e_{1}, \ldots, e_{k}, 1, \ldots, 1\right)
$$

Test martingales

Theorem 3

A martingale e-merging function is an se-merging function, and each se-merging function is dominated by a martingale e-merging function (with $c=1$).

- connection to testing via betting and confidence sequences

Test martingales

- $s=1$ and $c=1$: the test martingale S is given by

$$
S_{k}\left(e_{1}, \ldots, e_{K}\right)=e_{1} \ldots e_{k}
$$

and the corresponding martingale e-merging function is the product

$$
F\left(e_{1}, \ldots, e_{K}\right)=e_{1} \ldots e_{K}
$$

- The arithmetic mean

$$
F\left(e_{1}, \ldots, e_{K}\right)=\frac{e_{1}+\cdots+e_{K}}{K}
$$

corresponds to the test martingale

$$
S_{k}\left(e_{1}, \ldots, e_{K}\right)=\frac{e_{1}+\cdots+e_{k}+K-k}{K}
$$

Combining sequential e-values

The general protocol

- Obtain sequential e-values $e_{1}, \ldots, e_{t}, \ldots$
- Decide a predictable $\lambda_{1}, \ldots, \lambda_{t}, \cdots \in[0,1]$
- Compute the martingale $\left(E_{0}=1\right)$

$$
E_{t}=E_{t-1}\left(1-\lambda_{t}+\lambda_{t} e_{t}\right)=\prod_{s=1}^{t}\left(1-\lambda_{s}+\lambda_{s} e_{s}\right)
$$

- Optimal choice of λ_{t} : (Waudby-Smith)-Ramdas'20
- The Kelly criterion

Progress

(2) Theoretical properties
(3) The e-BH procedure

4 Simulation illustrations
(5) Further results
(6) Concluding remarks

Testing multiple hypotheses

Basic framework

- K hypotheses H_{1}, \ldots, H_{K}
- $\mathcal{K}=\{1, \ldots, K\}$
- H_{k} is null if $\mathbb{P} \in H_{k}$
- $\mathcal{N} \subseteq \mathcal{K}$: the set of (unknown) indices of null hypotheses
- $K_{0}=|\mathcal{N}|$; if $K_{0} / K \approx 1$ then the signals are sparse

Two settings

- H_{k} is associated with p-value p_{k}
- p_{k} is realization of P_{k} (p -variable for \mathbb{P} if $k \in \mathcal{N}$)
- H_{k} is associated with e-value e_{k}
- e_{k} is realization of E_{k} (e-variable for \mathbb{P} if $k \in \mathcal{N}$)

Testing multiple hypotheses

- A p-testing procedure $\mathcal{D}:[0,1]^{K} \rightarrow 2^{\mathcal{K}}$ gives the indices of rejected hypotheses based on observed p -values
- An e-testing procedure $\mathcal{D}:[0, \infty]^{K} \rightarrow 2^{\mathcal{K}}$ gives the indices of rejected hypotheses based on observed e-values

For a p - or e-testing procedure \mathcal{D} :

- $R_{\mathcal{D}}$: number of total discoveries $\left(R_{\mathcal{D}}=|\mathcal{D}|\right)$
- $F_{\mathcal{D}}$: number of false discoveries $\left(F_{\mathcal{D}}=|\mathcal{D} \cap \mathcal{N}|\right)$
- False discovery proportion (FDP): $F_{\mathcal{D}} / R_{\mathcal{D}}$ with $0 / 0=0$
- Benjamini-Hochberg'95: control the FDR $\mathbb{E}\left[F_{\mathcal{D}} / R_{\mathcal{D}}\right] \leq \alpha$

$$
\mathrm{FDR}_{\mathcal{D}}=\mathbb{E}\left[\frac{F_{\mathcal{D}}}{R_{\mathcal{D}}}\right]=\mathbb{E}\left[\left.\frac{F_{\mathcal{D}}}{R_{\mathcal{D}}} \right\rvert\, R_{\mathcal{D}}>0\right] \mathbb{P}\left(R_{\mathcal{D}}>0\right)
$$

The BH procedure

Three input ingredients:
(a) K realized p-values p_{1}, \ldots, p_{K} associated to H_{1}, \ldots, H_{K}, respectively
(b) an FDR level $\alpha \in(0,1)$
(c) (optional) dependence information or assumption on p-values, such as independence, PRDS 1 or no information
${ }^{1}$ PRDS: positive regression dependence on a subset, e.g., jointly Gaussian test statistics with correlations ≥ 0

The BH procedure

BH procedure

The (base) Benjamini-Hochberg (BH) procedure $\mathcal{D}(\alpha)$ rejects hypotheses with the smallest $k^{*} \mathrm{p}$-values, where

$$
k^{*}=\max \left\{k \in \mathcal{K}: \frac{K p_{(k)}}{k} \leq \alpha\right\}
$$

with the convention $\max (\varnothing)=0$.

	FDR	dependence
BH'95 $\mathrm{BY}^{\prime} 01$	$\frac{K_{0}}{K} \alpha$	independence PRDS
$\mathrm{BY}^{\prime} 01$	$\ell_{K} \frac{K_{0}}{K} \alpha$	arbitrary (AD)

E-BH procedure

Three input ingredients:
(a) K realized raw e-values e_{1}, \ldots, e_{K} associated to H_{1}, \ldots, H_{K}, respectively
(b) an FDR level $\alpha \in(0,1)$
(c) (optional) distributional information or assumption on e-values

The e-BH procedure can be described in two steps
(1) (optional) boost the raw e-values using information in (c)
(2) apply the base e-BH procedure to the boosted e-values and level α

E-BH procedure

- $e_{1}^{\prime}, \ldots, e_{K}^{\prime}$: raw or boosted e-values
- $e_{[1]}^{\prime} \geq \cdots \geq e_{[K]}^{\prime}:$ order statistics
- The rough relation $e \sim 1 / p \Rightarrow$ use $1 / e$

E-BH procedure

The base e-BH procedure $\mathcal{G}(\alpha):[0, \infty]^{K} \rightarrow 2^{\mathcal{K}}$ for $\alpha>0$ rejects hypotheses with the largest k_{e}^{*} (raw or boosted) e-values, where

$$
k_{e}^{*}=\max \left\{k \in \mathcal{K}: \frac{k e_{[k]}^{\prime}}{K} \geq \frac{1}{\alpha}\right\} .
$$

E-BH procedure

Theorem 4

The (full) e-BH procedure has FDR at most $K_{0} \alpha / K$. In particular, the base e-BH procedure $\mathcal{G}(\alpha)$ directly applied to arbitrary raw e-values has FDR at most $K_{0} \alpha / K$.

	nice cases	general (AD)
p-BH/BY	$\frac{K_{0}}{K} \alpha$	penalty
e-BH	boosting	$\frac{K_{0}}{K} \alpha$

W.-Ramdas, False discovery rate control with e-values.
arXiv: 2009.02824, 2020, Theorem 5.1

Compliant procedures

An e-testing procedure \mathcal{G} is said to be compliant at level $\alpha \in(0,1)$ if every rejected e-value e_{k} satisfies

$$
e_{k} \geq \frac{K}{\alpha R_{\mathcal{G}}}
$$

- The base e-BH procedure is compliant and it dominates all other compliant procedures

Compliant procedures

Proposition 1

Any compliant e-testing procedure \mathcal{G} at level α has FDR at most $\alpha K_{0} / K$ for arbitrary configurations of e-values.

Proof. For each $k \in \mathcal{G}$ (i.e., rejected),

$$
E_{k} \geq \frac{K}{\alpha R_{\mathcal{G}}} \Longleftrightarrow \frac{1}{R_{\mathcal{G}}} \leq \frac{\alpha E_{k}}{K}
$$

The FDP of \mathcal{G} satisfies

$$
\frac{F_{\mathcal{G}}}{R_{\mathcal{G}}}=\frac{|\mathcal{G} \cap \mathcal{N}|}{R_{\mathcal{G}}}=\sum_{k \in \mathcal{N}} \frac{\mathbb{1}_{\{k \in \mathcal{G}\}}}{R_{\mathcal{G}}} \leq \sum_{k \in \mathcal{N}} \frac{\mathbb{1}_{\{k \in \mathcal{G}\}} \alpha E_{k}}{K} \leq \sum_{k \in \mathcal{N}} \frac{\alpha E_{k}}{K} .
$$

As $\mathbb{E}\left[E_{k}\right] \leq 1$ for $k \in \mathcal{N}$,

$$
\mathbb{E}\left[\frac{F_{\mathcal{G}}}{R_{\mathcal{G}}}\right] \leq \sum_{k \in \mathcal{N}} \mathbb{E}\left[\frac{\alpha E_{k}}{K}\right] \leq \frac{\alpha K_{0}}{K}
$$

Compliant procedures

- General compliant p-testing procedures do not have this property even if p-values are independent
- For independent p-values, a compliant p-testing procedure at α has a weaker FDR guarantee $\alpha(1+\log (1 / \alpha))>\alpha($ Su'18 $)$

Compliance is useful in

- data-driven structured settings
- post-selection testing
- group testing
- multi-armed bandit problems

Boosting

Define $T(x)$ as the largest value in $(K / \mathcal{K}) \cup\{0\}$ dominated by x :

$$
T(x)=\frac{K}{\lceil K / x\rceil} \mathbb{1}_{\{x \geq 1\}} \text { with } T(\infty)=K
$$

From

$$
k_{e}^{*}=\max \left\{k \in \mathcal{K}: \alpha e_{[k]}^{\prime} \geq \frac{K}{k}\right\}
$$

- αE_{k} can be safely replaced by $T\left(\alpha E_{k}\right)$
- It suffices to require $T\left(\alpha E_{k}\right) / \alpha$ to be an e-value

Boosting

For each $k \in \mathcal{K}$, take a boosting factor $b_{k} \geq 1$ such that

$$
\begin{aligned}
\max _{x \in K / \mathcal{K}} x \mathbb{P}\left(\alpha b_{k} E_{k} \geq x\right) \leq \alpha & \text { if e-values are PRDS } \\
\mathbb{E}\left[T\left(\alpha b_{k} E_{k}\right)\right] \leq \alpha & \text { otherwise (AD) }
\end{aligned}
$$

and let $e_{k}^{\prime}=b_{k} e_{k}$.

- \mathbb{E} and \mathbb{P} are computed under the null distribution of E_{k}
- Composite null: require for all probability measures in H_{k}
- $b_{k}=1$ is always valid
- Non-linear boosting is also possible
- \mathbf{e}^{\prime} may not have the same order as \mathbf{e}.

Boosting

Example.

- For $\lambda \in(0,1)$

$$
E_{k}=\lambda P_{k}^{\lambda-1}
$$

where P_{k} is standard uniform if $k \in \mathcal{N}$

- $y_{\alpha} \leq\left(\lambda^{\lambda} \alpha\right)^{1 /(1-\lambda)}$
- $\lambda=1 / 2 \Longrightarrow y_{\alpha} \leq \alpha^{2} / 2$
- $\alpha=0.05, \lambda=1 / 2$
- $b_{k} \approx 6.32$ (AD)
- $b_{k} \approx 8.94$ (PRDS)

Boosting

Example.

- For $\delta>0$,

$$
E_{k}=e^{\delta X_{k}-\delta^{2} / 2}
$$

where X_{k} is standard normal if $k \in \mathcal{N}$

- $\alpha=0.05, \delta=3$
- $b \approx 1.37$ (AD)
- $b \approx 7.88$ (PRDS)

Progress

(2) Theoretical properties
(3) The e-BH procedure
4) Simulation illustrations
(5) Further results
(6) Concluding remarks

A multi-armed bandit problem

Problem setting

- K arms each with a reward $X^{k} \geq 0$
- Pulling arm k produces an iid sample $\left(X_{1}^{k}, X_{2}^{k}, \ldots\right)$ from X^{k}
- Null hypotheses: $\mathbb{E}\left[X_{k}\right] \leq 1, k \in \mathcal{K}$
- Arms have to be pulled in order and previous arms cannot be revisited
- An arm can be pulled at most n times (budget)
- Goal: detect non-null arms as quickly as possible
- Example: investment opportunities; medical experiment

A multi-armed bandit problem

The e-value $e_{k, j}$ and the p -value $p_{k, j}$ are realized by, respectively,

$$
E_{k, j}:=\prod_{i=1}^{j} X_{i}^{k} \quad \text { and } \quad P_{k, j}:=\left(\max _{i=1, \ldots, j} E_{k, i}\right)^{-1} \quad(p \leq 1 / e)
$$

Algorithm

- Select a p- or e-testing procedure \mathcal{D} and start with $\mathbf{e}=\mathbf{p}=\mathbf{1}$
- For arm k, stop at T_{k} such that either \mathcal{D} produces a new discovery or $T_{k}=n$
- Update e-values or p-values and move to arm $k+1$

The final e-variables E_{k} and p-variables P_{k} are obtained by

$$
E_{k}=E_{k, T_{k}} \quad \text { and } \quad P_{k}=P_{k, T_{k}}, \quad k=1, \ldots, K
$$

A multi-armed bandit problem

Table: Conditions for the validity of the testing algorithm

	AD data across arms	AD stopping rules T_{k}	FDR guarantee in our experiments
e-BH	YES	YES	valid at level $\alpha K_{0} / K$
BH	NO	NO	not valid
BY	YES	YES	valid at level $\alpha K_{0} / K$
cBH	NO	YES	valid at level $\alpha K_{0} / K$

Consider $\mathrm{BH}, \mathrm{e}-\mathrm{BH}, \mathrm{BY}$ and compliant $\mathrm{BH}(\mathrm{cBH})$ procedures

- BY: $\mathcal{D}\left(\alpha_{1}\right)$ where $\alpha_{1} \ell_{K}=\alpha$ (Benjamini-Yekutieli'01)
- cBH: $\mathcal{D}\left(\alpha_{2}\right)$ where $\alpha_{2}\left(1+\log \left(1 / \alpha_{2}\right)\right)=\alpha($ Su'18 $)$

A multi-armed bandit problem

Data generating process

- More promising arms come first: arm k is non-null with probability $\theta(K-k+1) /(K+1), \theta \in[0,1]$
- The expected number of non-nulls in this setting is $\theta / 2$
- $s_{k} \sim \operatorname{Expo}(\mu)$ is the strength of signal for arm k
- Conditional on s_{k},

$$
X_{1}^{k}, \ldots, X_{n}^{k} \stackrel{\mathrm{iid}}{\sim} X^{k}=\exp \left(Z^{k}+s_{k} \mathbb{1}_{\{k \in \mathcal{K} \backslash \mathcal{N}\}}-1 / 2\right)
$$

where Z^{1}, \ldots, Z^{K} are iid standard normal

- Set $\alpha=0.05$ and $\theta=0.5\left(\Rightarrow K_{0} \alpha / K \approx 3.75 \%\right)$

A multi-armed bandit problem

Table: $R=\#\{$ rejected hypothesis $\}, B \%=\%$ (unused budget), TD $=\#\{$ true discoveries $\}$. Each number is computed over an average of 500 trials. Default values: $K=500, n=50$ and $\mu=1$.
(a) Default
(b) $K=2000$
(c) $n=10$

	R	$B \%$	TD	FDP\%	R	$B \%$	TD	FDP $\%$	R	$B \%$	TD	FDP $\%$
e-BH	74.4	11.42	73.2	1.58	297.6	11.39	293.2	1.48	47.7	3.99	47.3	0.83
BH	77.0	11.44	75.3	2.13	307.8	11.41	301.4	2.07	49.3	4.01	48.7	1.06
BY	70.6	10.06	70.4	0.31	281.2	9.95	280.4	0.26	38.4	2.77	38.4	0.08
cBH	71.1	10.16	70.8	0.36	284.5	10.15	283.5	0.36	39.2	2.85	39.2	0.11

(d) $n=100$
(e) $\mu=0.5$
(f) $\mu=2$

	R	$B \%$	TD	FDP\%	R	$B \%$	TD	FDP\%	R	$B \%$	TD	FDP\%
e-BH	79.1	13.48	77.9	1.50	43.5	5.77	42.9	1.54	97.4	16.46	95.9	1.54
BH	81.3	13.50	79.5	2.13	46.3	5.80	45.3	2.13	99.3	16.47	97.2	2.07
BY	76.4	12.36	76.1	0.35	39.6	4.66	39.5	0.27	94.3	15.23	94.1	0.29
cBH	76.7	12.44	76.4	0.41	40.1	4.74	40.0	0.35	94.6	15.32	94.3	0.35

Correlated z-tests

- $X_{k} \sim N(0,1)$ if $k \in \mathcal{N}$
- $X_{k} \sim \mathrm{~N}(\delta, 1)$ if $k \notin \mathcal{N}, \delta<0$
- X_{1}, \ldots, X_{K} are jointly Gaussian
- E-values from likelihood ratios

$$
E_{k}=\exp \left(\delta X_{k}-\delta^{2} / 2\right)
$$

- P-values from Neyman-Pearson tests

$$
P_{k}=\Phi\left(X_{k}\right)
$$

- Set $\delta=-3$

Correlated z-tests

Table: Simulation results for correlated z-tests, where $\rho_{i, j}$ is the correlation between two test statistics X_{i} and X_{j} for $i \neq j$. Each cell gives the number of rejections and, in parentheses, the realized FDP (in \%). Each number is computed over an average of 1,000 trials.
(a) Independent and positively correlated tests, $K=1000, K_{0}=800$

	$\rho_{i j}=0$			$\rho_{i j}=0.5$		
	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$
BH	$177.3(8.01)$	$148.7(4.07)$	$115.0(1.63)$	$180.0(7.00)$	$144.8(3.64)$	$109.8(1.50)$
e-BH PRDS	$171.8(7.07)$	$147.6(3.95)$	$114.6(1.62)$	$170.2(5.71)$	$142.5(3.35)$	$108.0(1.50)$
BY	$101.1(1.10)$	$78.8(0.57)$	$53.2(0.22)$	$96.6(1.03)$	$76.7(0.50)$	$55.0(0.20)$
e-BH AD	$109.4(1.41)$	$85.4(0.68)$	$54.6(0.24)$	$103.1(1.32)$	$81.4(0.70)$	$56.6(0.28)$
base e-BH	$97.5(1.00)$	$70.6(0.43)$	$36.9(0.11)$	$91.9(0.97)$	$69.1(0.45)$	$43.6(0.16)$

Correlated z-tests

(b) Independent tests with large number of hypotheses

	$K=20,000, K_{0}=10,000$			$K=20,000, K_{0}=19,000$		
	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$
BH	$9567(5.00)$	$8564(2.49)$	$7164(1.00)$	$681.3(9.58)$	$520.2(4.79)$	$357.7(1.93)$
e-BH PRDS	$9092(3.60)$	$8330(2.13)$	$7124(0.98)$	$681.3(9.58)$	$509.3(4.54)$	$312.1(1.40)$
BY	$5956(0.48)$	$4818(0.24)$	$3417(0.10)$	$254.1(0.89)$	$177.6(0.46)$	$103.1(0.19)$
e-BH AD	$6811(0.80)$	$5809(0.44)$	$4384(0.18)$	$271.0(1.02)$	$159.5(0.39)$	$51.4(0.07)$
base e-BH	$6426(0.64)$	$5234(0.31)$	$3509(0.10)$	$224.8(0.69)$	$109.2(0.21)$	$16.4(0.01)$

(c) Negatively correlated tests, $K=1000, K_{0}=800$.

	$\rho_{i j}=-1 /(K-1)$			$\rho_{i j}=-0.51_{\{\|i-j\|=1\}}$		
	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$
BH	$177.7(8.14)$	$149.0(4.09)$	$115.2(1.61)$	$177.2(8.10)$	$148.8(4.00)$	$115.3(1.62)$
e-BH PRDS	$172.0(7.13)$	$147.9(3.98)$	$114.9(1.59)$	$171.5(7.13)$	$147.7(3.89)$	$114.9(1.61)$
BY	$101.2(1.08)$	$78.8(0.52)$	$53.3(0.20)$	$101.3(1.11)$	$78.8(0.56)$	$53.2(0.22)$
e-BH AD	$109.7(1.38)$	$85.5(0.65)$	$54.6(0.22)$	$109.8(1.40)$	$85.6(0.69)$	$54.6(0.24)$
base e-BH	$97.8(0.98)$	$70.7(0.40)$	$37.2(0.11)$	$97.6(0.99)$	$70.7(0.41)$	$36.7(0.12)$

Progress

(2) Theoretical properties
(3) The e-BH procedure

4 Simulation illustrations
(5) Further results
6) Concluding remarks

Weighted e-BH

Take $w_{1}, \ldots, w_{K} \geq 0$ such that $w_{1}+\cdots+w_{K}=K$: One can

- use ($w_{1} e_{1}, \ldots, w_{K} e_{K}$) as the input e-values
- boost via

$$
\begin{aligned}
\max _{x \in K / \mathcal{K}} x \mathbb{P}\left(\alpha b_{k} E_{k} \geq x\right) \leq w_{k} \alpha & \text { if e-values are PRDS } \\
\mathbb{E}\left[T\left(\alpha b_{k} E_{k}\right)\right] \leq w_{k} \alpha & \text { otherwise (AD) }
\end{aligned}
$$

- use random $\left(w_{1}, \ldots, w_{K}\right)$ independent of the e-values with $\mathbb{E}\left[w_{1}+\cdots+w_{K}\right]=K$ (prior information)
The same applies for compliant e-testing procedures

A class of e-testing procedures

- An increasing transform $\phi:[0, \infty] \rightarrow[0, \infty]$ is strictly increasing and continuous with $\phi(\infty)=\infty$ and $\phi(0)<1$

E-testing procedure $\mathcal{G}(\phi)$

Define $\mathcal{G}(\phi)$ by rejecting $k_{e, \phi}^{*}$ hypotheses with the largest e-values, where $k_{e, \phi}^{*}=\max \left\{k \in \mathcal{K}: k \phi\left(e_{[k]}\right) / K \geq 1\right\}$.

- $\phi: t \mapsto \alpha t \Longrightarrow$ base e-BH

A class of e-testing procedures

Theorem 5

Fix $\alpha \in(0,1)$ and K. For any increasing transform ϕ, if $\mathcal{G}(\phi)$ satisfies

$$
\mathbb{E}\left[\frac{F_{\mathcal{G}(\phi)}}{R_{\mathcal{G}(\phi)}}\right] \leq \alpha
$$

for arbitrary configurations of e-values, then $\mathcal{G}(\phi) \subseteq \mathcal{G}(\alpha)$.

- The base e-BH procedure is optimal among $\mathcal{G}(\phi)$ with the same FDR guarantee

Applying e-BH to p-values

- A decreasing transform $\psi:[0,1] \rightarrow[0, \infty]$ is a strictly decreasing and continuous function with $\psi(0)=\infty$

P-testing procedure $\mathcal{D}(\psi)$

Define $\mathcal{D}(\psi)$ by rejecting k_{ψ}^{*} hypotheses with the largest e-values, where $k_{\psi}^{*}=\max \left\{k \in \mathcal{K}: k \psi\left(p_{(k)}\right) / K \geq 1\right\}$.

- $\psi: p \mapsto \alpha / p \Longrightarrow$ base BH
- equivalent to step-up methods of Benjamini-Yekutieli'01

E-BH for p-values

Proposition 2

For arbitrary p-values and a decreasing transform ψ, the testing procedure $\mathcal{D}(\psi)$ satisfies

$$
\mathbb{E}\left[\frac{F_{\mathcal{D}(\psi)}}{R_{\mathcal{D}(\psi)}}\right] \leq \frac{K_{0}}{K} z_{\psi},
$$

where

$$
\begin{aligned}
& z_{\psi}=\max _{t \in K / \mathcal{K}} t \psi^{-1}(t) \quad \text { if } p \text {-values are PRDS }, \\
& z_{\psi}=\psi^{-1}(1)+\sum_{j=1}^{K-1} \frac{K}{j(j+1)} \psi^{-1}(K / j) \quad \text { otherwise }(A D) .
\end{aligned}
$$

E-BH for p-values

- For $\psi: p \rightarrow \alpha / p$,

$$
\psi\left(p_{(k)}\right) \geq \frac{K}{k} \quad \Longleftrightarrow \quad \frac{K p_{(k)}}{k} \leq \alpha
$$

- $\mathcal{D}(\psi)=\mathcal{D}(\alpha)$
- If p-values are PRDS, then $z_{\psi}=\alpha$ (Benjamini-Hochberg'95)
- Otherwise (Benjamini-Yekutieli'01)

$$
z_{\psi}=\alpha+\sum_{j=1}^{K-1} \frac{\alpha}{j+1}=\alpha \ell_{K}
$$

E-BH for p-values

$$
\begin{equation*}
\text { (PRDS) } t \mapsto t \psi^{-1}(t) \text { is decreasing on }[1, \infty) \Longrightarrow z_{\psi}=\psi^{-1}(1) \tag{D}
\end{equation*}
$$

Proposition 3

Fix $\alpha \in(0,1)$ and K. For any decreasing transform ψ, if $\mathcal{D}(\psi)$ satisfies

$$
\mathbb{E}\left[\frac{F_{\mathcal{D}(\psi)}}{R_{\mathcal{D}(\psi)}}\right] \leq \alpha
$$

for arbitrary configurations of PRDS p-values, then $\psi^{-1}(1) \leq \alpha$. Moreover, if ψ satisfies (D), then $\mathcal{D}(\psi) \subseteq \mathcal{D}(\alpha)$.

- For PRDS p-values, the BH procedure is the most powerful among all $\mathcal{D}(\psi)$ satisfying (D) with the same FDR guarantee.

Progress

(2) Theoretical properties
(3) The e- BH procedure

4 Simulation illustrations
(5) Further results
(6) Concluding remarks

Some features of e-BH

The e-BH procedure
(1) works for AD e-values;
(2) requires no information on the configuration of the input e-values, and works well for weighted e-values;
(3) allows for power boosting if partial distributional information is available on some e-values;
(4) gives rise to a class of p-testing procedure which include both BH and BY as special cases;
(5) is optimal among a class of e-testing procedures under AD

Advantages of e-values

- Validity for arbitrary dependence \Rightarrow expectation
- Validity for optional stopping times \Rightarrow martingale
- Any p-value can be realized by sup of a continuous-time test martingale

E-values are a useful tool even if one is only interested in p-values

- Easy to combine
- Flexible to stop/continue (online testing; unfixed sample size)
- Non-asymptotic and often model-free

Future work

- E-values in risk management
- model-free e-backtesting risk measures
- FDR and other false discovery methods with p/e-values

Conjecture

Every monotone and symmetric p-testing procedure \mathcal{D} with α-FDR for arbitrary dependence (like BY) is dominated by e-BH at level α applied to some calibrators.

Thank you for your attention

Working paper series on e-values: http://www.alrw.net/e/

