Dependence in Stochastic Modeling: Financial Crisis, Strategies, Equilibria, Decisions, Transport, and Statistics

Alibaba Mathematics Colloquium, September 1, 2021

Agenda

(1) Background
(2) Financial crisis
(3) Equilibria and strategies

4 Decision theory
(5) Mass transport

6 Statistics
(7) E-values and selective inference

Background

Quantitative Risk Management

Background

The University of Waterloo

- A young tech university
- One of the largest research groups in Actuarial Science/Quantitative Finance/Risk Management in the world with ≈ 20 professors
- No. 1 in Actuarial Science Research worldwide by UNL ranking
- Largest Mathematics Faculty, > 8000 students, > 240 professors

For this talk, I assume

- Basic college probability theory
- Basic college statistics
- Good understanding in mathematics

A general setup

A random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$

Assumptions

marginals may be known; dependence is unknown/arbitrary

- properties of $\Psi(\mathbf{X})$ for some $\Psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$
- range of $\mathbb{P}(\mathbf{X} \in A)$ for some $A \subseteq \mathbb{R}^{n}$

Questions:

- "optimal" dependence structures of \mathbf{X}
- statistical decisions based on \mathbf{X}

Dates back to Fréchet-Hoeffding; has roots in Monge-Kantorovich

- Data scarcity; uncertainty; optimization variable; absent information; lack of models; equilibrium output

An innocent question

What is a possible distribution of $S=X_{1}+X_{2}$ for uniformly distributed X_{1} and X_{2} ?

Obvious constraints

- $\mathbb{E}[S]=0$
- range of $S \subseteq[-2,2]$
- $\operatorname{Var}(S) \leq 4 / 3$

(1) Background

(2) Financial crisis

(3) Equilibria and strategies
4. Decision theory
(5) Mass transport

6 Statistics
(7) E-values and selective inference

Financial crisis

The 2007-09 financial crisis:

- the worst one since the Great Depression of the 1930s
- once in 50 years event
- subprime mortgage bubble
- Key ingredients
- a housing market at peak (2006)
- structured financial products and derivatives
- collateralized debt obligations (CDO)
- credit default swaps (CDS)
- advanced mathematical models
- political shortsightedness and the slow reaction of regulators

CDO

A CDO repackages the cash flows from a set of assets

- Pooling the return from a set of assets (e.g. loans)
- Claims are tranched: differing priorities
- Creates new securities, of which some are less risky than the original assets, and others are riskier.
"The engine that powered the mortgage supply chain" for nonprime mortgages
- Sales of CDOs grew from \$69B in 2000 to around $\$ 500 B$ in 2006
- Between 2003 and 2007, Wall Street issued almost \$700B in CDOs that included mortgage-backed securities as collateral

CDO: An example

- $X_{i} \geq 0$ is the random loss from a defaultable, speculative-grade bond $i, i=1, \ldots, n$
- X_{1}, \ldots, X_{n} standalone are not very attractive to investors
- The idea of CDO
- Pool X_{1}, \ldots, X_{n} : let $L=\sum_{i=1}^{n} X_{i}$ and take some constants $K_{1}<K_{2}$
- Design financial products with payments Y_{1}, Y_{2}, Y_{3} so that
- $Y_{1}=\left(L-K_{2}\right)_{+}$
- $Y_{2}=\min \left\{\left(L-K_{1}\right)_{+}, K_{2}-K_{1}\right\}$
- $Y_{3}=\min \left\{L, K_{1}\right\}$
- $Y_{1}+Y_{2}+Y_{3}=L$
- $\mathbb{P}\left(Y_{1}>0\right)=\mathbb{P}\left(L>K_{2}\right)$ can be very small

CDO: An example

- The one-year loss probability of senior (AAA-rated) tranches is less than 1/10,000
- Some investors are happy to hold a speculative grade bond, while others seek safer bonds.

Dependence modeling and risk aggregation

The rating for CDO tranches involves calculating $\mathbb{P}(L>K)$, where

- $L=\sum_{i=1}^{n} X_{i}$, and X_{i} is the loss from a loan
- K is a constant and $K \gg \mathbb{E}[L]$
- n is large, and each X_{i} has a small probability of loss (default), i.e. $\mathbb{P}\left(X_{i}=0\right)=1-\epsilon_{i}$ and ϵ_{i} is small
- ϵ_{i} is the default probability of loan i and it is decisive in the calculation of the interest rate or price for this loan
- ϵ_{i} is modelled "relatively well" using individual credit characteristics

Dependence modeling and risk aggregation

- How X_{1}, \ldots, X_{n} are dependent is unknown and they are almost "uncorrelated" because they were diversified by region
- If X_{1}, \ldots, X_{n} are almost independent, then the central limit theorem can be applied, and $\mathbb{P}(L>K)$ can be approximated
- The dependence structure of $\left(X_{1}, \ldots, X_{n}\right)$ matters:
- Assume $\mathbb{P}\left(X_{i}=1\right)=0.1, \mathbb{P}\left(X_{i}=0\right)=0.9, n=1000, K=200$
- If X_{1}, \ldots, X_{n} are iid, then $\mathbb{P}(L>K)<10^{-20}$
- If X_{1}, \ldots, X_{n} are positively dependent, then $\mathbb{P}(L>K) \approx 0.1$
- $\sup \{\mathbb{P}(L>K)$: all dependence structures $\}=$?

Financial crisis

- Classic statistics fails to apply here: no data are available for the scenario "house prices started to fall"
- The past data (the scenario "house prices are good") suggests that X_{1}, \ldots, X_{n} are mildly correlated or almost independent
- Substantial miscalculation of $\mathbb{P}(L>K)$ leads to unjustified high rating of CDO products \Rightarrow huge model risk
- In 2007, the mortgage backed securities turned out to be highly correlated
- CDOs made up over half (\$542 billion) of the nearly trillion dollars in losses suffered by financial institutions from 2007 to early 2009

Risk assessment under uncertainty

Abstract setup.

- A vector of risk factors: $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- A financial position $\Psi(\mathbf{X})$
- A mapping $\rho: \mathbf{X} \rightarrow \mathbb{R}$ (a measure of risk)

Key task: Calculate $\rho(\Psi(\mathbf{X}))$

Most practical choices:

- $\Psi(\mathbf{X})=\sum_{i=1}^{n} X_{i}$
- $\rho(X)=\mathbb{P}(X>t), \rho=\mathrm{VaR}_{p}$ or $\rho=\mathrm{ES}_{p}$

Risk assessment under uncertainty

Value-at-Risk (VaR), $p \in(0,1)$

$$
\operatorname{VaR}_{p}: L^{0} \rightarrow \mathbb{R}
$$

$$
\operatorname{VaR}_{p}(X)=q_{p}(X)
$$

$$
=\inf \{x \in \mathbb{R}: \mathbb{P}(X \leq x) \geq p\}
$$

(left-quantile)

Expected Shortfall (ES), $p \in(0,1)$

$\mathrm{ES}_{p}: L^{1} \rightarrow \mathbb{R}$,
$\operatorname{ES}_{p}(X)=\frac{1}{1-p} \int_{p}^{1} \operatorname{VaR}_{q}(X) \mathrm{d} q$
(also: TVaR/CVaR/AVaR/CTE)

Risk assessment under uncertainty

- Because ES is subadditive, with unknown dependence

$$
\operatorname{ES}_{p}\left(\sum_{i=1}^{n} X_{n}\right) \leq \sum_{i=1}^{n} \operatorname{ES}_{p}\left(X_{i}\right)
$$

- Marginal information provides bounds on the portfolio
- Worst-case ES: $\overline{\mathrm{ES}}_{p}=\sum_{i=1}^{n} \mathrm{ES}_{p}\left(X_{i}\right)$
- VaR: not subadditive
- Worst-case VaR: generally an open question for $n \geq 3$
- Similarly: bounds on $\mathbb{P}\left(\sum_{i=1}^{n} X_{i}>t\right)$
W.-Peng-Yang, Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. Finance and Stochastics, 2013

(1) Background

(2) Financial crisis

(3) Equilibria and strategies

4 Decision theory
(5) Mass transport
(6) Statistics
(7) E-values and selective inference

Equilibria

- n agents each with a preference
- Competitive equilibrium
- Each agent i chooses a decision X_{i} according to some optimization of his/her own preference and constraints
- Equilibrium: A random vector $\left(X_{1}, \ldots, X_{n}\right)$ such that no agent would be able to change positions to improve
- Cooperative (Pareto) equilibrium
- A central planner chooses $\left(X_{1}, \ldots, X_{n}\right)$
- Equilibrium: A random vector $\left(X_{1}, \ldots, X_{n}\right)$ that cannot be strictly improved

Welfare theorems

Under some conditions, competitive equilibrium \Longleftrightarrow cooperative equilibrium

Positive and negative dependence

Random variables X_{1}, \ldots, X_{n}

- Positive dependence
- Random variables roughly move in the same direction
- If one of them is large, then others are likely to be large
- Example: X_{1}, \ldots, X_{n} are all proportional to each other
- Independence
- Negative dependence
- Random variables roughly move in the opposite direction
- If one of them is large, then others are likely to be small
- Example: $\left(X_{1}, \ldots, X_{n}\right) \sim$ Multinomial
- Very difficult to analyze if $n \geq 3$

Risk sharing games

Risk sharing, risk exchange, and market equilibria

$$
X \longmapsto\left(X_{1}, \ldots, X_{n}\right) \text { s.t. } \sum_{i=1}^{n} X_{i}=X
$$

"Canonical form" of an equilibrium allocation?

- proportional: $X_{i}=a_{i} X$ for some $\sum_{i=1}^{n} a_{i}=1$?
- lottery: $X_{i}=\mathbb{1}_{A_{i}} X$ for some $\bigcup_{i=1}^{n} A_{i}=\Omega$?
- other forms?

Quantile-based risk sharing

utility-based	quantile-based
$\max \sum_{i=1}^{n} \lambda_{i} \mathbb{E}\left[u_{i}\left(X_{i}\right)\right]$	$\min \sum_{i=1}^{n} \lambda_{i} \operatorname{VaR}_{\alpha_{i}}\left(X_{i}\right)$
horizontally cut	vertically cut
$(X / n, \ldots, X / n)$	$\left(X \mathbb{1}_{A_{1}}, \ldots, X \mathbb{1}_{A_{n}}\right)$
coinsurance	roulette
positive dependence	negative dependence

Theorem

For mixed VaR, ES, and "other similar" agents, an equilibrium allocation is extremally negatively dependent.

Embrechts-Liu-W., Quantile-based risk sharing.
Operations Research, 2018, Theorems 1-3

Colonel Blotto games

Colonel Blotto games (all-pay auctions)

Colonel Blotto

\square

Colonel Lotso

- Two players
- $X_{1}+\cdots+X_{n}=x$
- $Y_{1}+\cdots+Y_{n}=y$
- Goal: maximize $\sum_{i=1}^{n} \mathbb{E}\left[f_{i}\left(X_{i}, Y_{i}\right)\right]$ e.g. $f_{i}(s, t)=v_{i} \mathbb{1}_{\{s>t\}}$
- Nash equilibrium

- solve for marginals $X_{1} \sim F_{1}, \ldots, X_{n} \sim F_{n}$

Approach: find dependence (if possible) s.t. $X_{1}+\cdots+X_{n}=x$

- \Rightarrow Extremal negative dependence (joint mixability)

Wang-W., Joint mixability. Mathematics of Operations Research, 2016

4 Decision theory
(5) Mass transport

6 Statistics
(7) E-values and selective inference

Axiomatic characterization of ES

Theorem

A risk measure penalizes risk concentration (a special form of positive dependence) if and only if it is an ES.

- ES is the most important risk measure in banking regulation (Basel FRTB)
- The first axiomatic characterization of ES (introduced ~2000)
W.-Zitikis, An axiomatic foundation for the Expected Shortfall.

Management Science, 2021, Theorem 1

Axiomatic characterization of ES

Axioms

M. (Monotonicity) A surely larger or equal loss leads to a larger or equal risk value, that is, $\rho(X) \leq \rho(Y)$ whenever $X \leq Y$.
LI. (Law-invariance) The risk value depends on the loss via its distribution, that is, $\rho(X)=\rho(Y)$ whenever $X \stackrel{\text { d }}{=} Y$.
P. (Prudence) The risk value is not underestimated by approximations, that is, $\lim \sup _{n} \rho\left(\xi_{n}\right) \geq \rho(X)$ whenever $\xi_{n} \rightarrow X$ point-wise.

NRC. (No reward for concentration) There exists an event $A \in \mathcal{F}$ such that $\rho(X+Y)=\rho(X)+\rho(Y)$ holds for all risks X and Y sharing the tail event A.

Definition (Tail events)

A tail event of X is $A \in \mathcal{F}$ such that
a) $0<\mathbb{P}(A)<1$
b) $X(\omega) \geq X\left(\omega^{\prime}\right)$
for a.s. all $\omega \in A$ and $\omega^{\prime} \in A^{c}$

Theorem

A functional $\rho: L^{1} \rightarrow \mathbb{R}$ with $\rho(1)=1$ satisfies Axioms M, LI, P and NRC if and only if $\rho=\mathrm{ES}_{p}$ for some $p \in(0,1)$.

Equivalence between risk and dependence

Theorem

Risk aversion (Rothschild-Stiglitz) \Longleftrightarrow dependence aversion

Theorem

A mapping $\rho: \mathcal{X} \rightarrow \mathbb{R}$ is dependence neutral, i.e., $\rho(X+Y)$ depends only on the marginal distributions of $(X, Y) \in \mathcal{X}^{2}$, if and only if $\rho=f \circ \mathbb{E}$ on \mathcal{X} for some $f: \mathbb{R} \rightarrow \mathbb{R}$.
W.-Wu, Dependence and risk attitudes: An equivalence.

SSRN: 3707709, 2020, Theorems 1-2 and Proposition 3

(1) Background

(2) Financial crisis
(3) Equilibria and strategies
4) Decision theory
(5) Mass transport
(6) Statistics
(7) E-values and selective inference

Transport theory

- Pure mathematics
- Important applications
- economics
- decision theory

- finance
- engineering
- operations research
- physics
- 1 Nobel Prize laureate

- 2 Fields medalists

Monge's formulation

- A and B are two Radon spaces (main example: \mathbb{R}^{d})
- Cost function c : $A \times B \rightarrow[0, \infty]$ or $(-\infty, \infty]$
- Given probability measures μ on A and ν on B
- Monge's problem: find a transport map $T: A \rightarrow B$ that attains

$$
\inf \left\{\int_{A} c(x, T(x)) \mathrm{d} \mu(x) \mid T_{*}(\mu)=\nu\right\}
$$

where $T_{*}(\mu)$ is the push forward of μ by T

Monge's formulation

Gaspard Monge
1746-1818

Le mémoire sur les déblais et les remblais
(The note on land excavation and infill)

Kantorovich's formulation

- Monge's formulation may be ill-posed (e.g., point masses)
- Kantorovich's problem: find a probability measure P on $A \times B$ that attains

$$
\inf \left\{\int_{A \times B} c(x, y) \mathrm{d} P(x, y) \mid P \in \Gamma(\mu, \nu)\right\},
$$

where $\Gamma(\mu, \nu)$ is the set of probability measures on $A \times B$ with marginals μ and ν.

- $A \times B=\mathbb{R} \times \mathbb{R}$: copulas and dependence
- Discrete version: linear programming

Kantorovich's formulation

Scheduling

Minimize $\max (\Psi(\mathbf{X}))$ Minimize $\operatorname{Var}(\Psi(\mathbf{X}))$ s.t. $X_{i} \sim F_{i}, i=1, \ldots, n$

(an NP-hard problem)

\(\left[\begin{array}{lll}44 \& 10 \& 24

66 \& 32 \& 37

67 \& 48 \& 41

71 \& 57 \& 43

87 \& 60 \& 83\end{array}\right]\)| 78 |
| :---: |
| 135 |
| 156 |
| 171 |
| 230 |

\(\Longrightarrow\left[\begin{array}{lll}87 \& 10 \& 43

71 \& 60 \& 24

67 \& 48 \& 41

44 \& 32 \& 83

66 \& 57 \& 37\end{array}\right]\)| 140 |
| :--- |
| 155 |
| 156 |
| 159 |
| 160 |

(1) Background

(2) Financial crisis
(3) Equilibria and strategies
4) Decision theory
(5) Mass transport
(6) Statistics
(7) E-values and selective inference

Treatment effect analysis

score X (control)
score Y (experimental)

- Marginals of (X, Y) :
- Effect measurement
 $\mathbb{E}[Y-X]:$
- $\operatorname{Var}(Y-X)$:
- Dependence of (X, Y) : unidentifiable
(Neyman'23)

Meta analysis

- A (large) set of p-values is only one vector: little hope to test/verify the dependence model
- Efron'10, Large-scale Inference, p50-p51:
"independence among the p-values ... usually an unrealistic assumption. ... even PRD [positive regression dependence] is unlikely to hold in practice."
- Need procedures which work on arbitrarily dependent p-values
- Complicated/strange dependence arises when tests statistics are generated by some adaptive procedure
- selective inference
- multi-armed bandit problems

Merging p-values in multiple hypothesis testing

- P_{1}, \ldots, P_{K} : p-values (satisfying $\mathbb{P}\left(P_{k} \leq \epsilon\right) \leq \epsilon$)
- arbitrarily dependent
- P-merging function F :

$$
\mathbb{P}\left(F\left(P_{1}, \ldots, P_{K}\right) \leq \epsilon\right) \leq \epsilon \text { for all }\left(P_{1}, \ldots, P_{K}\right) \text { and } \epsilon
$$

- Find $a_{r, K}$ such that $a_{r, K} M_{r, K}$ is a p-merging function
- Generalized average $M_{r, K}(\mathbf{p})=\left(\frac{p_{1}^{r}+\cdots+p_{K}^{r}}{K}\right)^{1 / r}$

Theorem

$$
\begin{array}{ll}
a_{1, K}=2 \text { (arithmetic) } & a_{0, K} \sim e \text { (geometric) } \\
a_{-1, K} \sim \log K \text { (harmonic) } & a_{-\infty, K}=K \text { (Bonferroni) }
\end{array}
$$

Vovk-W., Combining p-values via averaging. Biometrika, 2020; Theorems $1-2 \equiv$ 三 -2 の

(1) Background

(2) Financial crisis
(3) Equilibria and strategies
4. Decision theory
(5) Mass transport

6 Statistics
(7) E-values and selective inference

P-hacking

Typical scientific research

- Group A tests a medication; gets "promising but not conclusive" results
- Group B continues with new data; even more promising
- Group C continues with new data ...
- Sweep all data together to recalculate p -value \Rightarrow p-hacking

What is an e-value?

- A hypothesis \mathcal{H} : a set of probability measures

Definition (e-values and p-values)

(1) An e-value for testing \mathcal{H} is a non-negative extended random variable $E: \Omega \rightarrow[0, \infty]$ that satisfies $\sup _{H \in \mathcal{H}} \int E \mathrm{~d} H \leq 1$.
(2) A p-value for testing \mathcal{H} is a random variable $P: \Omega \rightarrow[0, \infty)$ that satisfies $\sup _{H \in \mathcal{H}} H(P \leq \alpha) \leq \alpha$ for all $\alpha \in(0,1)$.

- For simple hypothesis $\{\mathbb{P}\}$: non-negative E with mean ≤ 1
- P-test: p (data) small \Longrightarrow reject
- E-test: e(data) large \Longrightarrow reject

Vovk-W., E-values: Calibration, combination, and applications.
Annals of Statistics, 2021

E-values, test supermartingales and betting scores

- A test supermartingale: a supermartingale $X=\left(X_{t}\right)$ (i.e., $\left.\mathbb{E}\left[X_{t+1} \mid X_{t}\right] \leq X_{t}\right)$ under the null with $X_{0}=1$
- Optional validity (Doob's optional stopping theorem):
X_{τ} is an e-value for any stopping time τ
- Retrospective validity (Ville's inequality):

$$
\mathbb{P}\left(\sup _{t \geq 0} X_{t} \geq \frac{1}{\alpha}\right) \leq \alpha \Longrightarrow \inf _{t \geq 0} X_{t}^{-1} \text { is a p-value }
$$

- Bayes factors and likelihood ratios:

$$
e(\text { data })=\frac{\operatorname{Pr}(\text { data } \mid \mathbb{Q})}{\operatorname{Pr}(\text { data } \mid \mathbb{P})}
$$

- Betting scores (Shafer-Vovk'19, Shafer'21)

An analogy of p-values and e-values

	requirement	specific interpretation	representative forms	keyword		
p-value P	$\mathbb{P}(P \leq \alpha) \leq \alpha$ for $\alpha \in(0,1)$	probability of a more extreme observation	$\mathbb{P}\left(T^{\prime} \leq T(\mathbf{X}) \mid \mathbf{X}\right)$	(conditional) probability		
e-value E	$\mathbb{E}^{\mathbb{P}}[E] \leq 1$ and $E \geq 0$	likelihood ratios, stopped martingales, and betting scores	$\mathbb{E}^{\mathbb{P}}\left[\left.\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}} \right\rvert\, \mathbf{X}\right]$	$\mathbb{E}^{\mathbb{P}}\left[M_{\tau} \mid \mathbf{X}\right]$		(conditional)
:---:						
expectation						

An analogy of p -variables and e-variables for a simple hypothesis $\{\mathbb{P}\}$

- \mathbf{X} is data
- $T(\mathbf{X})$ is any test statistic
- T^{\prime} is an independent copy of $T(\mathbf{X})$ under \mathbb{P}
- \mathbb{Q} is any probability measure
- M is a test supermartingale under \mathbb{P} and τ a stopping time

Advantages of e-values

- Validity for arbitrary dependence \Rightarrow expectation
- Validity for optional stopping times \Rightarrow martingale

E-values are a useful tool even if one is only interested in p-values

- Easy to combine
- Flexible to stop/continue (online testing; unfixed sample size)
- Non-asymptotic and often model-free

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.
Annals of Statistics, 2021, Theorem 5.1

Example: Multi-armed bandit problems

- K arms
- H_{k} : arm k has mean reward at most 1
- Strategy $\left(k_{t}\right)$: at time t, pull arm k_{t}, get iid reward $X_{k_{t}, t} \geq 0$
- optimized strategy
- Aim: quickly detect arms with mean >1
- or maximize profit, minimize regret, etc ...
- Running reward: $M_{k, t}=\prod_{j=1}^{t} X_{k, j} \mathbb{1}_{\left\{k_{j}=k\right\}}$
- Complicated dependence due to exploration/exploitation
- $M_{1, \tau}, \ldots, M_{K, \tau}$ are e-values for any stopping time τ

Selective inference

Basic framework

- K hypotheses H_{1}, \ldots, H_{K}
- $\mathcal{K}=\{1, \ldots, K\}$
- H_{k} is null if $\mathbb{P} \in H_{k}$
- $\mathcal{N} \subseteq \mathcal{K}$: the set of (unknown) indices of null hypotheses
- $K_{0}=|\mathcal{N}|$; if $K_{0} / K \approx 1$ then the signals are sparse

Examples

- Drug experiments; brain imaging; investment opportunities; A/B tests; genome-wide association studies

Selective inference

For a testing procedure $\mathcal{D}:[0,1]^{K} \rightarrow 2^{\mathcal{K}}$ or $[0, \infty]^{K} \rightarrow 2^{\mathcal{K}}$:

- $R_{\mathcal{D}}$: number of total discoveries $\left(R_{\mathcal{D}}=|\mathcal{D}|\right)$
- $F_{\mathcal{D}}$: number of false discoveries $\left(F_{\mathcal{D}}=|\mathcal{D} \cap \mathcal{N}|\right)$
- False discovery proportion (FDP): $F_{\mathcal{D}} / R_{\mathcal{D}}$ with $0 / 0=0$
- Benjamini-Hochberg'95: control the FDR $\mathbb{E}\left[F_{\mathcal{D}} / R_{\mathcal{D}}\right] \leq \alpha$

BH procedure

BH procedure

The Benjamini-Hochberg (BH) procedure $\mathcal{D}(\alpha)$ rejects hypotheses with the smallest $k^{*} p$-values, where

$$
k^{*}=\max \left\{k \in \mathcal{K}: \frac{K p_{(k)}}{k} \leq \alpha\right\} .
$$

	FDR	dependence
BH'95	$\frac{K_{0}}{K} \alpha$	independence PRDS
$\mathrm{BY}^{\prime} 01$	$\ell_{K} \frac{K_{0}}{K} \alpha$	arbitrary

$\ell_{K}=\sum_{j=1}^{K} j^{-1} \approx \log K$. PRDS: positive regression dependence on a subset, e.g., jointly Gaussian test statistics with correlations ≥ 0

E-BH procedure

- $e_{[1]} \geq \cdots \geq e_{[K]}$: order statistics of arbitrary e-values

E-BH procedure

The e-BH procedure $\mathcal{G}(\alpha):[0, \infty]^{K} \rightarrow 2^{\mathcal{K}}$ for $\alpha>0$ rejects hypotheses with the largest $k^{*} \mathrm{e}$-values, where

$$
k^{*}=\max \left\{k \in \mathcal{K}: \frac{k e_{[k]}}{K} \geq \frac{1}{\alpha}\right\}
$$

Theorem

The e-BH procedure always has FDR at most $K_{0} \alpha / K$.

[^0]
Combination and multiple testing

	arbitrarily dependent	optimality	sequential/independent	optimality
p-values	Bonferroni		Fisher	
P_{1}, \ldots, P_{K}	robust averaging	NO	Simes	NO
many others		many others		
E_{1}, \ldots, E_{K}	arithmetic mean	YES	product martingale merging	NO

	FDR	dependence
BH procedure	$\frac{K_{0}}{K} \alpha$	independence/PRDS
BY procedure	$\ell_{K} \frac{K_{0}}{K} \alpha$	arbitrary
e-BH procedure	$\frac{K_{0}}{K} \alpha$	arbitrary

FDR procedures $\left(K_{0}=\#\right.$ nulls, $K=$ \#hypotheses, $\left.\ell_{K}=\sum_{k=1}^{K} k^{-1} \approx \log K\right)$

Thank you

Thank you for your attention!

A multi-armed bandit problem

Problem setting

- K arms each with a reward $X^{k} \geq 0$
- Pulling arm k produces an iid sample $\left(X_{1}^{k}, X_{2}^{k}, \ldots\right)$ from X^{k}
- Null hypotheses: $\mathbb{E}\left[X_{k}\right] \leq 1, k \in \mathcal{K}$
- Arms have to be pulled in order and previous arms cannot be revisited
- An arm can be pulled at most n times (budget)
- Goal: detect non-null arms as quickly as possible
- Example: investment opportunities; medical experiment

A multi-armed bandit problem

The e-value $e_{k, j}$ and the p -value $p_{k, j}$ are realized by, respectively,

$$
E_{k, j}:=\prod_{i=1}^{j} X_{i}^{k} \quad \text { and } \quad P_{k, j}:=\left(\max _{i=1, \ldots, j} E_{k, i}\right)^{-1} \quad(p \leq 1 / e)
$$

Algorithm

- Select a p- or e-testing procedure \mathcal{D} and start with $\mathbf{e}=\mathbf{p}=\mathbf{1}$
- For arm k, stop at T_{k} such that either \mathcal{D} produces a new discovery or $T_{k}=n$
- Update e-values or p-values and move to arm $k+1$

The final e-variables E_{k} and p-variables P_{k} are obtained by

$$
E_{k}=E_{k, T_{k}} \quad \text { and } \quad P_{k}=P_{k, T_{k}}, \quad k=1, \ldots, K
$$

A multi-armed bandit problem

Table: Conditions for the validity of the testing algorithm

	AD data across arms	AD stopping rules T_{k}	FDR guarantee in our experiments
e-BH	YES	YES	valid at level $\alpha K_{0} / K$
BH	NO	NO	not valid
BY	YES	YES	valid at level $\alpha K_{0} / K$
cBH	NO	YES	valid at level $\alpha K_{0} / K$

Consider $\mathrm{BH}, \mathrm{e}-\mathrm{BH}, \mathrm{BY}$ and compliant $\mathrm{BH}(\mathrm{cBH})$ procedures

- BY: $\mathcal{D}\left(\alpha_{1}\right)$ where $\alpha_{1} \ell_{K}=\alpha$ (Benjamini-Yekutieli'01)
- cBH: $\mathcal{D}\left(\alpha_{2}\right)$ where $\alpha_{2}\left(1+\log \left(1 / \alpha_{2}\right)\right)=\alpha\left(S u^{\prime} 18\right)$

A multi-armed bandit problem

Data generating process

- More promising arms come first: arm k is non-null with probability $\theta(K-k+1) /(K+1), \theta \in[0,1]$
- The expected number of non-nulls in this setting is $\theta / 2$
- $s_{k} \sim \operatorname{Expo}(\mu)$ is the strength of signal for arm k
- Conditional on s_{k},

$$
X_{1}^{k}, \ldots, X_{n}^{k} \stackrel{\mathrm{iid}}{\sim} X^{k}=\exp \left(Z^{k}+s_{k} \mathbb{1}_{\{k \in \mathcal{K} \backslash \mathcal{N}\}}-1 / 2\right)
$$

where Z^{1}, \ldots, Z^{K} are iid standard normal.

- Set $\alpha=0.05$ and $\theta=0.5$

A multi-armed bandit problem

Table: $R=\#\{$ rejected hypothesis $\}, B \%=\%$ (unused budget), TD $=\#\{$ true discoveries $\}$. Each number is computed over an average of 500 trials. Default values: $K=500, n=50$ and $\mu=1$.
(a) Default
(b) $K=2000$
(c) $n=10$

	R	$B \%$	TD	FDP\%	R	$B \%$	TD	FDP\%	R	$B \%$	TD	FDP\%
e-BH	74.4	11.42	73.2	1.58	297.6	11.39	293.2	1.48	47.7	3.99	47.3	0.83
BH	77.0	11.44	75.3	2.13	307.8	11.41	301.4	2.07	49.3	4.01	48.7	1.06
BY	70.6	10.06	70.4	0.31	281.2	9.95	280.4	0.26	38.4	2.77	38.4	0.08
cBH	71.1	10.16	70.8	0.36	284.5	10.15	283.5	0.36	39.2	2.85	39.2	0.11

(d) $n=100$
(e) $\mu=0.5$
(f) $\mu=2$

	R	$B \%$	TD	FDP\%	R	$B \%$	TD	FDP $\%$	R	$B \%$	TD	FDP $\%$
e-BH	79.1	13.48	77.9	1.50	43.5	5.77	42.9	1.54	97.4	16.46	95.9	1.54
BH	81.3	13.50	79.5	2.13	46.3	5.80	45.3	2.13	99.3	16.47	97.2	2.07
BY	76.4	12.36	76.1	0.35	39.6	4.66	39.5	0.27	94.3	15.23	94.1	0.29
cBH	76.7	12.44	76.4	0.41	40.1	4.74	40.0	0.35	94.6	15.32	94.3	0.35

Calibration and combination

- Admissible p-to-e calibrators
- Power calibrators: $f_{\kappa}(p)=\kappa p^{\kappa-1}$ for $\kappa \in(0,1)$
- Shafer's: $f(p)=p^{-1 / 2}-1$
- Averaging $f_{\kappa}: \int_{0}^{1} \kappa p^{\kappa-1} \mathrm{~d} \kappa=\frac{1-p+p \ln p}{p(-\ln p)^{2}}$
- The only admissible e-to-p calibrator: $e \rightarrow(1 / e) \wedge 1$
- Very roughly: $p \sim 1$ /e

E-merging functions

E-merging functions

- arithmetic average M_{K} : arbitrary dependence
- product P_{K} : independence

Theorem 1

Suppose that F is a symmetric e-merging function. Then
$F \leq \lambda+(1-\lambda) M_{K}$ for some $\lambda \in[0,1]$, and F is admissible if and only if $F=\lambda+(1-\lambda) M_{K}$ with $\lambda=F(\mathbf{0})$.

Vovk-W., E-values: Calibration, combination, and applications.
Annals of Statistics, 2021, Theorem 3.2

Connection to p-merging

Theorem 2

For any admissible p-merging function F and $\epsilon \in(0,1)$, there exist $\left(\lambda_{1}, \ldots, \lambda_{K}\right) \in \Delta_{K}$ (standard symplex) and admissible calibrators f_{1}, \ldots, f_{K} s.t.

$$
F(\mathbf{p}) \leq \epsilon \Longleftrightarrow \sum_{k=1}^{K} \lambda_{k} f_{k}\left(p_{k}\right) \geq \frac{1}{\epsilon}
$$

If F is symmetric, then there exists an admissible calibrator f s.t.

$$
F(\mathbf{p}) \leq \epsilon \Longleftrightarrow \frac{1}{K} \sum_{k=1}^{K} f\left(p_{k}\right) \geq \frac{1}{\epsilon}
$$

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.
Annals of Statistics, 2021, Theorem 5.1

Compliant procedures

An e-testing procedure \mathcal{G} is said to be compliant at level $\alpha \in(0,1)$ if every rejected e-value e_{k} satisfies

$$
e_{k} \geq \frac{K}{\alpha R_{\mathcal{G}}}
$$

- The base e- BH procedure is compliant and it dominates all other compliant procedures

Compliant procedures

Proposition 1

Any compliant e-testing procedure at level α has FDR at most $\alpha K_{0} / K$ for arbitrary configurations of e-values.

Proof. Let \mathcal{G} be a compliant e-testing procedure. The FDP of \mathcal{G} satisfies

$$
\frac{F_{\mathcal{G}}}{R_{\mathcal{G}}}=\frac{|\mathcal{G}(\mathbf{E}) \cap \mathcal{N}|}{R_{\mathcal{G}} \vee 1}=\sum_{k \in \mathcal{N}} \frac{\mathbb{1}_{\{k \in \mathcal{G}(\mathbf{E})\}}}{R_{\mathcal{G}} \vee 1} \leq \sum_{k \in \mathcal{N}} \frac{\mathbb{1}_{\{k \in \mathcal{G}(\mathbf{E})\}} \alpha E_{k}}{K} \leq \sum_{k \in \mathcal{N}} \frac{\alpha E_{k}}{K},
$$

where the first inequality is due to compliance. As $\mathbb{E}\left[E_{k}\right] \leq 1$ for $k \in \mathcal{N}$, we have

$$
\mathbb{E}\left[\frac{F_{\mathcal{G}}}{R_{\mathcal{G}}}\right] \leq \sum_{k \in \mathcal{N}} \mathbb{E}\left[\frac{\alpha E_{k}}{K}\right] \leq \frac{\alpha K_{0}}{K} .
$$

Compliant procedures

- General compliant p-testing procedures do not have this property even if p-values are independent
- For independent p-values, a compliant p-testing procedure at α has a weaker FDR guarantee $\alpha(1+\log (1 / \alpha))>\alpha($ Su'18)

Compliance is useful in

- data-driven structured settings
- post-selection testing
- group testing
- multi-armed bandit problems

Boosting

For each $k \in \mathcal{K}$, take a boosting factor $b_{k} \geq 1$ such that

$$
\begin{aligned}
\max _{x \in K / \mathcal{K}} x \mathbb{P}\left(\alpha b_{k} E_{k} \geq x\right) \leq \alpha & \text { if e-values are PRDS } \\
\mathbb{E}\left[T\left(\alpha b_{k} E_{k}\right)\right] \leq \alpha & \text { otherwise }(\mathrm{AD})
\end{aligned}
$$

and let $e_{k}^{\prime}=b_{k} e_{k}$.

- \mathbb{E} and \mathbb{P} are computed under the null distribution of E_{k}
- Composite null: require for all probability measures in H_{k}
- $b_{k}=1$ is always valid
- Non-linear boosting is also possible
- \mathbf{e}^{\prime} may not have the same order as \mathbf{e}.

E-BH procedure

Example.

- For $\lambda \in(0,1)$

$$
E_{k}=\lambda P_{k}^{\lambda-1}
$$

where P_{k} is standard uniform if $k \in \mathcal{N}$

- $y_{\alpha} \leq\left(\lambda^{\lambda} \alpha\right)^{1 /(1-\lambda)}$
- $\lambda=1 / 2 \Longrightarrow y_{\alpha} \leq \alpha^{2} / 2$
- $\alpha=0.05, \lambda=1 / 2$
- $b_{k} \approx 6.32$ (AD)
- $b_{k} \approx 8.94$ (PRDS)

E-BH procedure

Example.

- For $\delta>0$,

$$
E_{k}=e^{\delta X_{k}-\delta^{2} / 2}
$$

where X_{k} is standard normal if $k \in \mathcal{N}$

- $\alpha=0.05, \delta=3$
- $b \approx 1.37$ (AD)
- $b \approx 7.88$ (PRDS)

Correlated z-tests

- $X_{k} \sim \mathrm{~N}(0,1)$ if $k \in \mathcal{N}$
- $X_{k} \sim \mathrm{~N}(\delta, 1)$ if $k \notin \mathcal{N}, \delta<0$
- X_{1}, \ldots, X_{K} are jointly Gaussian
- E-values from likelihood ratios

$$
E_{k}=\exp \left(\delta X_{k}-\delta^{2} / 2\right)
$$

- P-values from Neyman-Pearson tests

$$
P_{k}=\Phi\left(X_{k}\right)
$$

- Set $\delta=-3$

Correlated z-tests

Table: Simulation results for correlated z-tests, where $\rho_{i, j}$ is the correlation between two test statistics X_{i} and X_{j} for $i \neq j$. Each cell gives the number of rejections and, in parentheses, the realized FDP (in \%). Each number is computed over an average of 1,000 trials.
(a) Independent and positively correlated tests, $K=1000, K_{0}=800$

	$\rho_{i j}=0$			$\rho_{i j}=0.5$		
	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$
BH	$177.3(8.01)$	$148.7(4.07)$	$115.0(1.63)$	$180.0(7.00)$	$144.8(3.64)$	$109.8(1.50)$
e-BH PRDS	$171.8(7.07)$	$147.6(3.95)$	$114.6(1.62)$	$170.2(5.71)$	$142.5(3.35)$	$108.0(1.50)$
BY	$101.1(1.10)$	$78.8(0.57)$	$53.2(0.22)$	$96.6(1.03)$	$76.7(0.50)$	$55.0(0.20)$
e-BH AD	$109.4(1.41)$	$85.4(0.68)$	$54.6(0.24)$	$103.1(1.32)$	$81.4(0.70)$	$56.6(0.28)$
base e-BH	$97.5(1.00)$	$70.6(0.43)$	$36.9(0.11)$	$91.9(0.97)$	$69.1(0.45)$	$43.6(0.16)$

Correlated z-tests

(b) Independent tests with large number of hypotheses

	$K=20,000, K_{0}=10,000$			$K=20,000, K_{0}=19,000$		
	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$
BH	$9567(5.00)$	$8564(2.49)$	$7164(1.00)$	$681.3(9.58)$	$520.2(4.79)$	$357.7(1.93)$
e-BH PRDS	$9092(3.60)$	$8330(2.13)$	$7124(0.98)$	$681.3(9.58)$	$509.3(4.54)$	$312.1(1.40)$
BY	$5956(0.48)$	$4818(0.24)$	$3417(0.10)$	$254.1(0.89)$	$177.6(0.46)$	$103.1(0.19)$
e-BH AD	$6811(0.80)$	$5809(0.44)$	$4384(0.18)$	$271.0(1.02)$	$159.5(0.39)$	$51.4(0.07)$
base e-BH	$6426(0.64)$	$5234(0.31)$	$3509(0.10)$	$224.8(0.69)$	$109.2(0.21)$	$16.4(0.01)$

(c) Negatively correlated tests, $K=1000, K_{0}=800$.

	$\rho_{i j}=-1 /(K-1)$			$\rho_{i j}=-0.51_{\{\|i-j\|=1\}}$		
	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=2 \%$
BH	$177.7(8.14)$	$149.0(4.09)$	$115.2(1.61)$	$177.2(8.10)$	$148.8(4.00)$	$115.3(1.62)$
e-BH PRDS	$172.0(7.13)$	$147.9(3.98)$	$114.9(1.59)$	$171.5(7.13)$	$147.7(3.89)$	$114.9(1.61)$
BY	$101.2(1.08)$	$78.8(0.52)$	$53.3(0.20)$	$101.3(1.11)$	$78.8(0.56)$	$53.2(0.22)$
e-BH AD	$109.7(1.38)$	$85.5(0.65)$	$54.6(0.22)$	$109.8(1.40)$	$85.6(0.69)$	$54.6(0.24)$
base e-BH	$97.8(0.98)$	$70.7(0.40)$	$37.2(0.11)$	$97.6(0.99)$	$70.7(0.41)$	$36.7(0.12)$

[^0]: W.-Ramdas, False discovery rate control with e-values.
 arXiv: 2009.02824, 2020, Theorem 5.1

