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Background

The University of Waterloo

I A young tech university

I One of the largest research groups in Actuarial Science/Quantitative

Finance/Risk Management in the world with ≈ 20 professors

I No.1 in Actuarial Science Research worldwide by UNL ranking

I Largest Mathematics Faculty, > 8000 students, > 240 professors

For this talk, I assume

I Basic college probability theory

I Basic college statistics

I Good understanding in mathematics
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A general setup

A random vector X = (X1, . . . ,Xn)

Assumptions

marginals may be known; dependence is unknown/arbitrary

Questions:

I properties of Ψ(X) for some Ψ : Rn → Rd

I range of P(X ∈ A) for some A ⊆ Rn

I “optimal” dependence structures of X

I statistical decisions based on X

Dates back to Fréchet-Hoeffding; has roots in Monge-Kantorovich

I Data scarcity; uncertainty; optimization variable; absent

information; lack of models; equilibrium output
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An innocent question

What is a possible distribution of S = X1 + X2 for uniformly

distributed X1 and X2?

Obvious constraints

I E[S ] = 0

I range of S ⊆ [−2, 2]

I Var(S) ≤ 4/3
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Financial crisis

The 2007 - 09 financial crisis:

I the worst one since the Great Depression of the 1930s

I once in 50 years event

I subprime mortgage bubble

I Key ingredients

• a housing market at peak (2006)
• structured financial products and derivatives

collateralized debt obligations (CDO)

credit default swaps (CDS)

• advanced mathematical models

• political shortsightedness and the slow reaction of regulators
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CDO

A CDO repackages the cash flows from a set of assets

I Pooling the return from a set of assets (e.g. loans)

I Claims are tranched: differing priorities

I Creates new securities, of which some are less risky than the original

assets, and others are riskier.

“The engine that powered the mortgage supply chain” for nonprime

mortgages

I Sales of CDOs grew from $69B in 2000 to around $500B in 2006

I Between 2003 and 2007, Wall Street issued almost $700B in CDOs

that included mortgage-backed securities as collateral
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CDO: An example

I Xi ≥ 0 is the random loss from a defaultable,

speculative-grade bond i , i = 1, . . . , n

I X1, . . . ,Xn standalone are not very attractive to investors

I The idea of CDO

• Pool X1, . . . ,Xn: let L =
∑n

i=1 Xi and take some constants

K1 < K2

• Design financial products with payments Y1,Y2,Y3 so that

Y1 = (L− K2)+

Y2 = min{(L− K1)+,K2 − K1}
Y3 = min{L,K1}

• Y1 + Y2 + Y3 = L

• P(Y1 > 0) = P(L > K2) can be very small
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CDO: An example

I The one-year loss probability of senior (AAA-rated) tranches is less than

1/10,000

I Some investors are happy to hold a speculative grade bond, while others seek

safer bonds.
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Dependence modeling and risk aggregation

The rating for CDO tranches involves calculating P(L > K ), where

I L =
∑n

i=1 Xi , and Xi is the loss from a loan

I K is a constant and K � E[L]

I n is large, and each Xi has a small probability of loss

(default), i.e. P(Xi = 0) = 1− εi and εi is small

I εi is the default probability of loan i and it is decisive in the

calculation of the interest rate or price for this loan

I εi is modelled “relatively well” using individual credit

characteristics
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Dependence modeling and risk aggregation

I How X1, . . . ,Xn are dependent is unknown and they are

almost “uncorrelated” because they were diversified by region

I If X1, . . . ,Xn are almost independent, then the central limit

theorem can be applied, and P(L > K ) can be approximated

I The dependence structure of (X1, . . . ,Xn) matters:

• Assume P(Xi = 1) = 0.1, P(Xi = 0) = 0.9, n = 1000, K = 200

• If X1, . . . ,Xn are iid, then P(L > K ) < 10−20

• If X1, . . . ,Xn are positively dependent, then P(L > K ) ≈ 0.1

• sup{P(L > K ) : all dependence structures} = ?
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Financial crisis

I Classic statistics fails to apply here: no data are available for the

scenario “house prices started to fall”

I The past data (the scenario “house prices are good”) suggests that

X1, . . . ,Xn are mildly correlated or almost independent

I Substantial miscalculation of P(L > K ) leads to unjustified high

rating of CDO products ⇒ huge model risk

I In 2007, the mortgage backed securities turned out to be highly

correlated

I CDOs made up over half ($542 billion) of the nearly trillion dollars

in losses suffered by financial institutions from 2007 to early 2009
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Risk assessment under uncertainty

Abstract setup.

I A vector of risk factors: X = (X1, . . . ,Xn)

I A financial position Ψ(X)

I A mapping ρ : X→ R (a measure of risk)

Key task: Calculate ρ(Ψ(X))

Most practical choices:

I Ψ(X) =
∑n

i=1 Xi

I ρ(X ) = P(X > t), ρ = VaRp or ρ = ESp
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Risk assessment under uncertainty

ES0.95

VaR0.95

Value-at-Risk (VaR), p ∈ (0, 1)

VaRp : L0 → R,

VaRp(X ) = qp(X )

= inf{x ∈ R : P(X ≤ x) ≥ p}

(left-quantile)

Expected Shortfall (ES), p ∈ (0, 1)

ESp : L1 → R,

ESp(X ) =
1

1− p

∫ 1

p

VaRq(X )dq

(also: TVaR/CVaR/AVaR/CTE)
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Risk assessment under uncertainty

I Because ES is subadditive, with unknown dependence

ESp

(
n∑

i=1

Xn

)
≤

n∑
i=1

ESp(Xi )

I Marginal information provides bounds on the portfolio

I Worst-case ES: ESp =
∑n

i=1 ESp(Xi )

I VaR: not subadditive

I Worst-case VaR: generally an open question for n ≥ 3

I Similarly: bounds on P(
∑n

i=1 Xi > t)

W.-Peng-Yang, Bounds for the sum of dependent risks and worst Value-at-Risk

with monotone marginal densities. Finance and Stochastics, 2013
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Equilibria

I n agents each with a preference
I Competitive equilibrium

• Each agent i chooses a decision Xi according to some

optimization of his/her own preference and constraints

• Equilibrium: A random vector (X1, . . . ,Xn) such that no agent

would be able to change positions to improve

I Cooperative (Pareto) equilibrium
• A central planner chooses (X1, . . . ,Xn)

• Equilibrium: A random vector (X1, . . . ,Xn) that cannot be

strictly improved

Welfare theorems

Under some conditions, competitive equilibrium ⇐⇒ cooperative

equilibrium
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Positive and negative dependence

Random variables X1, . . . ,Xn

I Positive dependence

• Random variables roughly move in the same direction

• If one of them is large, then others are likely to be large

• Example: X1, . . . ,Xn are all proportional to each other

I Independence

I Negative dependence

• Random variables roughly move in the opposite direction

• If one of them is large, then others are likely to be small

• Example: (X1, . . . ,Xn) ∼ Multinomial

• Very difficult to analyze if n ≥ 3
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Risk sharing games

Risk sharing, risk exchange, and market equilibria

X 7−→ (X1, . . . ,Xn) s.t.
n∑

i=1

Xi = X

“Canonical form” of an equilibrium allocation?

I proportional: Xi = aiX for some
∑n

i=1 ai = 1?

I lottery: Xi = 1Ai
X for some

⋃n
i=1 Ai = Ω?

I other forms?
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Quantile-based risk sharing

utility-based quantile-based

max
∑n

i=1 λiE[ui (Xi )] min
∑n

i=1 λiVaRαi (Xi )

horizontally cut vertically cut

(X/n, . . . ,X/n) (X1A1 , . . . ,X1An)

coinsurance roulette

positive dependence negative dependence

Theorem

For mixed VaR, ES, and “other similar” agents, an equilibrium

allocation is extremally negatively dependent.

Embrechts-Liu-W., Quantile-based risk sharing.

Operations Research, 2018, Theorems 1 - 3
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Colonel Blotto games

Colonel Blotto games (all-pay auctions)

I Two players

I X1 + · · ·+ Xn = x

I Y1 + · · ·+ Yn = y

I Goal: maximize∑n
i=1 E[fi (Xi ,Yi )]

e.g. fi (s, t) = vi1{s>t}

I Nash equilibrium

Approach:

I solve for marginals X1 ∼ F1, . . . ,Xn ∼ Fn

I find dependence (if possible) s.t. X1 + · · ·+ Xn = x

I ⇒ Extremal negative dependence (joint mixability)

Wang-W., Joint mixability. Mathematics of Operations Research, 2016
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Axiomatic characterization of ES

Theorem

A risk measure penalizes risk

concentration (a special form of

positive dependence) if and only if

it is an ES.
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I ES is the most important risk measure in banking regulation

(Basel FRTB)

I The first axiomatic characterization of ES (introduced ∼2000)

W.-Zitikis, An axiomatic foundation for the Expected Shortfall.

Management Science, 2021, Theorem 1
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Axiomatic characterization of ES

Axioms

M. (Monotonicity) A surely larger or equal loss leads to a larger or equal risk

value, that is, ρ(X ) ≤ ρ(Y ) whenever X ≤ Y .

LI. (Law-invariance) The risk value depends on the loss via its distribution, that

is, ρ(X ) = ρ(Y ) whenever X
d
= Y .

P. (Prudence) The risk value is not underestimated by approximations, that is,

lim supn ρ(ξn) ≥ ρ(X ) whenever ξn → X point-wise.

NRC. (No reward for concentration) There exists an event A ∈ F such that

ρ(X + Y ) = ρ(X ) + ρ(Y ) holds for all risks X and Y sharing the tail event A.

Definition (Tail events)

A tail event of X is A ∈ F such that

a) 0 < P(A) < 1

b) X (ω) ≥ X (ω′)

for a.s. all ω ∈ A and ω′ ∈ Ac

Theorem

A functional ρ : L1 → R with ρ(1) = 1

satisfies Axioms M, LI, P and NRC if and

only if ρ = ESp for some p ∈ (0, 1).
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Equivalence between risk and dependence

Theorem

Risk aversion (Rothschild-Stiglitz) ⇐⇒ dependence aversion

Theorem

A mapping ρ : X → R is dependence neutral, i.e., ρ(X + Y )

depends only on the marginal distributions of (X ,Y ) ∈ X 2, if and

only if ρ = f ◦ E on X for some f : R→ R.

W.-Wu, Dependence and risk attitudes: An equivalence.

SSRN: 3707709, 2020, Theorems 1 - 2 and Proposition 3
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Transport theory

I Pure mathematics

I Important applications

• economics

• decision theory

• finance

• engineering

• operations research

• physics

I 1 Nobel Prize laureate

I 2 Fields medalists
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Monge’s formulation

I A and B are two Radon spaces (main example: Rd)

I Cost function c : A× B → [0,∞] or (−∞,∞]

I Given probability measures µ on A and ν on B

I Monge’s problem: find a transport map T : A→ B that

attains

inf

{∫
A
c(x ,T (x))dµ(x)

∣∣∣∣ T∗(µ) = ν

}
,

where T∗(µ) is the push forward of µ by T
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Monge’s formulation

Ruodu Wang (wang@uwaterloo.ca) Dependence in Stochastic Modeling 31/51

wang@uwaterloo.ca


Background Financial crisis Equilibria Decisions Mass transport Statistics Selective inference

Kantorovich’s formulation

I Monge’s formulation may be ill-posed (e.g., point masses)

I Kantorovich’s problem: find a probability measure P on A×B

that attains

inf

{∫
A×B

c(x , y) dP(x , y) | P ∈ Γ(µ, ν)

}
,

where Γ(µ, ν) is the set of probability measures on A× B with

marginals µ and ν.

I A× B = R× R : copulas and dependence

I Discrete version: linear programming
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Kantorovich’s formulation
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Scheduling

Minimize max(Ψ(X))

Minimize Var(Ψ(X))

s.t. Xi ∼ Fi , i = 1, . . . , n

(an NP-hard problem)
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Treatment effect analysis

score X (control)

score Y (experimental)

I Marginals of (X ,Y ):

I Effect measurement

E[Y − X ]:

I Var(Y − X ): ?○

I Dependence of (X ,Y ):

unidentifiable

(Neyman’23)

Ruodu Wang (wang@uwaterloo.ca) Dependence in Stochastic Modeling 36/51

wang@uwaterloo.ca


Background Financial crisis Equilibria Decisions Mass transport Statistics Selective inference

Meta analysis

I A (large) set of p-values is only one vector: little hope to

test/verify the dependence model

I Efron’10, Large-scale Inference, p50-p51:

“independence among the p-values ... usually an unrealistic

assumption. ... even PRD [positive regression dependence] is

unlikely to hold in practice.”

I Need procedures which work on arbitrarily dependent p-values

I Complicated/strange dependence arises when tests statistics

are generated by some adaptive procedure

• selective inference

• multi-armed bandit problems
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Merging p-values in multiple hypothesis testing

I P1, . . . ,PK : p-values (satisfying P(Pk ≤ ε) ≤ ε)

I arbitrarily dependent

I P-merging function F :

P(F (P1, . . . ,PK ) ≤ ε) ≤ ε for all (P1, . . . ,PK ) and ε

I Find ar ,K such that ar ,KMr ,K is a p-merging function

• Generalized average Mr ,K (p) = (
pr

1+···+pr
K

K )1/r

Theorem

a1,K = 2 (arithmetic) a0,K ∼ e (geometric)

a−1,K ∼ logK (harmonic) a−∞,K = K (Bonferroni)

Vovk-W., Combining p-values via averaging. Biometrika, 2020, Theorems 1 - 2
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P-hacking

Typical scientific research

I Group A tests a medication; gets “promising but not

conclusive” results

I Group B continues with new data; even more promising

I Group C continues with new data ...

I Sweep all data together to recalculate p-value ⇒ p-hacking
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What is an e-value?

I A hypothesis H: a set of probability measures

Definition (e-values and p-values)

(1) An e-value for testing H is a non-negative extended random

variable E : Ω→ [0,∞] that satisfies supH∈H
∫
E dH ≤ 1.

(2) A p-value for testing H is a random variable P : Ω→ [0,∞)

that satisfies supH∈H H(P ≤ α) ≤ α for all α ∈ (0, 1).

I For simple hypothesis {P}: non-negative E with mean ≤ 1

I P-test: p(data) small =⇒ reject

I E-test: e(data) large =⇒ reject

Vovk-W., E-values: Calibration, combination, and applications.

Annals of Statistics, 2021
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E-values, test supermartingales and betting scores

I A test supermartingale: a supermartingale X = (Xt) (i.e.,

E[Xt+1|Xt ] ≤ Xt) under the null with X0 = 1

I Optional validity (Doob’s optional stopping theorem):

Xτ is an e-value for any stopping time τ

I Retrospective validity (Ville’s inequality):

P
(

sup
t≥0

Xt ≥
1

α

)
≤ α =⇒ inf

t≥0
X−1
t is a p-value

I Bayes factors and likelihood ratios:

e(data) =
Pr(data | Q)

Pr(data | P)

I Betting scores (Shafer-Vovk’19, Shafer’21)
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An analogy of p-values and e-values

requirement specific interpretation representative forms keyword

p-value

P

P(P ≤ α) ≤ α
for α ∈ (0, 1)

probability of a more

extreme observation
P(T ′ ≤ T (X)|X) (conditional)

probability

e-value

E

EP[E ] ≤ 1

and E ≥ 0

likelihood ratios,

stopped martingales,

and betting scores

EP
[
dQ
dP

∣∣∣X]
EP[Mτ |X]

(conditional)

expectation

An analogy of p-variables and e-variables for a simple hypothesis {P}

I X is data

I T (X) is any test statistic

I T ′ is an independent copy of T (X) under P

I Q is any probability measure

I M is a test supermartingale under P and τ a stopping time
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Advantages of e-values

I Validity for arbitrary dependence ⇒ expectation

I Validity for optional stopping times ⇒ martingale

E-values are a useful tool even if one is only interested in p-values

I Easy to combine

I Flexible to stop/continue (online testing; unfixed sample size)

I Non-asymptotic and often model-free

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.

Annals of Statistics, 2021, Theorem 5.1
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Example: Multi-armed bandit problems

I K arms

I Hk : arm k has mean reward at most 1

I Strategy (kt): at time t, pull arm kt , get iid reward Xkt ,t ≥ 0

• optimized strategy

I Aim: quickly detect arms with mean > 1

• or maximize profit, minimize regret, etc ...

I Running reward: Mk,t =
∏t

j=1 Xk,j1{kj=k}

I Complicated dependence due to exploration/exploitation

I M1,τ , . . . ,MK ,τ are e-values for any stopping time τ
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Selective inference

Basic framework

I K hypotheses H1, . . . ,HK

I K = {1, . . . ,K}

I Hk is null if P ∈ Hk

I N ⊆ K: the set of (unknown) indices of null hypotheses

I K0 = |N |; if K0/K ≈ 1 then the signals are sparse

Examples

I Drug experiments; brain imaging; investment opportunities;

A/B tests; genome-wide association studies
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Selective inference

For a testing procedure D : [0, 1]K → 2K or [0,∞]K → 2K:

I RD: number of total discoveries (RD = |D|)

I FD: number of false discoveries (FD = |D ∩ N |)

I False discovery proportion (FDP): FD/RD with 0/0 = 0

I Benjamini-Hochberg’95: control the FDR E[FD/RD] ≤ α
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BH procedure

BH procedure

The Benjamini-Hochberg (BH) procedure D(α) rejects hypotheses

with the smallest k∗ p-values, where

k∗ = max

{
k ∈ K :

Kp(k)

k
≤ α

}
.

FDR dependence

BH’95

BY’01

K0

K
α

independence

PRDS

BY’01 `K
K0

K
α arbitrary

`K =
∑K

j=1 j
−1 ≈ log K . PRDS: positive regression dependence on a subset, e.g.,

jointly Gaussian test statistics with correlations ≥ 0
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E-BH procedure

I e[1] ≥ · · · ≥ e[K ]: order statistics of arbitrary e-values

E-BH procedure

The e-BH procedure G(α) : [0,∞]K → 2K for α > 0 rejects

hypotheses with the largest k∗ e-values, where

k∗ = max

{
k ∈ K :

ke[k]

K
≥ 1

α

}
.

Theorem

The e-BH procedure always has FDR at most K0α/K .

W.-Ramdas, False discovery rate control with e-values.

arXiv: 2009.02824, 2020, Theorem 5.1
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Combination and multiple testing

arbitrarily dependent optimality sequential/independent optimality

p-values

P1, . . . ,PK

Bonferroni

robust averaging

many others

NO

Fisher

Simes

many others

NO

e-values

E1, . . . ,EK
arithmetic mean YES

product

martingale merging

weakly

NO

FDR dependence

BH procedure K0
K
α independence/PRDS

BY procedure `K
K0
K
α arbitrary

e-BH procedure K0
K
α arbitrary

FDR procedures (K0 = #nulls, K = #hypotheses, `K =
∑K

k=1 k
−1 ≈ log K)
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Thank you

Thank you for your attention!
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Appendix

A multi-armed bandit problem

Problem setting

I K arms each with a reward X k ≥ 0

I Pulling arm k produces an iid sample (X k
1 ,X

k
2 , . . . ) from X k

I Null hypotheses: E[Xk ] ≤ 1, k ∈ K

I Arms have to be pulled in order and previous arms cannot be

revisited

I An arm can be pulled at most n times (budget)

I Goal: detect non-null arms as quickly as possible

I Example: investment opportunities; medical experiment
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A multi-armed bandit problem

The e-value ek,j and the p-value pk,j are realized by, respectively,

Ek,j :=

j∏
i=1

X k
i and Pk,j :=

(
max

i=1,...,j
Ek,i

)−1

(p ≤ 1/e)

Algorithm

I Select a p- or e-testing procedure D and start with e = p = 1

I For arm k, stop at Tk such that either D produces a new

discovery or Tk = n

I Update e-values or p-values and move to arm k + 1

The final e-variables Ek and p-variables Pk are obtained by

Ek = Ek,Tk
and Pk = Pk,Tk

, k = 1, . . . ,K .
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A multi-armed bandit problem

Table: Conditions for the validity of the testing algorithm

AD data AD stopping FDR guarantee in

across arms rules Tk our experiments

e-BH YES YES valid at level αK0/K

BH NO NO not valid

BY YES YES valid at level αK0/K

cBH NO YES valid at level αK0/K

Consider BH, e-BH, BY and compliant BH (cBH) procedures

I BY: D(α1) where α1`K = α (Benjamini-Yekutieli’01)

I cBH: D(α2) where α2(1 + log(1/α2)) = α (Su’18)
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A multi-armed bandit problem

Data generating process

I More promising arms come first: arm k is non-null with

probability θ(K − k + 1)/(K + 1), θ ∈ [0, 1]

I The expected number of non-nulls in this setting is θ/2

I sk ∼ Expo(µ) is the strength of signal for arm k

I Conditional on sk ,

X k
1 , . . . ,X

k
n

iid∼ X k = exp
(
Z k + sk1{k∈K\N} − 1/2

)
where Z 1, . . . ,ZK are iid standard normal.

I Set α = 0.05 and θ = 0.5
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A multi-armed bandit problem

Table: R = #{rejected hypothesis}, B% = %(unused budget), TD = #{true discoveries}. Each number is

computed over an average of 500 trials. Default values: K = 500, n = 50 and µ = 1.

(a) Default

R B% TD FDP%

e-BH 74.4 11.42 73.2 1.58

BH 77.0 11.44 75.3 2.13

BY 70.6 10.06 70.4 0.31

cBH 71.1 10.16 70.8 0.36

(b) K = 2000

R B% TD FDP%

297.6 11.39 293.2 1.48

307.8 11.41 301.4 2.07

281.2 9.95 280.4 0.26

284.5 10.15 283.5 0.36

(c) n = 10

R B% TD FDP%

47.7 3.99 47.3 0.83

49.3 4.01 48.7 1.06

38.4 2.77 38.4 0.08

39.2 2.85 39.2 0.11

(d) n = 100

R B% TD FDP%

e-BH 79.1 13.48 77.9 1.50

BH 81.3 13.50 79.5 2.13

BY 76.4 12.36 76.1 0.35

cBH 76.7 12.44 76.4 0.41

(e) µ = 0.5

R B% TD FDP%

43.5 5.77 42.9 1.54

46.3 5.80 45.3 2.13

39.6 4.66 39.5 0.27

40.1 4.74 40.0 0.35

(f) µ = 2

R B% TD FDP%

97.4 16.46 95.9 1.54

99.3 16.47 97.2 2.07

94.3 15.23 94.1 0.29

94.6 15.32 94.3 0.35
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Calibration and combination

I Admissible p-to-e calibrators

• Power calibrators: fκ(p) = κpκ−1 for κ ∈ (0, 1)

• Shafer’s: f (p) = p−1/2 − 1

• Averaging fκ:
∫ 1

0
κpκ−1dκ = 1−p+p ln p

p(− ln p)2

I The only admissible e-to-p calibrator: e → (1/e) ∧ 1

I Very roughly: p ∼ 1/e
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E-merging functions

E-merging functions

I arithmetic average MK : arbitrary dependence

I product PK : independence

Theorem 1

Suppose that F is a symmetric e-merging function. Then

F ≤ λ+ (1− λ)MK for some λ ∈ [0, 1], and F is admissible if and

only if F = λ+ (1− λ)MK with λ = F (0).

Vovk-W., E-values: Calibration, combination, and applications.

Annals of Statistics, 2021, Theorem 3.2
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Connection to p-merging

Theorem 2

For any admissible p-merging function F and ε ∈ (0, 1), there exist

(λ1, . . . , λK ) ∈ ∆K (standard symplex) and admissible calibrators

f1, . . . , fK s.t.

F (p) ≤ ε ⇐⇒
K∑

k=1

λk fk(pk) ≥ 1

ε
.

If F is symmetric, then there exists an admissible calibrator f s.t.

F (p) ≤ ε ⇐⇒ 1

K

K∑
k=1

f (pk) ≥ 1

ε
.

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.

Annals of Statistics, 2021, Theorem 5.1
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Compliant procedures

An e-testing procedure G is said to be compliant at level α ∈ (0, 1)

if every rejected e-value ek satisfies

ek ≥
K

αRG
.

I The base e-BH procedure is compliant and it dominates all

other compliant procedures
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Compliant procedures

Proposition 1

Any compliant e-testing procedure at level α has FDR at most

αK0/K for arbitrary configurations of e-values.

Proof. Let G be a compliant e-testing procedure. The FDP of G satisfies

FG
RG

=
|G(E) ∩N|
RG ∨ 1

=
∑
k∈N

1{k∈G(E)}

RG ∨ 1
≤
∑
k∈N

1{k∈G(E)}αEk

K
≤
∑
k∈N

αEk

K
,

where the first inequality is due to compliance. As E[Ek ] ≤ 1 for k ∈ N ,

we have

E
[
FG
RG

]
≤
∑
k∈N

E
[
αEk

K

]
≤ αK0

K
.
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Compliant procedures

I General compliant p-testing procedures do not have this

property even if p-values are independent

I For independent p-values, a compliant p-testing procedure at

α has a weaker FDR guarantee α(1 + log(1/α)) > α (Su’18)

Compliance is useful in

I data-driven structured settings

I post-selection testing

I group testing

I multi-armed bandit problems

Ruodu Wang (wang@uwaterloo.ca) Dependence in Stochastic Modeling 62/51

wang@uwaterloo.ca


Appendix

Boosting

For each k ∈ K, take a boosting factor bk ≥ 1 such that

max
x∈K/K

xP(αbkEk ≥ x) ≤ α if e-values are PRDS

E[T (αbkEk)] ≤ α otherwise (AD)

and let e ′k = bkek .

I E and P are computed under the null distribution of Ek

I Composite null: require for all probability measures in Hk

I bk = 1 is always valid

I Non-linear boosting is also possible

I e′ may not have the same order as e.
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E-BH procedure

Example.

I For λ ∈ (0, 1)

Ek = λPλ−1
k ,

where Pk is standard uniform if k ∈ N

I yα ≤ (λλα)1/(1−λ)

I λ = 1/2 =⇒ yα ≤ α2/2

I α = 0.05, λ = 1/2

• bk ≈ 6.32 (AD)

• bk ≈ 8.94 (PRDS)
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E-BH procedure

Example.

I For δ > 0,

Ek = eδXk−δ2/2,

where Xk is standard normal if k ∈ N
I α = 0.05, δ = 3

• b ≈ 1.37 (AD)

• b ≈ 7.88 (PRDS)
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Correlated z-tests

I Xk ∼ N(0, 1) if k ∈ N

I Xk ∼ N(δ, 1) if k 6∈ N , δ < 0

I X1, . . . ,XK are jointly Gaussian

I E-values from likelihood ratios

Ek = exp(δXk − δ2/2)

I P-values from Neyman-Pearson tests

Pk = Φ(Xk)

I Set δ = −3
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Correlated z-tests

Table: Simulation results for correlated z-tests, where ρi,j is the correlation between two test

statistics Xi and Xj for i 6= j . Each cell gives the number of rejections and, in parentheses, the

realized FDP (in %). Each number is computed over an average of 1,000 trials.

(a) Independent and positively correlated tests, K = 1000, K0 = 800

ρij = 0 ρij = 0.5

α = 10% α = 5% α = 2% α = 10% α = 5% α = 2%

BH 177.3 (8.01) 148.7 (4.07) 115.0 (1.63) 180.0 (7.00) 144.8 (3.64) 109.8 (1.50)

e-BH PRDS 171.8 (7.07) 147.6 (3.95) 114.6 (1.62) 170.2 (5.71) 142.5 (3.35) 108.0 (1.50)

BY 101.1 (1.10) 78.8 (0.57) 53.2 (0.22) 96.6 (1.03) 76.7 (0.50) 55.0 (0.20)

e-BH AD 109.4 (1.41) 85.4 (0.68) 54.6 (0.24) 103.1 (1.32) 81.4 (0.70) 56.6 (0.28)

base e-BH 97.5 (1.00) 70.6 (0.43) 36.9 (0.11) 91.9 (0.97) 69.1 (0.45) 43.6 (0.16)
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Correlated z-tests

(b) Independent tests with large number of hypotheses

K = 20, 000, K0 = 10, 000 K = 20, 000, K0 = 19, 000

α = 10% α = 5% α = 2% α = 10% α = 5% α = 2%

BH 9567 (5.00) 8564 (2.49) 7164 (1.00) 681.3 (9.58) 520.2 (4.79) 357.7 (1.93)

e-BH PRDS 9092 (3.60) 8330 (2.13) 7124 (0.98) 681.3 (9.58) 509.3 (4.54) 312.1 (1.40)

BY 5956 (0.48) 4818 (0.24) 3417 (0.10) 254.1 (0.89) 177.6 (0.46) 103.1 (0.19)

e-BH AD 6811 (0.80) 5809 (0.44) 4384 (0.18) 271.0 (1.02) 159.5 (0.39) 51.4 (0.07)

base e-BH 6426 (0.64) 5234 (0.31) 3509 (0.10) 224.8 (0.69) 109.2 (0.21) 16.4 (0.01)

(c) Negatively correlated tests, K = 1000, K0 = 800.

ρij = −1/(K − 1) ρij = −0.51{|i−j |=1}

α = 10% α = 5% α = 2% α = 10% α = 5% α = 2%

BH 177.7 (8.14) 149.0 (4.09) 115.2 (1.61) 177.2 (8.10) 148.8 (4.00) 115.3 (1.62)

e-BH PRDS 172.0 (7.13) 147.9 (3.98) 114.9 (1.59) 171.5 (7.13) 147.7 (3.89) 114.9 (1.61)

BY 101.2 (1.08) 78.8 (0.52) 53.3 (0.20) 101.3 (1.11) 78.8 (0.56) 53.2 (0.22)

e-BH AD 109.7 (1.38) 85.5 (0.65) 54.6 (0.22) 109.8 (1.40) 85.6 (0.69) 54.6 (0.24)

base e-BH 97.8 (0.98) 70.7 (0.40) 37.2 (0.11) 97.6 (0.99) 70.7 (0.41) 36.7 (0.12)
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