nd Financial crisis Equilibria

Decisions 0000 Mass transport 0000000 Statistics 0000 Selective inference

Dependence in Stochastic Modeling: Financial Crisis, Strategies, Equilibria, Decisions, Transport, and Statistics

Ruodu Wang http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

Alibaba Mathematics Colloquium, September 1, 2021

◆□ ▶ ◆□ ▶ ▲ = ▶ ▲ = ▶ ▲ □ ▶ ◆ □ ▶

Agenda						
Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	000000	0000	0000000	0000	

Б

- 2 Financial crisis
- 3 Equilibria and strategies
- 4 Decision theory
- 5 Mass transport
- 6 Statistics

-

ヨト イヨト

Background ●000	Financial crisis 00000000000	Equilibria 000000	Decisions 0000	Mass transport	Statistics 0000	Selective inference
Backgr	ound					

Quantitative Risk Management

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background 0●00	Financial crisis	Equilibria 000000	Decisions 0000	Mass transport	Statistics 0000	Selective inference
Backgr	ound					

The University of Waterloo

- A young tech university
- ► One of the largest research groups in Actuarial Science/Quantitative Finance/Risk Management in the world with ≈ 20 professors
- ▶ No.1 in Actuarial Science Research worldwide by UNL ranking
- Largest Mathematics Faculty, > 8000 students, > 240 professors

For this talk, I assume

- Basic college probability theory
- Basic college statistics
- Good understanding in mathematics

・ 同 ト ・ 三 ト ・ 三 ト

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
00●0	00000000000	000000	0000	0000000	0000	
Δ gene	ral setun					

A random vector
$$\mathbf{X} = (X_1, \dots, X_n)$$

Assumptions

marginals may be known; dependence is unknown/arbitrary

- properties of $\Psi(\mathsf{X})$ for some $\Psi: \mathbb{R}^n \to \mathbb{R}^d$
- ▶ range of $\mathbb{P}(\mathbf{X} \in A)$ for some $A \subseteq \mathbb{R}^n$

Questions:

- "optimal" dependence structures of X
- statistical decisions based on X

Dates back to Fréchet-Hoeffding; has roots in Monge-Kantorovich

 Data scarcity; uncertainty; optimization variable; absent information; lack of models; equilibrium output

ヘロト 4回 ト 4回 ト 4回 ト ショー シタマ

Background Financial crisis Equilibria Decisions Mass transport Statistics Selective inference 0000

An innocent question

What is a possible distribution of $S = X_1 + X_2$ for uniformly distributed X_1 and X_2 ?

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
	•000000000				

- 2 Financial crisis
- 3 Equilibria and strategies
- 4 Decision theory
- 5 Mass transport
- 6 Statistics
- 7 E-values and selective inference

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	000000	0000	0000000	0000	
Financi	al crisis					

The 2007 - 09 financial crisis:

- the worst one since the Great Depression of the 1930s
- once in 50 years event
- subprime mortgage bubble
- Key ingredients
 - a housing market at peak (2006)
 - structured financial products and derivatives
 - collateralized debt obligations (CDO)
 - credit default swaps (CDS)
 - advanced mathematical models
 - political shortsightedness and the slow reaction of regulators

소리 에 소문 에 관 에 드릴 때 드는 것 같다.

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	0000000000	000000	0000	0000000	0000	
CDO						

A CDO repackages the cash flows from a set of assets

- Pooling the return from a set of assets (e.g. loans)
- Claims are tranched: differing priorities
- Creates new securities, of which some are less risky than the original assets, and others are riskier.

"The engine that powered the mortgage supply chain" for nonprime mortgages

- Sales of CDOs grew from \$69B in 2000 to around \$500B in 2006
- Between 2003 and 2007, Wall Street issued almost \$700B in CDOs that included mortgage-backed securities as collateral

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	000●0000000	000000	0000	0000000	0000	
CDO: /	An example	e				

- ► X_i ≥ 0 is the random loss from a defaultable, speculative-grade bond i, i = 1,..., n
- X_1, \ldots, X_n standalone are not very attractive to investors
- The idea of CDO
 - Pool X_1, \ldots, X_n : let $L = \sum_{i=1}^n X_i$ and take some constants $K_1 < K_2$
 - Design financial products with payments Y_1, Y_2, Y_3 so that
 - $Y_1 = (L K_2)_+$
 - $Y_2 = \min\{(L K_1)_+, K_2 K_1\}$
 - $Y_3 = \min\{L, K_1\}$
 - $Y_1 + Y_2 + Y_3 = L$
 - $\mathbb{P}(Y_1 > 0) = \mathbb{P}(L > K_2)$ can be very small

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	000000	0000	0000000	0000	

CDO: An example

- The one-year loss probability of senior (AAA-rated) tranches is less than 1/10,000
- Some investors are happy to hold a speculative grade bond, while others seek safer bonds.

Background Financial crisis Equilibria Decisions Mass transport Statistics Selective inference 0000 00000 00000 0000 0000 0000 0000 0000

Dependence modeling and risk aggregation

The rating for CDO tranches involves calculating $\mathbb{P}(L > K)$, where

- $L = \sum_{i=1}^{n} X_i$, and X_i is the loss from a loan
- *K* is a constant and $K \gg \mathbb{E}[L]$
- n is large, and each X_i has a small probability of loss (default), i.e. P(X_i = 0) = 1 − ε_i and ε_i is small
- ► e_i is the default probability of loan i and it is decisive in the calculation of the interest rate or price for this loan
- *e_i* is modelled "relatively well" using individual credit characteristics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Background Financial crisis Equilibria Decisions Mass transport Statistics Selective inference 0000 00000 0000 0000 0000 0000 00000 00000

Dependence modeling and risk aggregation

- How X₁,..., X_n are dependent is unknown and they are almost "uncorrelated" because they were diversified by region
- If X₁,..., X_n are almost independent, then the central limit theorem can be applied, and ℙ(L > K) can be approximated
- The dependence structure of (X_1, \ldots, X_n) matters:
 - Assume $\mathbb{P}(X_i = 1) = 0.1$, $\mathbb{P}(X_i = 0) = 0.9$, n = 1000, K = 200
 - If X_1, \ldots, X_n are iid, then $\mathbb{P}(L > K) < 10^{-20}$
 - If X_1, \ldots, X_n are positively dependent, then $\mathbb{P}(L > K) pprox 0.1$
 - $\sup\{\mathbb{P}(L > K) : \text{all dependence structures}\} = ?$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	0000000●000	000000	0000	0000000	0000	
Financi	al crisis					

- Classic statistics fails to apply here: no data are available for the scenario "house prices started to fall"
- ► The past data (the scenario "house prices are good") suggests that X₁,..., X_n are mildly correlated or almost independent
- Substantial miscalculation of P(L > K) leads to unjustified high rating of CDO products ⇒ huge model risk
- In 2007, the mortgage backed securities turned out to be highly correlated
- CDOs made up over half (\$542 billion) of the nearly trillion dollars in losses suffered by financial institutions from 2007 to early 2009

・ロト ・ 日 ・ エ ト ・ 日 ト ・ クタマ

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
	000000000000				

Risk assessment under uncertainty

Abstract setup.

- A vector of risk factors: $\mathbf{X} = (X_1, \dots, X_n)$
- A financial position $\Psi(X)$
- A mapping $\rho: \mathbf{X} \to \mathbb{R}$ (a measure of risk)

Key task: Calculate $\rho(\Psi(\mathbf{X}))$

Most practical choices:

•
$$\Psi(\mathbf{X}) = \sum_{i=1}^{n} X_i$$

•
$$ho(X) = \mathbb{P}(X > t)$$
, $ho = \operatorname{VaR}_{
ho}$ or $ho = \operatorname{ES}_{
ho}$

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
	00000000000				

Risk assessment under uncertainty

Value-at-Risk (VaR), $p \in (0,1)$	Expected Shortfall (ES), $p \in (0,1)$
$\operatorname{VaR}_{p}: L^{0} \to \mathbb{R},$	$\mathrm{ES}_{p}:L^{1} ightarrow\mathbb{R}$,
$\operatorname{VaR}_p(X) = q_p(X)$ = $\inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) \ge p\}$	$\mathrm{ES}_p(X) = \frac{1}{1-p} \int_p^1 \mathrm{VaR}_q(X) \mathrm{d}q$
(left-quantile)	(also: TVaR/CVaR/AVaR/CTE)

<ロ> <部> <部> < 2 > < 2 > < 2 > < 2 = 1

Background Financial crisis Equilibria Decisions Mass transport Statistics Selective inference 0000 000000000 000

Risk assessment under uncertainty

Because ES is subadditive, with unknown dependence

$$\mathrm{ES}_p\left(\sum_{i=1}^n X_n\right) \leq \sum_{i=1}^n \mathrm{ES}_p(X_i)$$

- Marginal information provides bounds on the portfolio
- Worst-case ES: $\overline{\mathrm{ES}}_{\rho} = \sum_{i=1}^{n} \mathrm{ES}_{\rho}(X_i)$
- VaR: not subadditive
- ▶ Worst-case VaR: generally an open question for $n \ge 3$
- Similarly: bounds on $\mathbb{P}(\sum_{i=1}^{n} X_i > t)$

W.-Peng-Yang, Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. Finance and Stochastics, $2013 \leftarrow \Xi + e \equiv e = 20$

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
		00000			

- 2 Financial crisis
- 3 Equilibria and strategies
- 4 Decision theory
- 5 Mass transport
- 6 Statistics

・同・・モ・・モー 三日

Equilib	ria					
Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	0●0000	0000	0000000	0000	

- n agents each with a preference
- Competitive equilibrium
 - Each agent *i* chooses a decision X_i according to some optimization of his/her own preference and constraints
 - Equilibrium: A random vector (X_1, \ldots, X_n) such that no agent would be able to change positions to improve
- Cooperative (Pareto) equilibrium
 - A central planner chooses (X₁,...,X_n)
 - Equilibrium: A random vector (X_1, \ldots, X_n) that cannot be strictly improved

Welfare theorems

Under some conditions, competitive equilibrium \Longleftrightarrow cooperative equilibrium

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
		000000			

Positive and negative dependence

Random variables X_1, \ldots, X_n

- Positive dependence
 - Random variables roughly move in the same direction
 - If one of them is large, then others are likely to be large
 - Example: X_1, \ldots, X_n are all proportional to each other
- Independence
- Negative dependence
 - Random variables roughly move in the opposite direction
 - If one of them is large, then others are likely to be small
 - Example: $(X_1, \ldots, X_n) \sim Multinomial$
 - Very difficult to analyze if $n \ge 3$

・ロト ・ 日 ・ エ ト ・ 日 ト ・ クタマ

Risk sharing games

Risk sharing, risk exchange, and market equilibria

$$X \longmapsto (X_1,\ldots,X_n)$$
 s.t. $\sum_{i=1}^n X_i = X$

"Canonical form" of an equilibrium allocation?

- proportional: $X_i = a_i X$ for some $\sum_{i=1}^n a_i = 1$?
- lottery: $X_i = \mathbb{1}_{A_i} X$ for some $\bigcup_{i=1}^n A_i = \Omega$?
- other forms?

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
		000000			

Quantile-based risk sharing

utility-based	quantile-based	
$\max \sum_{i=1}^n \lambda_i \mathbb{E}[u_i(X_i)]$	min $\sum_{i=1}^{n} \lambda_i \operatorname{VaR}_{\alpha_i}(X_i)$	
horizontally cut	vertically cut	
$(X/n,\ldots,X/n)$	$(X\mathbb{1}_{A_1},\ldots,X\mathbb{1}_{A_n})$	
coinsurance	roulette	
positive dependence	negative dependence	

Theorem

For mixed VaR, ES, and "other similar" agents, an equilibrium allocation is extremally negatively dependent.

Embrechts-Liu-W., Quantile-based risk sharing.

Operations Research, 2018, Theorems 1 - 3

Colonel Blotto games

Colonel Blotto games (all-pay auctions)

- Colonel Blotto
- Two players
- $\blacktriangleright X_1 + \dots + X_n = x$
- $Y_1 + \cdots + Y_n = y$
- Goal: maximize $\sum_{i=1}^{n} \mathbb{E}[f_i(X_i, Y_i)]$ e.g. $f_i(s, t) = v_i \mathbb{1}_{\{s>t\}}$
- Nash equilibrium

• solve for marginals $X_1 \sim F_1, \ldots, X_n \sim F_n$

Approach: • find dependence (if possible) s.t. $X_1 + \cdots + X_n = x$

• \Rightarrow Extremal negative dependence (joint mixability)

 Wang-W., Joint mixability. Mathematics of Operations Research, 2016

 ± + = ± = <</td>

 Ruodu Wang (wang@uwaterloo.ca)
 Dependence in Stochastic Modeling
 23/51

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
			0000		

Background

- 2 Financial crisis
- 3 Equilibria and strategies
- 4 Decision theory
- 5 Mass transport
- 6 Statistics
- 7 E-values and selective inference

Background Financial crisis Equilibria Decisions Mass transport Statistics Selective inference

Axiomatic characterization of ES

Theorem

A risk measure penalizes risk concentration (a special form of positive dependence) if and only if it is an ES.

- ES is the most important risk measure in banking regulation (Basel FRTB)
- ▶ The first axiomatic characterization of ES (introduced ~2000)

W.-Zitikis, An axiomatic foundation for the Expected Shortfall.

0000 000000000 00000 0000 000000 00000 00000 0000	Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
				0000			

Axiomatic characterization of ES

Axioms

- M. (Monotonicity) A surely larger or equal loss leads to a larger or equal risk value, that is, $\rho(X) \le \rho(Y)$ whenever $X \le Y$.
- LI. (Law-invariance) The risk value depends on the loss via its distribution, that is, $\rho(X) = \rho(Y)$ whenever $X \stackrel{d}{=} Y$.
- P. (Prudence) The risk value is not underestimated by approximations, that is, lim $\sup_n \rho(\xi_n) \ge \rho(X)$ whenever $\xi_n \to X$ point-wise.
- NRC. (No reward for concentration) There exists an event $A \in \mathcal{F}$ such that $\rho(X + Y) = \rho(X) + \rho(Y)$ holds for all risks X and Y sharing the tail event A.

Definition (Tail events)		
A tail event of X is $A \in \mathcal{F}$ such that a) $0 < \mathbb{P}(A) < 1$ b) $X(\omega) \ge X(\omega')$	Theorem A functional $\rho : L^1 \to \mathbb{R}$ with $\rho(1) = 1$ satisfies Axioms M, LI, P and NRC if and only if $\rho = ES_p$ for some $p \in (0, 1)$.	
for a.s. all $\omega \in A$ and $\omega' \in A^c$	 < □ ▷ < ⑦ ▷ < 분 ▷ < 분 ▷ 로) = Dependence in Stochastic Modeling 	୬ ୧ (26/5

Equivalence between risk and dependence

Theorem

Risk aversion (Rothschild-Stiglitz) \iff dependence aversion

Theorem

A mapping $\rho : \mathcal{X} \to \mathbb{R}$ is dependence neutral, i.e., $\rho(X + Y)$ depends only on the marginal distributions of $(X, Y) \in \mathcal{X}^2$, if and only if $\rho = f \circ \mathbb{E}$ on \mathcal{X} for some $f : \mathbb{R} \to \mathbb{R}$.

W.-Wu, Dependence and risk attitudes: An equivalence.

SSRN: 3707709, 2020, Theorems 1 - 2 and Proposition 3 × (ヨン (ヨン (ヨン (ヨン (ヨン)))

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
				000000	

Background

- 2 Financial crisis
- 3 Equilibria and strategies
- 4 Decision theory
- 5 Mass transport
- 6 Statistics

(1日) (日) (日) (日)

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	000000	0000	0●00000	0000	
Transp	ort theory					

- Pure mathematics
- Important applications
 - economics
 - decision theory
 - finance
 - engineering
 - operations research
 - physics
- 1 Nobel Prize laureate
- 2 Fields medalists

- A and B are two Radon spaces (main example: \mathbb{R}^d)
- ▶ Cost function $c : A \times B \rightarrow [0, \infty]$ or $(-\infty, \infty]$
- Given probability measures μ on A and ν on B
- ► Monge's problem: find a transport map T : A → B that attains

$$\inf\left\{\int_A c(x, T(x)) \,\mathrm{d}\mu(x) \ \Big| \ T_*(\mu) = \nu\right\},$$

where $T_*(\mu)$ is the push forward of μ by T

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference					
0000	00000000000	000000	0000	000●000	0000						
N 4	Manuala Cama lation										

Monge's formulation

《曰》《問》《曰》《曰》 되는

- Monge's formulation may be ill-posed (e.g., point masses)
- ► Kantorovich's problem: find a probability measure P on A × B that attains

$$\inf\bigg\{\int_{A\times B} c(x,y)\,\mathrm{d} P(x,y)\mid P\in \Gamma(\mu,\nu)\bigg\},$$

where $\Gamma(\mu, \nu)$ is the set of probability measures on $A \times B$ with marginals μ and ν .

- $A \times B = \mathbb{R} \times \mathbb{R}$: copulas and dependence
- Discrete version: linear programming

イロト (母) (ヨト (ヨト)ヨヨ ののの

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	000000	0000	00000●0	0000	

Kantorovich's formulation

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	000000	0000	000000●	0000	
Schedu	ling					

 $\begin{array}{l} \text{Minimize max}(\Psi(\textbf{X}))\\ \text{Minimize Var}(\Psi(\textbf{X}))\\ \text{s.t. } X_i \sim F_i, \ i = 1, \ldots, n \end{array}$

ъ

(an NP-hard problem)

_		_	_	
44	10	24	78	
66	32	37	135	
67	48	41	156	\implies
71	57	43	171	
87	60	83	230	

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
					0000	

Background

- 2 Financial crisis
- 3 Equilibria and strategies
- 4 Decision theory
- 5 Mass transport

6 Statistics

7 E-values and selective inference

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
					0000	

Treatment effect analysis

score X (control)
score Y (experimental)

- Marginals of (X, Y):
- Effect measurement $\mathbb{E}[Y X]$: \checkmark
- $\operatorname{Var}(Y X)$: ?
- Dependence of (X, Y): unidentifiable (Neyman'23)

Meta a	nalvsis					
Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	000000	0000	0000000	00●0	

- A (large) set of p-values is only one vector: little hope to test/verify the dependence model
- ► Efron'10, Large-scale Inference, p50-p51:

"independence among the p-values ... usually an unrealistic assumption. ... even PRD [positive regression dependence] is unlikely to hold in practice."

- Need procedures which work on arbitrarily dependent p-values
- Complicated/strange dependence arises when tests statistics are generated by some adaptive procedure
 - selective inference
 - multi-armed bandit problems

Merging p-values in multiple hypothesis testing

- P_1, \ldots, P_K : p-values (satisfying $\mathbb{P}(P_k \leq \epsilon) \leq \epsilon$)
- arbitrarily dependent
- ▶ P-merging function *F*: $\mathbb{P}(F(P_1,...,P_K) \le \epsilon) \le \epsilon$ for all $(P_1,...,P_K)$ and ϵ
- Find $a_{r,K}$ such that $a_{r,K}M_{r,K}$ is a p-merging function

• Generalized average
$$M_{r,K}(\mathbf{p}) = (rac{p_1' + \cdots + p_K'}{K})^{1/r}$$

Theorem

$$a_{1,K} = 2$$
 (arithmetic) $a_{0,K} \sim e$ (geometric)
 $a_{-1,K} \sim \log K$ (harmonic) $a_{-\infty,K} = K$ (Bonferroni)

 Novk-W., Combining p-values via averaging. Biometrika, 2020; Theorems 1 - 2 - 3

 Ruodu Wang (wang@uwaterloo.ca)
 Dependence in Stochastic Modeling
 38/51

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
					•000000000000

Background

- 2 Financial crisis
- 3 Equilibria and strategies
- 4 Decision theory
- 5 Mass transport
- 6 Statistics

Background 0000	Financial crisis 00000000000	Equilibria 000000	Decisions 0000	Mass transport	Statistics 0000	Selective inference
P-hacki	ing					

Typical scientific research

- Group A tests a medication; gets "promising but not conclusive" results
- Group B continues with new data; even more promising
- Group C continues with new data ...
- Sweep all data together to recalculate p-value \Rightarrow p-hacking

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	000000	0000	0000000	0000	
What is	s an e-valu	<u>_</u> ?				

• A hypothesis \mathcal{H} : a set of probability measures

Definition (e-values and p-values)

- (1) An e-value for testing \mathcal{H} is a non-negative extended random variable $E: \Omega \to [0, \infty]$ that satisfies $\sup_{H \in \mathcal{H}} \int E \, \mathrm{d}H \leq 1$.
- (2) A p-value for testing \mathcal{H} is a random variable $P : \Omega \to [0, \infty)$ that satisfies $\sup_{H \in \mathcal{H}} H(P \leq \alpha) \leq \alpha$ for all $\alpha \in (0, 1)$.
 - ▶ For simple hypothesis $\{\mathbb{P}\}$: non-negative *E* with mean ≤ 1
 - P-test: p(data) small \implies reject
 - E-test: e(data) large \implies reject

 Vovk-W., E-values: Calibration, combination, and applications.

 Annals of Statistics, 2021

Background Financial crisis Equilibria Decisions Mass transport Statistics Selective inference

E-values, test supermartingales and betting scores

- A test supermartingale: a supermartingale $X = (X_t)$ (i.e., $\mathbb{E}[X_{t+1}|X_t] \le X_t$) under the null with $X_0 = 1$
- Optional validity (Doob's optional stopping theorem):

 $X_{ au}$ is an e-value for any stopping time au

Retrospective validity (Ville's inequality):

$$\mathbb{P}\left(\sup_{t\geq 0} X_t \geq \frac{1}{\alpha}\right) \leq \alpha \implies \inf_{t\geq 0} X_t^{-1} \text{ is a p-value}$$

Bayes factors and likelihood ratios:

$$e(\mathsf{data}) = rac{\Pr(\mathsf{data} \mid \mathbb{Q})}{\Pr(\mathsf{data} \mid \mathbb{P})}$$

Betting scores (Shafer-Vovk'19, Shafer'21)

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
					000000000000000000000000000000000000000

An analogy of p-values and e-values

	requirement	specific interpretation	representative forms	keyword
p-value P	$\mathbb{P}(P \leq lpha) \leq lpha$ for $lpha \in (0, 1)$	probability of a more extreme observation	$\mathbb{P}(\mathcal{T}' \leq \mathcal{T}(\mathbf{X}) \mathbf{X})$	(conditional) probability
e-value E	$\mathbb{E}^{\mathbb{P}}[E] \leq 1$ and $E \geq 0$	likelihood ratios, stopped martingales, and betting scores	$\mathbb{E}^{\mathbb{P}}\left[rac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}ig \mathbf{X} ight] \ \mathbb{E}^{\mathbb{P}}[M_{ au} \mathbf{X}]$	(conditional) expectation

An analogy of p-variables and e-variables for a simple hypothesis $\{\mathbb{P}\}$

- X is data
- T(X) is any test statistic
- T' is an independent copy of T(X) under \mathbb{P}
- \blacktriangleright \mathbb{Q} is any probability measure
- *M* is a test supermartingale under $\mathbb P$ and au a stopping time

< ロ > < 同 > < 回 > < 回 > < 回 > <

Background 0000	Financial crisis 00000000000	Equilibria 000000	Decisions 0000	Mass transport	Statistics 0000	Selective inference
Advant	ages of e-v	values				

- Validity for arbitrary dependence \Rightarrow expectation
- Validity for optional stopping times \Rightarrow martingale

E-values are a useful tool even if one is only interested in p-values

Easy to combine

 \mathbf{o}

- Flexible to stop/continue (online testing; unfixed sample size)
- Non-asymptotic and often model-free

 Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.

 Annals of Statistics, 2021, Theorem 5.1

 Ruodu Wang (vang@uwaterloo.ca)

 Dependence in Stochastic Modeling

Background 0000	Financial crisis 00000000000	Equilibria 000000	Decisions 0000	Mass transport	Statistics 0000	Selective inference

Example: Multi-armed bandit problems

K arms

- H_k : arm k has mean reward at most 1
- Strategy (k_t) : at time t, pull arm k_t , get iid reward $X_{k_t,t} \ge 0$
 - optimized strategy
- Aim: quickly detect arms with mean > 1
 - or maximize profit, minimize regret, etc ...
- Running reward: $M_{k,t} = \prod_{j=1}^{t} X_{k,j} \mathbb{1}_{\{k_j=k\}}$
- Complicated dependence due to exploration/exploitation
- $M_{1,\tau}, \ldots, M_{K,\tau}$ are e-values for any stopping time τ

▲母 ▲ ■ ▲ ■ ▲ ■ ■ ■ ● ● ●

Background 0000	Financial crisis 00000000000	Equilibria 000000	Decisions 0000	Mass transport	Statistics 0000	Selective inference
Selectiv	ve inferenc	e				

Basic framework

- K hypotheses H_1, \ldots, H_K
- $\mathcal{K} = \{1, \ldots, K\}$
- H_k is null if $\mathbb{P} \in H_k$
- $\mathcal{N} \subseteq \mathcal{K}$: the set of (unknown) indices of null hypotheses
- $\mathcal{K}_0 = |\mathcal{N}|$; if $\mathcal{K}_0/\mathcal{K} \approx 1$ then the signals are sparse

Examples

Drug experiments; brain imaging; investment opportunities;
 A/B tests; genome-wide association studies

▲冊 ▶ ▲ ∃ ▶ ▲ ∃ ▶ 三 目 = ♪ ○ ○

Background	Financial crisis	Equilibria	Decisions	Mass transport	Statistics	Selective inference
0000	00000000000	000000	0000	0000000	0000	
Selectiv	ve inferenc	e				

For a testing procedure $\mathcal{D}: [0,1]^K \to 2^{\mathcal{K}}$ or $[0,\infty]^K \to 2^{\mathcal{K}}$:

- $R_{\mathcal{D}}$: number of total discoveries ($R_{\mathcal{D}} = |\mathcal{D}|$)
- $F_{\mathcal{D}}$: number of false discoveries ($F_{\mathcal{D}} = |\mathcal{D} \cap \mathcal{N}|$)
- ► False discovery proportion (FDP): F_D/R_D with 0/0 = 0
- ▶ Benjamini-Hochberg'95: control the FDR $\mathbb{E}[F_{\mathcal{D}}/R_{\mathcal{D}}] \leq \alpha$

・ロト ・ 日 ・ エ = ・ ・ 日 = ・ つ Q ()

Background 0000	Financial crisis 00000000000	Equilibria 000000	Decisions 0000	Mass transport	Statistics 0000	Selective inference
RH pro	coduro					

BH procedure

The Benjamini-Hochberg (BH) procedure $\mathcal{D}(\alpha)$ rejects hypotheses with the smallest k^* p-values, where

$$k^* = \max\left\{k \in \mathcal{K} : rac{\mathcal{K} \mathcal{P}_{(k)}}{k} \leq lpha
ight\}.$$

	FDR	dependence
BH'95	$\frac{K_0}{\kappa} \alpha$	independence
BY'01	\overline{K}^{α}	PRDS
BY'01	$\ell_K \frac{K_0}{K} \alpha$	arbitrary

 $\ell_{K} = \sum_{i=1}^{K} j^{-1} \approx \log K$. PRDS: positive regression dependence on a subset, e.g., jointly Gaussian test statistics with correlations ≥ 0 (wang@uwaterloo.ca) Dependence in Stochastic Modeling Ruodu Wang

Background 0000	Financial crisis 00000000000	Equilibria 000000	Decisions 0000	Mass transport	Statistics 0000	Selective inference
	aracadura					

•
$$e_{[1]} \geq \cdots \geq e_{[K]}$$
: order statistics of arbitrary e-values

E-BH procedure

JUEUUIE

The e-BH procedure $\mathcal{G}(\alpha) : [0,\infty]^{\mathcal{K}} \to 2^{\mathcal{K}}$ for $\alpha > 0$ rejects

hypotheses with the largest k^* e-values, where

$$k^* = \max\left\{k \in \mathcal{K} : rac{ke_{[k]}}{K} \geq rac{1}{lpha}
ight\}.$$

Theorem

The e-BH procedure always has FDR at most $K_0\alpha/K$.

W.-Ramdas, False discovery rate control with e-values.

arXiv: 2009.02824, 2020, Theorem 5.1

Background	Financial crisis	Equilibria	Decisions	Mass transport	Selective inference
					00000000000000000

Combination and multiple testing

	arbitrarily dependent	optimality	sequential/independent	optimality
p-values P_1, \ldots, P_K	Bonferroni robust averaging many others	NO	Fisher Simes many others	NO
e-values E_1, \ldots, E_K	arithmetic mean	YES	product martingale merging	weakly NO

	FDR	dependence
BH procedure	$\frac{K_0}{K}\alpha$	independence/PRDS
BY procedure	$\ell_K \frac{K_0}{K} \alpha$	arbitrary
e-BH procedure	$\frac{K_0}{K} \alpha$	arbitrary

FDR procedures ($K_0 = \#$ nulls, K = #hypotheses, $\ell_K = \sum_{k=1}^{K} \frac{k^{-1}}{k^{-1}} \approx \log K$)

50/51

Background 0000	Financial crisis	Equilibria 000000	Decisions 0000	Mass transport	Statistics 0000	Selective inference
Thank	you					

Thank you for your attention!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▼ ◆ ○ ♥

Problem setting

- K arms each with a reward $X^k \ge 0$
- Pulling arm k produces an iid sample $(X_1^k, X_2^k, ...)$ from X^k
- ▶ Null hypotheses: $\mathbb{E}[X_k] \leq 1, \ k \in \mathcal{K}$
- Arms have to be pulled in order and previous arms cannot be revisited
- An arm can be pulled at most *n* times (budget)
- ► Goal: detect non-null arms as quickly as possible
- Example: investment opportunities; medical experiment

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの(~

The e-value $e_{k,j}$ and the p-value $p_{k,j}$ are realized by, respectively,

$$E_{k,j} := \prod_{i=1}^{j} X_i^k \quad \text{and} \quad P_{k,j} := \left(\max_{i=1,\dots,j} E_{k,i} \right)^{-1} \quad (p \le 1/e)$$

Algorithm

- \blacktriangleright Select a p- or e-testing procedure ${\cal D}$ and start with e=p=1
- ► For arm k, stop at T_k such that either D produces a new discovery or T_k = n
- Update e-values or p-values and move to arm k + 1

The final e-variables E_k and p-variables P_k are obtained by

$$E_k = E_{k,T_k}$$
 and $P_k = P_{k,T_k}$, $k = 1,\ldots,K$.

《曰》《問》《曰》《曰》 되는

Table: Conditions for the validity of the testing algorithm

	AD data	AD stopping	FDR guarantee in
	across arms	rules T_k	our experiments
e-BH	YES	YES	valid at level $\alpha K_0/K$
BH	NO	NO	not valid
BY	YES	YES	valid at level $\alpha K_0/K$
cBH	NO	YES	valid at level $\alpha K_0/K$

Consider BH, e-BH, BY and compliant BH (cBH) procedures

- BY: $\mathcal{D}(\alpha_1)$ where $\alpha_1 \ell_K = \alpha$ (Benjamini-Yekutieli'01)
- cBH: $\mathcal{D}(\alpha_2)$ where $\alpha_2(1 + \log(1/\alpha_2)) = \alpha$ (Su'18)

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ◆ □ ▶ ◆ ○ ●

Data generating process

- ▶ More promising arms come first: arm k is non-null with probability $\theta(K k + 1)/(K + 1)$, $\theta \in [0, 1]$
- The expected number of non-nulls in this setting is $\theta/2$
- $s_k \sim \text{Expo}(\mu)$ is the strength of signal for arm k
- Conditional on s_k,

$$X_1^k, \ldots, X_n^k \stackrel{\text{iid}}{\sim} X^k = \exp\left(Z^k + \frac{s_k \mathbb{1}_{\{k \in \mathcal{K} \setminus \mathcal{N}\}}}{1/2}\right)$$

where Z^1, \ldots, Z^K are iid standard normal.

• Set
$$\alpha = 0.05$$
 and $\theta = 0.5$

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの(~

Table: R = #{rejected hypothesis}, B% = %(unused budget), TD = #{true discoveries}. Each number is computed over an average of 500 trials. Default values: K = 500, n = 50 and $\mu = 1$.

(a) Default				(b) <i>K</i> = 2000				(c) <i>n</i> = 10				
	R	В%	TD	FDP%	R	В%	TD	FDP%	R	В%	TD	FDP%
e-BH	74.4	11.42	73.2	1.58	297.6	11.39	293.2	1.48	47.7	3.99	47.3	0.83
BH	77.0	11.44	75.3	2.13	307.8	11.41	301.4	2.07	49.3	4.01	48.7	1.06
BY	70.6	10.06	70.4	0.31	281.2	9.95	280.4	0.26	38.4	2.77	38.4	0.08
cBH	71.1	10.16	70.8	0.36	284.5	10.15	283.5	0.36	39.2	2.85	39.2	0.11
	(d) n = 100				(e) $\mu = 0$).5			(f) μ =	2	
	(d <i>R</i>	l) n = 100 B%	TD	FDP%	R	(e) μ = 0 <i>B</i> %	0.5 TD	FDP%	R	(f) μ = <i>B</i> %	2 TD	FDP%
e-BH	,	(TD 77.9	FDP%	R 43.5			FDP% 1.54	R 97.4			FDP% 1.54
e-BH BH	R	В%				В%	TD			В%	TD	
	<i>R</i> 79.1	<i>B</i> % 13.48	77.9	1.50	43.5	<i>B</i> % 5.77	TD 42.9	1.54	97.4	<i>B</i> % 16.46	TD 95.9	1.54
BH	<i>R</i> 79.1 81.3	<i>B</i> % 13.48 13.50	77.9 79.5	1.50 2.13	43.5 46.3	<i>B</i> % 5.77 5.80	TD 42.9 45.3	1.54 2.13	97.4 99.3	<i>B</i> % 16.46 16.47	TD 95.9 97.2	1.54 2.07

《曰》《問》《曰》《曰》 되는

56/51

Calibration and combination

- Admissible p-to-e calibrators
 - Power calibrators: $f_{\kappa}(p) = \kappa p^{\kappa-1}$ for $\kappa \in (0,1)$

• Shafer's:
$$f(p) = p^{-1/2} - 1$$

- Averaging f_{κ} : $\int_0^1 \kappa p^{\kappa-1} d\kappa = \frac{1-p+p \ln p}{p(-\ln p)^2}$
- ▶ The only admissible e-to-p calibrator: $e
 ightarrow (1/e) \land 1$
- Very roughly: $p \sim 1/e$

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

E-merging functions

E-merging functions

- \blacktriangleright arithmetic average M_{K} : arbitrary dependence
- \triangleright product P_{κ} : independence

Theorem 1

Suppose that F is a symmetric e-merging function. Then $F \leq \lambda + (1 - \lambda)M_K$ for some $\lambda \in [0, 1]$, and F is admissible if and only if $F = \lambda + (1 - \lambda)M_{\mathcal{K}}$ with $\lambda = F(\mathbf{0})$.

Vovk-W., E-values: Calibration, combination, and applications. Annals of Statistics. 2021. Theorem 3.2 ◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ● Ruodu Wang (wang@uwaterloo.ca) Dependence in Stochastic Modeling

Connection to p-merging

Theorem 2

For any admissible p-merging function F and $\epsilon \in (0, 1)$, there exist $(\lambda_1, \ldots, \lambda_K) \in \Delta_K$ (standard symplex) and admissible calibrators $f_1, \ldots, f_K \ s.t.$

$$F(\mathbf{p}) \leq \epsilon \iff \sum_{k=1}^{K} \lambda_k f_k(p_k) \geq \frac{1}{\epsilon}.$$

If F is symmetric, then there exists an admissible calibrator f s.t.

$$F(\mathbf{p}) \leq \epsilon \iff \frac{1}{K} \sum_{k=1}^{K} f(p_k) \geq \frac{1}{\epsilon}$$

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence. Annals of Statistics, 2021, Theorem 5.1 ◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ● Ruodu Wang (wang@uwaterloo.ca) Dependence in Stochastic Modeling

Compliant procedures

An e-testing procedure G is said to be compliant at level $\alpha \in (0, 1)$ if every rejected e-value e_k satisfies

$$e_k \geq \frac{K}{\alpha R_{\mathcal{G}}}.$$

 The base e-BH procedure is compliant and it dominates all other compliant procedures

Compliant procedures

Proposition 1

Any compliant e-testing procedure at level α has FDR at most $\alpha K_0/K$ for arbitrary configurations of e-values.

<u>Proof.</u> Let \mathcal{G} be a compliant e-testing procedure. The FDP of \mathcal{G} satisfies

$$\frac{F_{\mathcal{G}}}{R_{\mathcal{G}}} = \frac{|\mathcal{G}(\mathbf{E}) \cap \mathcal{N}|}{R_{\mathcal{G}} \vee 1} = \sum_{k \in \mathcal{N}} \frac{\mathbbm{1}_{\{k \in \mathcal{G}(\mathbf{E})\}}}{R_{\mathcal{G}} \vee 1} \leq \sum_{k \in \mathcal{N}} \frac{\mathbbm{1}_{\{k \in \mathcal{G}(\mathbf{E})\}} \alpha E_k}{K} \leq \sum_{k \in \mathcal{N}} \frac{\alpha E_k}{K},$$

where the first inequality is due to compliance. As $\mathbb{E}[E_k] \leq 1$ for $k \in \mathcal{N}$, we have

$$\mathbb{E}\left[\frac{F_{\mathcal{G}}}{R_{\mathcal{G}}}\right] \leq \sum_{k \in \mathcal{N}} \mathbb{E}\left[\frac{\alpha E_k}{K}\right] \leq \frac{\alpha K_0}{K}.$$

《曰》《問》《曰》《曰》 [2]님

Compliant procedures

- General compliant p-testing procedures do not have this property even if p-values are independent
- For independent p-values, a compliant p-testing procedure at α has a weaker FDR guarantee α(1 + log(1/α)) > α (Su'18)

Compliance is useful in

- data-driven structured settings
- post-selection testing
- group testing
- multi-armed bandit problems

Boosting

For each $k \in \mathcal{K}$, take a boosting factor $b_k \geq 1$ such that

 $\max_{x \in K/\mathcal{K}} x \mathbb{P}(\alpha b_k E_k \ge x) \le \alpha \quad \text{if e-values are PRDS}$ $\mathbb{E}[T(\alpha b_k E_k)] \le \alpha \quad \text{otherwise (AD)}$

and let $e'_k = b_k e_k$.

- \mathbb{E} and \mathbb{P} are computed under the null distribution of E_k
- Composite null: require for all probability measures in H_k
- $b_k = 1$ is always valid
- Non-linear boosting is also possible
- e' may not have the same order as e.

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

E-BH procedure

Example.

• For $\lambda \in (0,1)$

$$E_k = \lambda P_k^{\lambda - 1},$$

where P_k is standard uniform if $k \in \mathcal{N}$

•
$$y_{\alpha} \leq (\lambda^{\lambda} \alpha)^{1/(1-\lambda)}$$

$$\lambda = 1/2 \Longrightarrow y_{\alpha} \le \alpha^2/2$$

- α = 0.05, λ = 1/2
 - $b_k \approx 6.32$ (AD)
 - $b_k \approx 8.94$ (PRDS)

イロト (母) (ヨト (ヨト) ヨヨ ろくで

E-BH procedure

Example.

▶ For $\delta > 0$,

$$E_k = e^{\delta X_k - \delta^2/2},$$

where X_k is standard normal if $k \in \mathcal{N}$

• $b \approx 1.37$ (AD)

• *b* ≈ 7.88 (PRDS)

▲□▶ ▲圖▶ ▲圖▶ ▲圖★ 釣A♡

Correlated z-tests

- $X_k \sim N(0,1)$ if $k \in \mathcal{N}$
- $X_k \sim \mathrm{N}(\delta, 1)$ if $k
 ot\in \mathcal{N}$, $\delta < 0$
- X_1, \ldots, X_K are jointly Gaussian
- E-values from likelihood ratios

$$E_k = \exp(\delta X_k - \delta^2/2)$$

P-values from Neyman-Pearson tests

$$P_k = \Phi(X_k)$$

• Set $\delta = -3$

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = り へ ()

66/51

Correlated z-tests

Table: Simulation results for correlated z-tests, where $\rho_{i,j}$ is the correlation between two test statistics X_i and X_j for $i \neq j$. Each cell gives the number of rejections and, in parentheses, the realized FDP (in %). Each number is computed over an average of 1,000 trials.

		$ ho_{ij} = 0$			$ ho_{ij}=0.5$	
	lpha= 10%	$\alpha = 5\%$	$\alpha = 2\%$	$\alpha = 10\%$	$\alpha = 5\%$	$\alpha = 2\%$
BH	177.3 (8.01)	148.7 (4.07)	115.0 (1.63)	180.0 (7.00)	144.8 (3.64)	109.8 (1.50)
e-BH PRDS	171.8 (7.07)	147.6 (3.95)	114.6 (1.62)	170.2 (5.71)	142.5 (3.35)	108.0 (1.50)
BY	101.1 (1.10)	78.8 (0.57)	53.2 (0.22)	96.6 (1.03)	76.7 (0.50)	55.0 (0.20)
e-BH AD	109.4 (1.41)	<mark>85.4</mark> (0.68)	54.6 (0.24)	103.1 (1.32)	<mark>81.4</mark> (0.70)	56.6 (0.28)
base e-BH	97.5 (1.00)	70.6 (0.43)	36.9 (0.11)	91.9 (0.97)	69.1 (0.45)	43.6 (0.16)

(a)	Independent	and	positively	correlated	tests,	K =	1000,	$K_0 = 3$	800
----	---	-------------	-----	------------	------------	--------	-----	-------	-----------	-----

Correlated z-tests

	K = 2	$0,000, K_0 = 1$	10,000	$K = 20,000, \ K_0 = 19,000$			
	lpha= 10%	$\alpha = 5\%$	$\alpha = 2\%$	lpha= 10%	lpha= 5%	$\alpha = 2\%$	
BH	9567 (5.00)	8564 (2.49)	7164 (1.00)	681.3 (9.58)	520.2 (4.79)	357.7 (1.93)	
e-BH PRDS	9092 (3.60)	8330 (2.13)	7124 (0.98)	681.3 (9.58)	509.3 (4.54)	312.1 (1.40)	
BY	5956 (0.48)	4818 (0.24)	3417 (0.10)	254.1 (0.89)	177.6 (0.46)	103.1 (0.19)	
e-BH AD	6811 (0.80)	5809 (0.44)	4384 (0.18)	271.0 (1.02)	159.5 (0.39)	51.4 (0.07)	
base e-BH	6426 (0.64)	5234 (0.31)	3509 (0.10)	224.8 (0.69)	109.2 (0.21)	16.4 (0.01)	

(b) Independent tests with large number of hypotheses

(c) Negatively correlated tests, K = 1000, $K_0 = 800$.

	ρ_{i}	$_{ij} = -1/(K - $	1)	$ ho_{ij} = -0.5 \mathbb{1}_{\{ i-j =1\}}$			
	lpha= 10%	$\alpha = 5\%$	$\alpha = 2\%$	lpha= 10%	$\alpha = 5\%$	$\alpha = 2\%$	
BH	177.7 (<mark>8.14</mark>)	149.0 (4.09)	115.2 (1.61)	177.2 (8.10)	148.8 (4.00)	115.3 (1.62)	
e-BH PRDS	172.0 (7.13)	147.9 (3.98)	114.9 (1.59)	171.5 (7.13)	147.7 (3.89)	114.9 (1.61)	
BY	101.2 (1.08)	78.8 (0.52)	53.3 (0.20)	101.3 (1.11)	78.8 (0.56)	53.2 (0.22)	
e-BH AD	109.7 (1.38)	85.5 (0.65)	54.6 (0.22)	109.8 (1.40)	85.6 (0.69)	54.6 (0.24)	
base e-BH	97.8 (0.98)	70.7 (0.40)	37.2 (0.11)	97.6 (0.99)	70.7 (0.41)	36.7 (0.12)	

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @