E-values	Properties	E-BH procedure	Simulation	Further results	Remarks

Multiple hypothesis testing with e-values and dependence

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science

University of Waterloo

Neyman Seminar Department of Statistics, UC Berkeley April 7, 2021 (Online)

Agenda					
E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	000000000		000000000	00000000	00000

- 2 Theoretical properties
- 3 The e-BH procedure
- ④ Simulation illustrations
- 5 Further results
- 6 Concluding remarks

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
●00000000	000000000		00000000	00000000	00000

A little bit of what I do

A random vector
$$\mathbf{X} = (X_1, \ldots, X_n)$$

Assumptions

marginals may be known; dependence is unknown/arbitrary

- properties of $\Psi(\mathsf{X})$ for some $\Psi: \mathbb{R}^n \to \mathbb{R}^d$
- $\mathbb{P}(\mathbf{X} \in A)$ for some $A \subseteq \mathbb{R}^n$

Questions:

- "optimal" dependence structures of X
- statistical decisions based on X

Dates back to Fréchet-Hoeffding; has roots in Monge-Kantorovich

伺 ト イ ヨ ト イ ヨ ト

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
o●ooooooo	0000000000		000000000	00000000	00000
	:				

A little bit of what I do

Closely related problems

- Robust financial risk management
- Mass transportation
- Optimal scheduling
- Nash equilibria in resource allocation games
- Treatment effect analysis

E-values 00●000000	Properties 0000000000	E-BH procedure	Simulation 000000000	Further results	Remarks 00000

Multiple hypothesis testing

- A (large) set of p-values is only one vector: little hope to test/verify the dependence model
- Efron'10, Large-scale Inference, p50-p51:

"independence among the p-values ... usually an unrealistic assumption. ... even PRD [positive regression dependence] is unlikely to hold in practice."

- Benjamini-Yekutieli'01: arbitrarily dependent p-values
 - Blanchard-Roquain'09, Barber-Candès'15, Fithan-Lei'20, ...
- Complicated/strange dependence arises when tests statistics across experiments are generated by some adaptive procedure

E-values Properties E-BH procedure Simulation Further results Remarks

Some references to e-values

Vladimir Vovk (Royal Holloway)

Aaditya Ramdas (Carnegie Mellon)

Bin Wang (CAS Beijing)

(a)

- Vovk-W., E-values: Calibration, combination, and applications. arXiv:1912.06116, 2021, Annals of Statistics
- Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence. <u>arXiv:2007.14208</u>, 2020
- W.-Ramdas, False discovery rate control with e-values. arXiv:2009.02824, 2020

Hypotheses testing with e-values: http://www.alrw.net/e/

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
0000●0000	000000000		00000000	00000000	00000

What is an e-value?

• A hypothesis \mathcal{H} : a set of probability measures

Definition (e-variables and p-variables)

- (1) An e-variable for testing \mathcal{H} is a non-negative extended random variable $E : \Omega \to [0, \infty]$ that satisfies $\sup_{H \in \mathcal{H}} \int E \, \mathrm{d}H \leq 1$.
 - Realized values of e-variables are e-values.
- (2) A p-variable for testing \mathcal{H} is a random variable $P : \Omega \to [0, \infty)$ that satisfies $\sup_{H \in \mathcal{H}} H(P \le \alpha) \le \alpha$ for all $\alpha \in (0, 1)$.
 - Realized values of p-variables are p-values.
 - ▶ For simple hypothesis $\{\mathbb{P}\}$: non-negative *E* with mean ≤ 1

• E-test:
$$e(data)$$
 large \implies reject

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
00000●000	000000000		000000000	00000000	00000
P-hacking	χ.				

Typical scientific research

- Group A tests a medication; gets "promising but not conclusive" results
- Group B continues with new data; even more promising
- Group C continues with new data ...
- Sweep all data together to recalculate p-value \Rightarrow p-hacking

Many problems

- Data dependence and random stopping
- Cherry-picking
- Competitive research

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks

What is an e-value?

- ► A test supermartingale: a supermartingale X = (X_t) under the null with X₀ = 1
- Optional validity (Doob's optional stopping theorem):

 $X_{ au}$ is an e-value for any stopping time au

Retrospective validity (Ville's inequality):

$$\mathbb{P}\left(\sup_{t\geq 0} X_t \geq \frac{1}{\alpha}\right) \leq \alpha$$

Bayes factors (simple hypothesis) and likelihood ratios:

$$e(\mathsf{data}) = rac{\Pr(\mathsf{data} \mid \mathbb{Q})}{\Pr(\mathsf{data} \mid \mathbb{P})}$$

Betting scores (Shafer-Vovk'19, Shafer'21)

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000					

E for Expectation

	requirement	specific interpretation	representative forms	keyword
p-value P	$\mathbb{P}(P \leq \alpha) \leq \alpha$ for $\alpha \in (0, 1)$	probability of a more extreme observation	$\mathbb{P}(\mathcal{T}' \leq \mathcal{T}(\mathbf{X}) \mathbf{X})$	(conditional) probability
e-value E	$\mathbb{E}^{\mathbb{P}}[E] \leq 1$ and $E \geq 0$	likelihood ratios, stopped martingales, and betting scores	$\mathbb{E}^{\mathbb{P}}\left[rac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}ig \mathbf{X} ight] \ \mathbb{E}^{\mathbb{P}}[M_{ au} \mathbf{X}]$	(conditional) expectation

An analogy of p-variables and e-variables for a simple hypothesis $\{\mathbb{P}\}$

- X is data
- T(X) is any test statistic
- T' is an independent copy of T(X) under \mathbb{P}
- Q is any probability measure
- M is a test supermartingale under $\mathbb P$ and au a stopping time

(not to be confused with VanderWeele-Ding'17)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
00000000	000000000	000000000000000	00000000	0000000	00000

Example in testing multiple hypotheses

Multi-armed bandit problems

- ► K arms
- null hypothesis k: arm k has mean reward at most 1
- strategy (k_t) : at time $t \ge 1$, pull arm k_t , obtain an iid reward $X_{k_t,t} \ge 0$
- ▶ aim: quickly detect arms with mean > 1
 - or maximize profit, minimize regret, etc ...
- running reward: $M_{k,t} = \prod_{j=1}^{t} X_{k,j} \mathbb{1}_{\{k_j=k\}}$
- complicated dependence due to exploration/exploitation
- $M_{1, au}, \ldots, M_{K, au}$ are e-values for any stopping time au

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	●000000000		000000000	00000000	00000
Progress					

E-value

- 2 Theoretical properties
- 3 The e-BH procedure
- ④ Simulation illustrations
- 5 Further results
- 6 Concluding remarks

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0●00000000		000000000	00000000	00000
Calibrati	~ n				

- Admissible p-to-e calibrators
 - Power calibrators: $f_{\kappa}(p) = \kappa p^{\kappa-1}$ for $\kappa \in (0,1)$
 - Shafer's: $f(p) = p^{-1/2} 1$
 - Averaging f_{κ} : $\int_0^1 \kappa p^{\kappa-1} d\kappa = \frac{1-p+p \ln p}{p(-\ln p)^2}$
- \blacktriangleright the only admissible e-to-p calibrator: $e
 ightarrow e^{-1} \wedge 1$

Sir Jeffreys

"Users of these tests speak of the 5 per cent. point [p-value of 5%] in much the same way as I should speak of the $K = 10^{-1/2}$ point [e-value of $10^{1/2}$], and of the 1 per cent. point [p-value of 1%] as I should speak of the $K = 10^{-1}$ point [e-value of 10]." (Theory of Probability, p.435, 3rd Ed.)

< ロ > < 同 > < 回 > < 回 >

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	000000000		000000000	00000000	00000

Calibration and combination

- ▶ The only admissible e-to-p calibrator: $e o (1/e) \wedge 1$
- Very roughly: $p \sim 1/e$
- E-merging functions
 - arithmetic average M_K : arbitrary dependent
 - product *P_K*: independent, sequential
- Using $p \sim 1/e$
 - arithmetic average of e \approx harmonic average of p (Wilson'19)
 - product of e \approx product of p (Fisher'48)

伺 ト イ ヨ ト イ ヨ ト

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	000000000	0000000000000000000	000000000	00000000	00000

E-merging functions

Theorem 1

Suppose that F is a symmetric e-merging function. Then $F \leq \lambda + (1 - \lambda)M_K$ for some $\lambda \in [0, 1]$, and F is admissible if and only if $F = \lambda + (1 - \lambda)M_K$ with $\lambda = F(\mathbf{0})$.

► For any symmetric e-merging function *F*:

$$F(\mathbf{e}) > 1 \implies M_{\mathcal{K}}(\mathbf{e}) \geq F(\mathbf{e}).$$

Asymmetric e-merging: e → λ · e for λ ∈ Δ_K where Δ_K is the standard K-simplex

 Vovk-W., E-values: Calibration, combination, and applications.

 Annals of Statistics, 2021, Theorem 3.2

 Ruodu Wang (wang@uwaterloo.ca)

 E-values and dependence

 15/58

E-values 000000000	Properties 0000000000	E-BH procedure	Simulation 000000000	Further results	Remarks 00000

Connection to p-merging

Theorem 2

For any admissible p-merging function F and $\epsilon \in (0, 1)$, there exist $(\lambda_1, \ldots, \lambda_K) \in \Delta_K$ and admissible calibrators f_1, \ldots, f_K such that

$$\mathcal{F}(\mathbf{p}) \leq \epsilon \iff \sum_{k=1}^{K} \lambda_k f_k(p_k) \geq \frac{1}{\epsilon}.$$

If F is symmetric, then there exists an admissible calibrator f such that

$$\mathsf{F}(\mathbf{p}) \leq \epsilon \iff rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} f(p_k) \geq rac{1}{\epsilon}.$$

 Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.

 arXiv: 2007.14208, 2020, Theorem 5.1

 Ruodu Wang (wang@uwaterloo.ca)

 E-values and dependence

 16/58

E-values Properties E-BH procedure Simulation Further results Remarks

Merging sequential e-values

E-variables E_1, \ldots, E_K are sequential if E_k is an e-variable conditional on E_1, \ldots, E_{k-1} for each k.

- $\mathbb{E}[E_k \mid E_1, \dots, E_{k-1}] \leq 1$ for all $k \in \{1, \dots, K\}$
- E-values e_1, \ldots, e_K are obtained by laboratories $1, \ldots, K$
- Laboratory k makes sure that its result ek is a valid e-value given the previous results e1,..., ek-1

Definition (se-merging functions)

An se-merging function is an increasing Borel function $F : [0, \infty]^K \to [0, \infty]$ such that $F(E_1, \ldots, E_K)$ is an e-variable for all sequantial e-variables E_1, \ldots, E_K .

 $\{\mathsf{e}\text{-merging}\} \subset \{\mathsf{se}\text{-merging}\} \subset \{\mathsf{ie}\text{-merging}\}$

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000		000000000	00000000	00000
Test mar	tingales				

- ▶ Gaming system: a measurable function $\lambda : [0, \infty)^{<\kappa} \rightarrow [0, 1]$
- ► The test martingale associated with the gaming system s and initial capital c ∈ [0, 1] is the sequence S_k : [0,∞)^K → [0,∞) defined by S₀ = c and

$$S_{k+1}(\mathbf{e}) = S_k(\mathbf{e}) \big(\frac{\lambda(e_1, \ldots, e_k)}{e_{k+1}} + 1 - \lambda(e_1, \ldots, e_k) \big)$$

for k = 0, ..., K - 1

- ► A martingale e-merging function is F = S_K for some test martingale S.
- ► *F* and *S_k* are connected via

$$S_k(e_1,\ldots,e_K)=F(e_1,\ldots,e_k,1,\ldots,1).$$

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000●00		000000000	00000000	00000

Test martingales

Theorem 3

A martingale e-merging function is an se-merging function, and each se-merging function is dominated by a martingale e-merging function (with c = 1).

connection to testing via betting and confidence sequences

伺 ト イ ヨ ト イ ヨ ト

E-values 000000000	Properties 00000000●0	E-BH procedure	Simulation 000000000	Further results	Remarks 00000
Test mar	tingales				

• s = 1 and c = 1: the test martingale S is given by

$$S_k(e_1,\ldots,e_K)=e_1\ldots e_k,$$

and the corresponding martingale e-merging function is the product

$$F(e_1,\ldots,e_K)=e_1\ldots e_K.$$

The arithmetic mean

o

$$F(e_1,\ldots,e_K)=rac{e_1+\cdots+e_K}{K}$$

corresponds to the test martingale

$$S_k(e_1,\ldots,e_K)=rac{e_1+\cdots+e_k+K-k}{K}.$$

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
00000000	000000000	000000000000000	00000000	0000000	00000

Combining sequential e-values

The general protocol

- ▶ Obtain sequential e-values e_1, \ldots, e_t, \ldots
- Decide a predictable $\lambda_1, \ldots, \lambda_t, \cdots \in [0, 1]$
- Compute the martingale $(E_0 = 1)$

$$E_t = E_{t-1}(1 - \lambda_t + \lambda_t e_t) = \prod_{s=1}^t (1 - \lambda_s + \lambda_s e_s)$$

- ▶ Optimal choice of λ_t : (Waudby-Smith)-Ramdas'20
- The Kelly criterion

伺 ト イ ヨ ト イ ヨ ト

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	000000000	•00000000000000	000000000		00000

Progress

1 E-values

- 2 Theoretical properties
- 3 The e-BH procedure
- ④ Simulation illustrations
- 5 Further results
- 6 Concluding remarks

伺 と く ヨ と く ヨ と

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
		000000000000000000000000000000000000000			

Testing multiple hypotheses

Basic framework

- K hypotheses H_1, \ldots, H_K
- $\mathcal{K} = \{1, \ldots, K\}$
- H_k is null if $\mathbb{P} \in H_k$
- $\mathcal{N} \subseteq \mathcal{K}$: the set of (unknown) indices of null hypotheses
- $\mathcal{K}_0 = |\mathcal{N}|$; if $\mathcal{K}_0/\mathcal{K} pprox 1$ then the signals are sparse

Two settings

- H_k is associated with p-value p_k
 - p_k is realization of P_k (p-variable for $\mathbb P$ if $k \in \mathcal N$)
- H_k is associated with e-value e_k
 - e_k is realization of E_k (e-variable for \mathbb{P} if $k \in \mathcal{N}$)

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
00000000	000000000		00000000	00000000	00000

Testing multiple hypotheses

- A p-testing procedure D : [0, 1]^K → 2^K gives the indices of rejected hypotheses based on observed p-values
- An e-testing procedure D : [0,∞]^K → 2^K gives the indices of rejected hypotheses based on observed e-values

For a p- or e-testing procedure \mathcal{D} :

- $R_{\mathcal{D}}$: number of total discoveries ($R_{\mathcal{D}} = |\mathcal{D}|$)
- $F_{\mathcal{D}}$: number of false discoveries ($F_{\mathcal{D}} = |\mathcal{D} \cap \mathcal{N}|$)
- False discovery proportion (FDP): F_D/R_D with 0/0 = 0
- ▶ Benjamini-Hochberg'95: control the FDR $\mathbb{E}[F_{\mathcal{D}}/R_{\mathcal{D}}] \leq \alpha$

$$\operatorname{FDR}_{\mathcal{D}} = \mathbb{E}\left[\frac{F_{\mathcal{D}}}{R_{\mathcal{D}}}\right] = \mathbb{E}\left[\frac{F_{\mathcal{D}}}{R_{\mathcal{D}}} \mid R_{\mathcal{D}} > 0\right] \mathbb{P}(R_{\mathcal{D}} > 0)$$

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000		000000000	00000000	00000
The BH	procedure				

Three input ingredients:

- (a) K realized p-values p_1, \ldots, p_K associated to H_1, \ldots, H_K , respectively
- (b) an FDR level $\alpha \in (0,1)$
- (c) (optional) dependence information or assumption on p-values, such as independence, PRDS^1 or no information

¹PRDS: positive regression dependence on a subset, e.g., jointly Gaussian test statistics with correlations ≥ 0

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
		000000000000000000000000000000000000000			

The BH procedure

BH procedure

The (base) Benjamini-Hochberg (BH) procedure $\mathcal{D}(\alpha)$ rejects hypotheses with the smallest k^* p-values, where

$$k^* = \max\left\{k \in \mathcal{K} : rac{\mathcal{K} \mathcal{p}_{(k)}}{k} \leq lpha
ight\}$$

with the convention $max(\emptyset) = 0$.

	FDR	dependence
BH'95	K ₀	independence
BY'01	$\overline{\kappa}^{\alpha}$	PRDS
BY'01	$\ell_{K}\frac{K_{0}}{K}\alpha$	arbitrary (AD)

E-values 000000000	Properties 0000000000	E-BH procedure	Simulation 000000000	Further results	Remarks 00000
E-BH pro	ocedure				

Three input ingredients:

- (a) K realized raw e-values e₁,..., e_K associated to H₁,..., H_K, respectively
- (b) an FDR level $\alpha \in (0,1)$

(c) (optional) distributional information or assumption on e-values

The e-BH procedure can be described in two steps

- (1) (optional) boost the raw e-values using information in (c)
- (2) apply the base e-BH procedure to the boosted e-values and level α

E-values 000000000	Properties 0000000000	E-BH procedure	Simulation 000000000	Further results	Remarks 00000
F-BH pro	cedure				

- e'_1, \ldots, e'_K : raw or boosted e-values
- $e'_{[1]} \geq \cdots \geq e'_{[\mathcal{K}]}$: order statistics
- The rough relation $e \sim 1/p \Rightarrow$ use 1/e

E-BH procedure

The base e-BH procedure $\mathcal{G}(\alpha) : [0, \infty]^{\mathcal{K}} \to 2^{\mathcal{K}}$ for $\alpha > 0$ rejects hypotheses with the largest k_e^* (raw or boosted) e-values, where

$$k_e^* = \max\left\{k \in \mathcal{K} : rac{ke'_{[k]}}{\mathcal{K}} \geq rac{1}{lpha}
ight\}.$$

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
00000000	000000000	0000000●0000000	00000000	00000000	00000

E-BH procedure

Theorem 4

The (full) e-BH procedure has FDR at most $K_0\alpha/K$. In particular, the base e-BH procedure $\mathcal{G}(\alpha)$ directly applied to arbitrary raw e-values has FDR at most $K_0\alpha/K$.

	nice cases	general (AD)
p-BH/BY	$\frac{K_0}{K} \alpha$	penalty
e-BH	boosting	$\frac{K_0}{K} \alpha$

W.-Ramdas, False discovery rate control with e-values.

arXiv: 2009.02824, 2020, Theorem 5.1

Ruodu Wang (wang@uwaterloo.ca) E-valu

E-values and dependence

29/58

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000	00000000●000000	000000000	00000000	00000
a					

Compliant procedures

An e-testing procedure G is said to be compliant at level $\alpha \in (0, 1)$ if every rejected e-value e_k satisfies

$$e_k \geq \frac{K}{\alpha R_{\mathcal{G}}}.$$

 The base e-BH procedure is compliant and it dominates all other compliant procedures

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
00000000	000000000	000000000000000	00000000	0000000	00000

Compliant procedures

Proposition 1

Any compliant e-testing procedure G at level α has FDR at most $\alpha K_0/K$ for arbitrary configurations of e-values.

<u>Proof.</u> For each $k \in \mathcal{G}$ (i.e., rejected),

$$E_k \geq \frac{K}{\alpha R_{\mathcal{G}}} \iff \frac{1}{R_{\mathcal{G}}} \leq \frac{\alpha E_k}{K}$$

The FDP of ${\mathcal G}$ satisfies

$$\frac{F_{\mathcal{G}}}{R_{\mathcal{G}}} = \frac{|\mathcal{G} \cap \mathcal{N}|}{R_{\mathcal{G}}} = \sum_{k \in \mathcal{N}} \frac{\mathbb{1}_{\{k \in \mathcal{G}\}}}{R_{\mathcal{G}}} \leq \sum_{k \in \mathcal{N}} \frac{\mathbb{1}_{\{k \in \mathcal{G}\}} \alpha E_k}{K} \leq \sum_{k \in \mathcal{N}} \frac{\alpha E_k}{K}.$$

As $\mathbb{E}[E_k] \leq 1$ for $k \in \mathcal{N}$,

$$\mathbb{E}\left[\frac{F_{\mathcal{G}}}{R_{\mathcal{G}}}\right] \leq \sum_{k \in \mathcal{N}} \mathbb{E}\left[\frac{\alpha E_k}{K}\right] \leq \frac{\alpha K_0}{K}.$$

> < = > < = >

E-values 000000000	Properties 0000000000	E-BH procedure	Simulation 000000000	Further results	Remarks 00000		
Compliant procedures							

- General compliant p-testing procedures do not have this property even if p-values are independent
- For independent p-values, a compliant p-testing procedure at α has a weaker FDR guarantee α(1 + log(1/α)) > α (Su'18)

Compliance is useful in

- data-driven structured settings
- post-selection testing
- group testing
- multi-armed bandit problems

E-values 000000000	Properties 0000000000	E-BH procedure	Simulation 000000000	Further results	Remarks 00000
Boosting					

Define T(x) as the largest value in $(K/\mathcal{K}) \cup \{0\}$ dominated by x:

$$T(x) = \frac{K}{\lceil K/x \rceil} \mathbb{1}_{\{x \ge 1\}}$$
 with $T(\infty) = K$.

From

$$k_e^* = \max\left\{k \in \mathcal{K} : \alpha e'_{[k]} \ge \frac{\kappa}{k}\right\},$$

- αE_k can be safely replaced by $T(\alpha E_k)$
- It suffices to require $T(\alpha E_k)/\alpha$ to be an e-value

伺 と く ヨ と く ヨ と

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000	ooooooooooooooooo	000000000		00000
Boosting					

For each $k \in \mathcal{K}$, take a boosting factor $b_k \geq 1$ such that

 $\max_{x \in K/\mathcal{K}} x \mathbb{P}(\alpha b_k E_k \ge x) \le \alpha \quad \text{if e-values are PRDS}$ $\mathbb{E}[T(\alpha b_k E_k)] \le \alpha \quad \text{otherwise (AD)}$

and let $e'_k = b_k e_k$.

- \mathbb{E} and \mathbb{P} are computed under the null distribution of E_k
- Composite null: require for all probability measures in H_k
- $b_k = 1$ is always valid
- Non-linear boosting is also possible
- e' may not have the same order as e.

- 4 同 2 4 回 2 4 回 2 4

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000	00000000000000000000	000000000	00000000	00000
Destrict					

Boosting

Example.

▶ For $\lambda \in (0,1)$

$$E_k = \lambda P_k^{\lambda - 1},$$

where P_k is standard uniform if $k \in \mathcal{N}$

•
$$y_{\alpha} \leq (\lambda^{\lambda} \alpha)^{1/(1-\lambda)}$$

$$\lambda = 1/2 \Longrightarrow y_{\alpha} \le \alpha^2/2$$

- α = 0.05, λ = 1/2
 - $b_k \approx 6.32$ (AD)
 - $b_k \approx 8.94$ (PRDS)

3

▲□ ▶ ▲ □ ▶ ▲ □ ▶

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000	0000000000000000	000000000	0000000	00000
Boosting					

Example.

▶ For $\delta > 0$,

$$E_k = e^{\delta X_k - \delta^2/2},$$

where X_k is standard normal if $k \in \mathcal{N}$

• *b* ≈ 1.37 (AD)

• *b* ≈ 7.88 (PRDS)

3

- 4 同 2 4 日 2 4 日 2 4

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	000000000	00000000000000	●00000000	00000000	00000

Progress

E-values

- 2 Theoretical properties
- 3 The e-BH procedure
- ④ Simulation illustrations
 - 5 Further results

6 Concluding remarks

/□ ▶ < 글 ▶ < 글 ▶

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
			00000000		

A multi-armed bandit problem

Problem setting

- K arms each with a reward $X^k \ge 0$
- Pulling arm k produces an iid sample $(X_1^k, X_2^k, ...)$ from X^k
- ▶ Null hypotheses: $\mathbb{E}[X_k] \leq 1, \ k \in \mathcal{K}$
- Arms have to be pulled in order and previous arms cannot be revisited
- An arm can be pulled at most *n* times (budget)
- ► Goal: detect non-null arms as quickly as possible
- Example: investment opportunities; medical experiment

E-values Properties E-BH procedure Simulation Further results Remarks

A multi-armed bandit problem

The e-value $e_{k,j}$ and the p-value $p_{k,j}$ are realized by, respectively,

$$E_{k,j} := \prod_{i=1}^{j} X_i^k \quad \text{and} \quad P_{k,j} := \left(\max_{i=1,\dots,j} E_{k,i} \right)^{-1} \quad (p \le 1/e)$$

Algorithm

- \blacktriangleright Select a p- or e-testing procedure ${\cal D}$ and start with e=p=1
- ► For arm k, stop at T_k such that either D produces a new discovery or T_k = n
- Update e-values or p-values and move to arm k + 1

The final e-variables E_k and p-variables P_k are obtained by

$$E_k = E_{k,T_k}$$
 and $P_k = P_{k,T_k}$, $k = 1,\ldots,K$.

(日) (同) (三) (三)

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
			00000000		

A multi-armed bandit problem

Table: Conditions for the validity of the testing algorithm

	AD data	AD stopping	FDR guarantee in
	across arms	rules T_k	our experiments
e-BH	YES	YES	valid at level $\alpha K_0/K$
BH	NO	NO	not valid
BY	YES	YES	valid at level $lpha K_0/K$
cBH	NO	YES	valid at level $lpha K_0/K$

Consider BH, e-BH, BY and compliant BH (cBH) procedures

- BY: $\mathcal{D}(\alpha_1)$ where $\alpha_1 \ell_{\mathcal{K}} = \alpha$ (Benjamini-Yekutieli'01)
- cBH: $\mathcal{D}(\alpha_2)$ where $\alpha_2(1 + \log(1/\alpha_2)) = \alpha$ (Su'18)

00000000	000000000	000000000000000	000000000	0000000	00000
A multi-a	armed ban	dit problem			

Data generating process

- ▶ More promising arms come first: arm k is non-null with probability $\theta(K k + 1)/(K + 1)$, $\theta \in [0, 1]$
- The expected number of non-nulls in this setting is $\theta/2$
- $s_k \sim \text{Expo}(\mu)$ is the strength of signal for arm k
- Conditional on s_k,

$$X_1^k, \ldots, X_n^k \stackrel{\text{iid}}{\sim} X^k = \exp\left(Z^k + \frac{s_k \mathbbm{1}_{\{k \in \mathcal{K} \setminus \mathcal{N}\}}}{1/2}\right)$$

where Z^1, \ldots, Z^K are iid standard normal

• Set $\alpha = 0.05$ and $\theta = 0.5$ ($\Rightarrow K_0 \alpha / K \approx 3.75\%$)

E-values Properties E-BH procedure Simulation Further results Remarks

A multi-armed bandit problem

Table: R = #{rejected hypothesis}, B% = %(unused budget), TD = #{true discoveries}. Each number is computed over an average of 500 trials. Default values: K = 500, n = 50 and $\mu = 1$.

	(a) Default			(b) $K = 2$	2000			(c) n =	10	
	R	В%	TD	FDP%	R	В%	TD	FDP%	R	В%	TD	FDP%
e-BH	74.4	11.42	73.2	1.58	297.6	11.39	293.2	1.48	47.7	3.99	47.3	0.83
BH	77.0	11.44	75.3	2.13	307.8	11.41	301.4	2.07	49.3	4.01	48.7	1.06
BY	70.6	10.06	70.4	0.31	281.2	9.95	280.4	0.26	38.4	2.77	38.4	0.08
cBH	71.1	10.16	70.8	0.36	284.5	10.15	283.5	0.36	39.2	2.85	39.2	0.11
	(d)) n = 100)			(e) µ =	0.5			(f) μ =	= 2	
	(d) R) n = 100 B%) TD	FDP%	R	(e) μ = <i>B</i> %	0.5 TD	FDP%	R	(f) μ = <i>B</i> %	= 2 TD	FDP%
e-BH	(d) <i>R</i> 79.1	n = 100 B% 13.48) TD 77.9	FDP%	R 43.5	(e) $\mu = \frac{1}{8\%}$ 5.77	0.5 TD 42.9	FDP% 1.54	R 97.4	(f) μ = <i>B</i> % 16.46	= 2 TD 95.9	FDP% 1.54
e-BH BH	(d) <i>R</i> 79.1 81.3	n = 100 B% 13.48 13.50	TD 77.9 79.5	FDP% 1.50 2.13	<i>R</i> 43.5 46.3	(e) $\mu = 1$ <i>B</i> % 5.77 5.80	0.5 TD 42.9 45.3	FDP% 1.54 2.13	<i>R</i> 97.4 99.3	(f) μ = <u>B%</u> 16.46 16.47	= 2 TD 95.9 97.2	FDP% 1.54 2.07
e-BH BH BY	(d) <i>R</i> 79.1 81.3 76.4) n = 100 <u>B%</u> 13.48 13.50 12.36	TD 77.9 79.5 76.1	FDP% 1.50 2.13 0.35	<i>R</i> 43.5 46.3 39.6	(e) $\mu = \frac{B\%}{5.77}$ 5.80 4.66	0.5 TD 42.9 45.3 39.5	FDP% 1.54 2.13 0.27	<i>R</i> 97.4 99.3 94.3	 (f) μ = B% 16.46 16.47 15.23 	= 2 TD 95.9 97.2 94.1	FDP% 1.54 2.07 0.29

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000		000000000	00000000	00000
Correlate	d z_tests				

- $X_k \sim N(0,1)$ if $k \in \mathcal{N}$
- $X_k \sim \mathrm{N}(\delta, 1)$ if $k
 ot\in \mathcal{N}$, $\delta < 0$
- X_1, \ldots, X_K are jointly Gaussian
- E-values from likelihood ratios

$$E_k = \exp(\delta X_k - \delta^2/2)$$

P-values from Neyman-Pearson tests

$$P_k = \Phi(X_k)$$

• Set $\delta = -3$

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000		000000000	00000000	00000
Correlate	d z-tests				

Table: Simulation results for correlated z-tests, where $\rho_{i,j}$ is the correlation between two test statistics X_i and X_j for $i \neq j$. Each cell gives the number of rejections and, in parentheses, the realized FDP (in %). Each number is computed over an average of 1,000 trials.

(a) Independent and positively correlated tests, K = 1000, $K_0 = 800$

	$ ho_{ij}=0$			$ ho_{ij}=0.5$			
	lpha= 10%	$\alpha = 5\%$	$\alpha = 2\%$	lpha= 10%	lpha= 5%	$\alpha = 2\%$	
BH	177.3 (8.01)	148.7 (4.07)	115.0 (1.63)	180.0 (7.00)	144.8 (3.64)	109.8 (1.50)	
e-BH PRDS	171.8 (7.07)	147.6 (3.95)	114.6 (1.62)	170.2 (5.71)	142.5 (3.35)	108.0 (1.50)	
BY	101.1 (1.10)	78.8 (0.57)	53.2 (0.22)	96.6 (1.03)	76.7 (0.50)	55.0 (0.20)	
e-BH AD	109.4 (1.41)	<mark>85.4</mark> (0.68)	54.6 (0.24)	103.1 (1.32)	<mark>81.4</mark> (0.70)	56.6 (0.28)	
base e-BH	97.5 (1.00)	70.6 (0.43)	36.9 (0.11)	91.9 (0.97)	69.1 (0.45)	43.6 (0.16)	

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
00000000	0000000000	000000000000000	00000000	0000000	00000

Correlated z-tests

(b) Independent tests with large number of hypotheses

	$K = 20,000, \ K_0 = 10,000$			$K = 20,000, \ K_0 = 19,000$			
	$\alpha = 10\%$	lpha= 5%	$\alpha = 2\%$	lpha= 10%	lpha= 5%	$\alpha = 2\%$	
BH	9567 (5.00)	8564 (2.49)	7164 (1.00)	681.3 (9.58)	520.2 (4.79)	357.7 (1.93)	
e-BH PRDS	9092 (3.60)	8330 (2.13)	7124 (0.98)	681.3 (9.58)	509.3 (4.54)	312.1 (1.40)	
BY	5956 (0.48)	4818 (0.24)	3417 (0.10)	254.1 (0.89)	177.6 (0.46)	103.1 (0.19)	
e-BH AD	6811 (0.80)	5809 (0.44)	4384 (0.18)	271.0 (1.02)	159.5 (0.39)	51.4 (0.07)	
base e-BH	6426 (0.64)	5234 (0.31)	3509 (0.10)	224.8 (0.69)	109.2 (0.21)	16.4 (0.01)	

(c) Negatively correlated tests, K = 1000, $K_0 = 800$.

	$ ho_{ij}=-1/({\cal K}-1)$			$ ho_{ij} = -0.5 \mathbb{1}_{\{ i-j =1\}}$		
	$\alpha = 10\%$	$\alpha = 5\%$	$\alpha = 2\%$	lpha= 10%	$\alpha = 5\%$	$\alpha = 2\%$
BH	177.7 (<mark>8.14</mark>)	149.0 (4 .09)	115.2 (1.61)	177.2 (8.10)	148.8 (4.00)	115.3 (1.62)
e-BH PRDS	172.0 (7.13)	147.9 (3.98)	114.9 (1.59)	171.5 (7.13)	147.7 (3.89)	114.9 (1.61)
BY	101.2 (1.08)	78.8 (0.52)	53.3 (0.20)	101.3 (1.11)	78.8 (0.56)	53.2 (0.22)
e-BH AD	109.7 (1.38)	85.5 (0.65)	54.6 (0.22)	109.8 (1.40)	85.6 (0.69)	54.6 (0.24)
base e-BH	97.8 (0.98)	70.7 (0.40)	37.2 (0.11)	97.6 (0.99)	70.7 (0.41)	36.7 (0.12)

Э

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	000000000	00000000000000	000000000	●0000000	00000

Progress

E-values

- 2 Theoretical properties
- 3 The e-BH procedure
- ④ Simulation illustrations

5 Further results

6 Concluding remarks

/□ ▶ < 글 ▶ < 글 ▶

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000		000000000	0●000000	00000
Weighted	e-BH				

Take $w_1, \ldots, w_K \ge 0$ such that $w_1 + \cdots + w_K = K$: One can

- use (w_1e_1, \ldots, w_Ke_K) as the input e-values
- boost via

 $\max_{x \in K/\mathcal{K}} x \mathbb{P}(\alpha b_k E_k \ge x) \le w_k \alpha \quad \text{if e-values are PRDS}$ $\mathbb{E}[T(\alpha b_k E_k)] \le w_k \alpha \quad \text{otherwise (AD)}$

• use random (w_1, \ldots, w_K) independent of the e-values with $\mathbb{E}[w_1 + \cdots + w_K] = K$ (prior information)

The same applies for compliant e-testing procedures

A class of e-testing procedures

An increasing transform φ : [0,∞] → [0,∞] is strictly increasing and continuous with φ(∞) = ∞ and φ(0) < 1</p>

E-testing procedure $\mathcal{G}(\phi)$

Define $\mathcal{G}(\phi)$ by rejecting $k_{e,\phi}^*$ hypotheses with the largest e-values, where $k_{e,\phi}^* = \max\left\{k \in \mathcal{K} : k\phi(e_{[k]})/\mathcal{K} \ge 1\right\}$.

•
$$\phi: t \mapsto \alpha t \Longrightarrow base e-BH$$

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
00000000	0000000000	000000000000000	00000000	0000000	00000

A class of e-testing procedures

Theorem 5

Fix $\alpha \in (0,1)$ and K. For any increasing transform ϕ , if $\mathcal{G}(\phi)$ satisfies $[F_{\mathcal{C}(\phi)}]$

$$\mathbb{E}\left[\frac{F_{\mathcal{G}}(\phi)}{R_{\mathcal{G}}(\phi)}\right] \leq \alpha$$

for arbitrary configurations of e-values, then $\mathcal{G}(\phi) \subseteq \mathcal{G}(\alpha)$.

► The base e-BH procedure is optimal among G(φ) with the same FDR guarantee

			000000000	00000000	00000				
Applying e-BH to p-values									

A decreasing transform ψ : [0, 1] → [0, ∞] is a strictly decreasing and continuous function with ψ(0) = ∞

P-testing procedure $\mathcal{D}(\psi)$

Define $\mathcal{D}(\psi)$ by rejecting k_{ψ}^* hypotheses with the largest e-values, where $k_{\psi}^* = \max \left\{ k \in \mathcal{K} : k\psi(p_{(k)})/\mathcal{K} \ge 1 \right\}$.

• $\psi: \mathbf{p} \mapsto \alpha/\mathbf{p} \Longrightarrow \mathsf{base} \ \mathsf{BH}$

equivalent to step-up methods of Benjamini-Yekutieli'01

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	000000000		000000000	00000000	00000

E-BH for p-values

Proposition 2

For arbitrary p-values and a decreasing transform ψ , the testing procedure $\mathcal{D}(\psi)$ satisfies

$$\mathbb{E}\left[\frac{F_{\mathcal{D}(\psi)}}{R_{\mathcal{D}(\psi)}}\right] \leq \frac{K_0}{K} z_{\psi},$$

where

$$egin{aligned} & z_\psi = \max_{t\in \mathcal{K}/\mathcal{K}} t\psi^{-1}(t) & \textit{if p-values are PRDS}, \ & z_\psi = \psi^{-1}(1) + \sum_{j=1}^{\mathcal{K}-1} rac{\mathcal{K}}{j(j+1)} \psi^{-1}(\mathcal{K}/j) & \textit{otherwise (AD)}. \end{aligned}$$

Э

<ロ> <同> <同> < 回> < 回>

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000		000000000	000000€0	00000
E-BH for	p-values				

• For
$$\psi: \mathbf{p} \to \alpha/\mathbf{p}$$
,

$$\psi(p_{(k)}) \geq \frac{K}{k} \quad \iff \quad \frac{Kp_{(k)}}{k} \leq \alpha.$$

$$\blacktriangleright \mathcal{D}(\psi) = \mathcal{D}(\alpha)$$

- ▶ If p-values are PRDS, then $z_{\psi} = \alpha$ (Benjamini-Hochberg'95)
- Otherwise (Benjamini-Yekutieli'01)

$$z_{\psi} = \alpha + \sum_{j=1}^{K-1} \frac{\alpha}{j+1} = \alpha \ell_K$$

伺 ト イヨト イヨト

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks	
				0000000		

E-BH for p-values

(PRDS)
$$t \mapsto t\psi^{-1}(t)$$
 is decreasing on $[1,\infty) \implies z_{\psi} = \psi^{-1}(1)$ (D)

Proposition 3

Fix $\alpha \in (0,1)$ and K. For any decreasing transform ψ , if $\mathcal{D}(\psi)$ satisfies $\begin{bmatrix} F_{\mathcal{D}}(\psi) \end{bmatrix}$

$$\mathbb{E}\left[\frac{F_{\mathcal{D}(\psi)}}{R_{\mathcal{D}(\psi)}}\right] \leq \alpha$$

for arbitrary configurations of PRDS p-values, then $\psi^{-1}(1) \leq \alpha$. Moreover, if ψ satisfies (D), then $\mathcal{D}(\psi) \subseteq \mathcal{D}(\alpha)$.

▶ For PRDS p-values, the BH procedure is the most powerful among all D(ψ) satisfying (D) with the same FDR guarantee.

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	000000000	00000000000000	000000000	00000000	●0000

Progress

E-values

- 2 Theoretical properties
- 3 The e-BH procedure
- ④ Simulation illustrations
- 5 Further results
- 6 Concluding remarks

/□ ▶ < 글 ▶ < 글 ▶

E-values	Properties	E-BH procedure	Simulation	Further results	Remarks
000000000	0000000000		000000000	00000000	0●000
Some fea	tures of e-	RH			

The e-BH procedure

- (1) works for AD e-values;
- (2) requires no information on the configuration of the input e-values, and works well for weighted e-values;
- (3) allows for power boosting if partial distributional information is available on some e-values;
- (4) gives rise to a class of p-testing procedure which include both BH and BY as special cases;
- (5) is optimal among a class of e-testing procedures under AD

E-values 000000000	Properties 0000000000	E-BH procedure	Simulation 000000000	Further results	Remarks 00●00
Advanta	ges of e-va	lues			

- Validity for arbitrary dependence \Rightarrow expectation
- \blacktriangleright Validity for optional stopping times \Rightarrow martingale
- Any p-value can be realized by sup of a continuous-time test martingale

E-values are a useful tool even if one is only interested in p-values

- Easy to combine
- Flexible to stop/continue (online testing; unfixed sample size)
- Non-asymptotic and often model-free

Ramdas-Ruf-Larsson-Koolen'20, Shafer-Shen-Vereshchagin-Vovk'11=> (=> =) (Ruodu Wang (wang@uwaterloo.ca) E-values and dependence 56/58

E-values 000000000	Properties 0000000000	E-BH procedure	Simulation 000000000	Further results	Remarks 000●0
Future w	ork				

- E-values in risk management
 - model-free e-backtesting risk measures
- ▶ FDR and other false discovery methods with p/e-values

Conjecture

Every monotone and symmetric p-testing procedure \mathcal{D} with α -FDR for arbitrary dependence (like BY) is dominated by e-BH at level α applied to some calibrators.

E-values Properties E-BH procedure

Simulation

Further results

FOR

< ロ > < 同 > < 回 > < 回 >

XPECTATION

Remarks 0000●

Thank you for your attention

TESTING WITH BETTING, MARTINGALES, LIKELIHOOD RATIOS, AND E-VALUES

Working paper series on e-values: http://www.alrw.net/e/