Robust Risk Aggregation, Merging P-values, and E-values

Ruodu Wang
http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science
University of Waterloo

Department of Statistical Sciences, University of Toronto
Toronto, ON, Canada December 5, 2019

Agenda

(1) Background on robust risk aggregation
(2) Some interesting results
(3) P-values and hypothesis testing

4 Robust p-merging: validity
(5) Robust p-merging: admissibility and efficiency
(6) E-values, robust e-merging, and calibrators
(7) Concluding remarks and open questions

Fundamental problem in Finance/Insurance

Basic setup.

- A vector of risk factors: $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- A financial position $\Psi(\mathbf{X})$
- A risk measure ρ

Fundamental problem in Finance/Insurance

Basic setup.

- A vector of risk factors: $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- A financial position $\Psi(\mathbf{X})$
- A risk measure ρ

Calculate $\rho(\Psi(\mathbf{X}))$

Fundamental problem in Finance/Insurance

Basic setup.

- A vector of risk factors: $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- A financial position $\Psi(\mathbf{X})$
- A risk measure ρ

Calculate $\rho(\Psi(\mathbf{X}))$

Most relevant choices:

- $\rho=\operatorname{VaR}_{p}$ or $\rho=\operatorname{ES}_{p}\left(\mathrm{TVaR}_{p}\right)$
- $\Psi(\mathbf{X})=\sum_{i=1}^{n} X_{i}$

Fundamental problem in Finance/Insurance

Basic setup.

- A vector of risk factors: $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- A financial position $\Psi(\mathbf{X})$
- A risk measure ρ

Calculate $\rho(\Psi(\mathbf{X}))$

Most relevant choices:

- $\rho=\operatorname{VaR}_{p}$ or $\rho=\operatorname{ES}_{p}\left(\mathrm{TVaR}_{p}\right)$
- $\Psi(\mathbf{X})=\sum_{i=1}^{n} X_{i}$

Challenge: We need a joint model for the random vector \mathbf{X}

Unknown dependence

Model assumption

$$
X_{i} \sim F_{i}, F_{i} \text { known with arbitrary dependence, } i=1, \ldots, n
$$

Unknown dependence

Model assumption

$$
X_{i} \sim F_{i}, F_{i} \text { known with arbitrary dependence, } i=1, \ldots, n
$$

Main object

$$
\mathcal{S}_{n}=\mathcal{S}_{n}\left(F_{1}, \ldots, F_{n}\right)=\left\{\sum_{i=1}^{d} X_{i}: X_{i} \sim F_{i}, i=1, \ldots, n\right\}
$$

- Every element in \mathcal{S}_{n} is a possible risk position

Unknown dependence

Model assumption

$$
X_{i} \sim F_{i}, F_{i} \text { known with arbitrary dependence, } i=1, \ldots, n
$$

Main object

$$
\mathcal{S}_{n}=\mathcal{S}_{n}\left(F_{1}, \ldots, F_{n}\right)=\left\{\sum_{i=1}^{d} X_{i}: X_{i} \sim F_{i}, i=1, \ldots, n\right\}
$$

- Every element in \mathcal{S}_{n} is a possible risk position
- $\mathcal{D}_{n}=\left\{\right.$ distributions of elements in $\left.\mathcal{S}_{n}\right\}$
- Determination of \mathcal{S}_{n} and \mathcal{D}_{n} : very challenging
- Particular interest: $c \in \mathcal{S}_{n}$ for some $c \in \mathbb{R}$? \Rightarrow joint mixability

Regulatory risk measures in Basel IV and Solvency II

Value-at-Risk (VaR), $p \in(0,1)$

Expected Shortfall (ES), $p \in(0,1)$

$$
\mathrm{ES}_{p}: L^{1} \rightarrow \mathbb{R}
$$

$$
\mathrm{ES}_{p}(X)=\frac{1}{1-p} \int_{p}^{1} \operatorname{VaR}_{q}(X) \mathrm{d} q
$$

(also: TVaR/CVaR/AVaR)

Worst- and best-values of VaR and ES

The Fréchet problems

- For $p \in(0,1)$,

$$
\begin{aligned}
& \overline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{n}\right)=\sup \left\{\operatorname{VaR}_{p}(S): S \in \mathcal{S}_{n}\left(F_{1}, \ldots, F_{n}\right)\right\} \\
& \underline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{n}\right)=\inf \left\{\operatorname{VaR}_{p}(S): S \in \mathcal{S}_{n}\left(F_{1}, \ldots, F_{n}\right)\right\}
\end{aligned}
$$

- Same notation for ES_{p}

Worst- and best-values of VaR and ES

The Fréchet problems

- For $p \in(0,1)$,

$$
\begin{aligned}
& \overline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{n}\right)=\sup \left\{\operatorname{VaR}_{p}(S): S \in \mathcal{S}_{n}\left(F_{1}, \ldots, F_{n}\right)\right\} \\
& \underline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{n}\right)=\inf \left\{\operatorname{VaR}_{p}(S): S \in \mathcal{S}_{n}\left(F_{1}, \ldots, F_{n}\right)\right\}
\end{aligned}
$$

- Same notation for ES_{p}
- ES is subadditive: $\overline{\operatorname{ES}}_{p}\left(\mathcal{S}_{n}\right)=\sum_{i=1}^{n} \mathrm{ES}_{p}\left(X_{i}\right)$
- $\overline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{n}\right), \underline{\operatorname{VaR}}_{p}\left(\mathcal{S}_{n}\right)$, and $\underline{E S}_{p}\left(\mathcal{S}_{n}\right)$: generally open questions

Basel III \& IV ES calculation

In the Basel FRTB (2019) internal model approach, for market risk:

$$
\text { Capital Charge }=\lambda \mathrm{ES}_{p} \underbrace{\left(\sum_{i=1}^{n} X_{i}\right)}_{\text {internal model }}+(1-\lambda) \underbrace{\sum_{i=1}^{n} \mathrm{ES}_{p}\left(X_{i}\right)}_{\overline{\mathrm{ES}_{p}\left(\mathcal{S}_{n}\right)}},
$$

where

- X_{i} is the total random loss from a risk class, $i=1, \ldots, n$
- commodity, equity, credit spread, interest rate, exchange
- $T=10$-day, $p=0.975, \lambda=0.5$
- ES_{p} is calculated under a stressed scenario

Dependence uncertainty!

Solvency II SCR calculation

The Basic Solvency Capital Requirement set out in Article 104(1) shall be equal to the following:

$$
\text { Basic } S C R=\sqrt{\sum_{\mathrm{i}, \mathrm{j}} \operatorname{Corr}_{\mathrm{i}, \mathrm{j}} \times \mathrm{SCR}_{\mathrm{i}} \times \mathrm{SCR}_{\mathrm{j}}}
$$

The factor Corr ${ }_{i, j}$ denotes the item set out in row i and in column j of the following correlation matrix:

	Market	Default	Life	Health	Non-life
Market	1	0,25	0,25	0,25	0,25
Default	0,25	1	0,25	0,25	0,5
Life	0,25	0,25	1	0,25	0
Health	0,25	0,25	0,25	1	0
Non-life	0,25	0,5	0	0	1

Copied from Solvency II, 2009

Unknown/uncertain dependence structure

Statistical examples

- Joint model inference with additional information
- Treatment effect
- Meta-analysis
(1) Background on robust risk aggregation
(2) Some interesting results
(3) P-values and hypothesis testing

4 Robust p-merging: validity
(5) Robust p-merging: admissibility and efficiency

6 E-values, robust e-merging, and calibrators
(7) Concluding remarks and open questions

Some properties of \mathcal{S}_{n} and \mathcal{D}_{n}

Theorem

For $\lambda \in[0,1]$ and vectors of distributions \mathbf{F} and \mathbf{G} :
(i) $\mathcal{D}_{n}(\mathbf{F})=\mathcal{D}_{n}(\sigma(\mathbf{F}))$ for all n-permutations σ.
(ii) $\lambda \mathcal{D}_{n}(\mathbf{F})+(1-\lambda) \mathcal{D}_{n}(\mathbf{G}) \subset \mathcal{D}_{n}(\lambda \mathbf{F}+(1-\lambda) \mathbf{G})$. In particular,
(a) $\lambda \mathcal{D}_{n}(\mathbf{F})+(1-\lambda) \mathcal{D}_{n}(\mathbf{F})=\mathcal{D}_{n}(\mathbf{F})$.
(b) $\mathcal{D}_{n}(\mathbf{F}) \cap \mathcal{D}_{n}(\mathbf{G}) \subset \mathcal{D}_{n}(\lambda \mathbf{F}+(1-\lambda) \mathbf{G})$.
(iii) \mathcal{D}_{n} is closed under weak convergence.
(iv) $\mathcal{D}_{n}(\mathbf{F}) \subset \mathcal{D}_{n}\left(F_{A}, \ldots, F_{A}\right)$ where F_{A} is the average of \mathbf{F}.

Bernard-Jiang-W., Risk aggregation with dependence uncertainty.
Insurance: Mathematics and Economics, Theorems 2.1 and 3.5

Aggregation of Cauchy random variables

Theorem

Let $c \in \mathbb{R}$. There exist standard Cauchy random variables X_{1}, \ldots, X_{n} such that $\left(X_{1}+\cdots+X_{n}\right) / n=c$ if and only if

$$
|c| \leq \frac{\log (n-1)}{\pi}
$$

- $\mathbb{P}\left(\left(X_{1}+\cdots+X_{n}\right) / n \geq \log (n-1) / \pi\right)=1$.

Puccetti-Rigo-Wang-W., Centers of probability measures without the mean.

Journal of Theoretical Probability, 2019, Theorem 4.2

Aggregation of uniform random variables

Theorem

For any random variable X and $n \geq 3$, there exist standard uniform random variables X_{1}, \ldots, X_{n} such that $\left(X_{1}+\cdots+X_{n}\right) / n \stackrel{d}{=} X$ if and only if

$$
X \stackrel{d}{=} \mathbb{E}\left[X_{1} \mid \mathcal{G}\right] \text { for some } \sigma \text {-field } \mathcal{G}
$$

- Not true for $n=2 ; \mathcal{D}_{2}\left(F_{U}, F_{U}\right)$ is an open question

Aggregation of normal random variables

Theorem

For $i=1, \ldots, n$, let F_{i} be normal (uniform, t , or normal mixture) with scale parameter $\sigma_{i}>0$. There exists a constant c in $\mathcal{S}_{n}\left(F_{1}, \ldots, F_{n}\right)$ if and only if

$$
2 \bigvee_{i=1}^{n} \sigma_{i} \leq \sum_{i=1}^{n} \sigma_{i}
$$

- If exists, $c=\sum_{i=1}^{n} \mu_{i}$
W.-Peng-Yang, Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. Finance and Stochastics, 2013, Proposition 2.4

Aggregation with decreasing densities

Theorem

For $i=1, \ldots, n$, let F_{i} be a distribution with mean μ_{i} and decreasing density on a bounded support $\left[a_{i}, a_{i}+\ell_{i}\right]$. There exists a constant $c \in \mathcal{S}_{n}\left(F_{1}, \ldots, F_{n}\right)$ if and only if

$$
2 \bigvee_{i=1}^{n} \ell_{i} \leq \sum_{i=1}^{n}\left(\mu_{i}-a_{i}\right)+\bigvee_{i=1}^{n} \ell_{i} \leq \sum_{i=1}^{n} \ell_{i}
$$

- If exists, $c=\sum_{i=1}^{n} \mu_{i}$

Wang-W., Joint mixability.
Mathematics of Operations Research, 2016, Theorem 3.2

Quantile aggregation

Theorem

Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}>0$ with $\gamma=\sum_{i=1}^{n} \alpha_{i}+\bigvee_{i=1}^{n} \beta_{i}<1$, F_{1}, \ldots, F_{n} be any distributions, and $F \in \mathcal{D}_{n}\left(F_{1}, \ldots, F_{n}\right)$. Then

$$
F^{-1}(1-\gamma) \leq \sum_{i=1}^{n} \int_{\alpha_{i}}^{\alpha_{i}+\beta_{i}} F_{i}^{-1}(1-t) \mathrm{d} t .
$$

- Limit case:

$$
F^{-1}\left(1-\sum_{i=1}^{n} \alpha_{i}\right) \leq \sum_{i=1}^{n} F_{i}^{-1}\left(1-\alpha_{i}\right)
$$

Embrechts-Liu-W., Quantile-based risk sharing.
Operations Research, 2018, Theorem 1

Results on VaR (quantile) aggregation

$d=2$

- solved analytically (Makarov'81, Rüschendorf'82)
- based on counter-monotonicity

Results on VaR (quantile) aggregation

$d=2$

- solved analytically (Makarov'81, Rüschendorf'82)
- based on counter-monotonicity
$d \geq 3$
- dual bounds (Embrechts-Puccett'06)
- solved analytically for monotone densities

Results on VaR (quantile) aggregation

$d=2$

- solved analytically (Makarov'81, Rüschendorf'82)
- based on counter-monotonicity
$d \geq 3$
- dual bounds (Embrechts-Puccett'06)
- solved analytically for monotone densities
- homogeneous case (W.-Peng-Yang'13)
- heterogeneous case (Jakobsons-Han-W.'16)
- based on joint-mixability
- generalization to other distributions is limited

Results on VaR (quantile) aggregation

Remarks.

- Efficient numerical algorithm: the Rearrangement Algorithm
- Puccetti-Rüschendorf'12, Embrechts-Puccetti-Rüschendorf'13, Bernard-Bondarenko-Vanduffel'18, ...

Results on VaR (quantile) aggregation

Remarks.

- Efficient numerical algorithm: the Rearrangement Algorithm
- Puccetti-Rüschendorf'12, Embrechts-Puccetti-Rüschendorf'13, Bernard-Bondarenko-Vanduffel'18, ...
- Risk aggregation with partial dependence information
- Puccetti-Rüschendorf-Manko'16, Bernard-Rüschendorf-Vanduffel'17, Lux-Papapantoleon'17, Bernard-Rüschendorf-Vanduffel-W.'17, ...

Results on VaR (quantile) aggregation

Remarks.

- Efficient numerical algorithm: the Rearrangement Algorithm
- Puccetti-Rüschendorf'12, Embrechts-Puccetti-Rüschendorf'13, Bernard-Bondarenko-Vanduffel'18, ...
- Risk aggregation with partial dependence information
- Puccetti-Rüschendorf-Manko'16, Bernard-Rüschendorf-Vanduffel'17, Lux-Papapantoleon'17, Bernard-Rüschendorf-Vanduffel-W.'17, ...
- Risk aggregation with marginal and dependence uncertainty
- Li-Shao-W.-Yang'18, Blanchet-Murthy'18, ...

Results on VaR (quantile) aggregation

Remarks.

- Efficient numerical algorithm: the Rearrangement Algorithm
- Puccetti-Rüschendorf'12, Embrechts-Puccetti-Rüschendorf'13, Bernard-Bondarenko-Vanduffel'18, ...
- Risk aggregation with partial dependence information
- Puccetti-Rüschendorf-Manko'16, Bernard-Rüschendorf-Vanduffel'17, Lux-Papapantoleon'17, Bernard-Rüschendorf-Vanduffel-W.'17, ...
- Risk aggregation with marginal and dependence uncertainty
- Li-Shao-W.-Yang'18, Blanchet-Murthy'18, ...
- Connection to distributionally robust optimization
- Gao-Kleywegt'17, ...
(1) Background on robust risk aggregation
(2) Some interesting results
(3) P-values and hypothesis testing

4 Robust p-merging: validity
(5) Robust p-merging: admissibility and efficiency
(6) E-values, robust e-merging, and calibrators
(7) Concluding remarks and open questions

Combining p-values via averaging

Based on joint work with Vladimir Vovk (CS @ Royal Holloway)

P-values

STAT 101

A p-value P for testing a hypothesis H_{0} :

- Uniform on $[0,1]$ under $H_{0} \Leftrightarrow \mathbb{P}^{H_{0}}(P \leq \epsilon)=\epsilon$ for $\epsilon \in[0,1]$
- $\sup _{H \in H_{0}} \mathbb{P}^{H}(P \leq \epsilon) \leq \epsilon$ in case H_{0} is a set of hypotheses

P-values

STAT 101

A p-value P for testing a hypothesis H_{0} :

- Uniform on $[0,1]$ under $H_{0} \Leftrightarrow \mathbb{P}^{H_{0}}(P \leq \epsilon)=\epsilon$ for $\epsilon \in[0,1]$
- $\sup _{H \in H_{0}} \mathbb{P}^{H}(P \leq \epsilon) \leq \epsilon$ in case H_{0} is a set of hypotheses
- A significance level α, typically $\alpha=0.05,0.01,0.005 \ldots$

P-values

STAT 101

A p-value P for testing a hypothesis H_{0} :

- Uniform on $[0,1]$ under $H_{0} \Leftrightarrow \mathbb{P}^{H_{0}}(P \leq \epsilon)=\epsilon$ for $\epsilon \in[0,1]$
- $\sup _{H \in H_{0}} \mathbb{P}^{H}(P \leq \epsilon) \leq \epsilon$ in case H_{0} is a set of hypotheses
- A significance level α, typically $\alpha=0.05,0.01,0.005 \ldots$
- Rejects H_{0} if (realized) $P \leq \alpha$
- cannot reject H_{0} if $P>\alpha$

P-values

STAT 101

A p-value P for testing a hypothesis H_{0} :

- Uniform on $[0,1]$ under $H_{0} \Leftrightarrow \mathbb{P}^{H_{0}}(P \leq \epsilon)=\epsilon$ for $\epsilon \in[0,1]$
- $\sup _{H \in H_{0}} \mathbb{P}^{H}(P \leq \epsilon) \leq \epsilon$ in case H_{0} is a set of hypotheses
- A significance level α, typically $\alpha=0.05,0.01,0.005 \ldots$
- Rejects H_{0} if (realized) $P \leq \alpha$
- cannot reject H_{0} if $P>\alpha$
- Probability of type I error $=\mathbb{P}^{H_{0}}\left(\right.$ reject $\left.H_{0}\right) \leq \alpha$

Merging p-values

Suppose we are testing the same hypothesis using $K \geq 2$ different statistical tests and obtain p-values p_{1}, \ldots, p_{K}. How can we combine them into a single p-value?

Merging p-values

Suppose we are testing the same hypothesis using $K \geq 2$ different statistical tests and obtain p-values p_{1}, \ldots, p_{K}. How can we combine them into a single p-value?

Examples.

- backtesting credit risk ratings: typically 17 binomial tests
- backtesting market risk models: several quantile level tests
- meta-analysis
- genome-wide association studies (GWAS)

Meta-analysis

A typical example from meta-analysis

TABLE 1
Data on 10 Studies of Sex Differences in Conformity Using the Fictitious Norm Group Paradigm

Study	Sample size		Effect sized	Student's t	Significance level p	$-2 \log p$	$\Phi^{-1}(p)$	$\log [p /(1-p)]$
	$\begin{gathered} \text { Control } \\ n^{\mathrm{c}} \end{gathered}$	$\underset{n^{\mathbf{E}}}{\text { Experimental }}$						
1	118	136	0.35	2.78	0.0029	11.682	-2.758	-5.838
2	118 40	136 40	0.37	1.65	0.0510	5.952	-1.635	-2.923
3	61	64	-0.06	-0.33	0.6310	0.921	0.335	0.537
4	77	114	-0.30	-2.03	0.9783	0.044	2.020	3.809
5	32	32	0.70	2.80	0.0034	11.367	-2.706	-5.680
6	45	45	0.40	1.90	0.0305	6.978	-1.873	- 3.458
7	30	30	0.48	1.86	0.0341	6.760	-1.824	-3.345
8	10	10	0.85	1.90	0.0367	6.608	-1.790	-3.266
9	70	71	-0.33	-1.96	0.9740	0.053	1.942	3.622
10	60	59	0.07	0.38	0.3517	2.090	-0.381	-0.612

The sex differences dataset, from p. 35 of Hedges-Olkin' 85

The Bonferroni method

A question of a long history

- Tippett'31, Pearson'33, Fisher'48: assume independence

The Bonferroni method

A question of a long history

- Tippett'31, Pearson'33, Fisher'48: assume independence

Without any assumptions on the p -values $p_{1}, \ldots, p_{K} \ldots$

- The Bonferroni method (Dunn'58):

$$
F\left(p_{1}, \ldots, p_{K}\right)=K \min \left(p_{1}, \ldots, p_{K}\right)
$$

The Bonferroni method

A question of a long history

- Tippett'31, Pearson'33, Fisher'48: assume independence

Without any assumptions on the p -values $p_{1}, \ldots, p_{K} \ldots$

- The Bonferroni method (Dunn'58):

$$
F\left(p_{1}, \ldots, p_{K}\right)=K \min \left(p_{1}, \ldots, p_{K}\right) .
$$

- Rüger'78:

$$
F\left(p_{1}, \ldots, p_{K}\right)=\frac{K}{k} p_{(k)}
$$

In particular, 2 times the median or the maximum.

The Bonferroni method

A question of a long history

- Tippett'31, Pearson'33, Fisher'48: assume independence

Without any assumptions on the p -values $p_{1}, \ldots, p_{K} \ldots$

- The Bonferroni method (Dunn'58):

$$
F\left(p_{1}, \ldots, p_{K}\right)=K \min \left(p_{1}, \ldots, p_{K}\right)
$$

- Rüger'78:

$$
F\left(p_{1}, \ldots, p_{K}\right)=\frac{K}{k} p_{(k)} .
$$

In particular, 2 times the median or the maximum.

- Hommel'83; Simes'86:

$$
F\left(p_{1}, \ldots, p_{K}\right)=\left(1+\frac{1}{2}+\cdots+\frac{1}{K}\right) \bigwedge_{k=1}^{K} \frac{K}{k} p_{(k)} .
$$

The Bonferroni method

The Bonferroni method

- overly conservative ... if tests are similar
- dictated by a single experiment (contamination?)
- what if some p-values are more important (e.g. bigger experiments)?

The Bonferroni method

The Bonferroni method

- overly conservative ... if tests are similar
- dictated by a single experiment (contamination?)
- what if some p-values are more important (e.g. bigger experiments)?

Particular interest: heavily but not nicely dependent tests.

Merging functions

Let \mathcal{H} be a collection of atomless probability measures ...
Definition (p -variables and merging functions)
(i) A p-variable is a random variable P that satisfies

$$
\sup _{\mathbb{P} \in \mathcal{H}} \mathbb{P}(P \leq \epsilon) \leq \epsilon, \quad \epsilon \in(0,1)
$$

Merging functions

Let \mathcal{H} be a collection of atomless probability measures ...

Definition (p -variables and merging functions)

(i) A p-variable is a random variable P that satisfies

$$
\sup _{\mathbb{P} \in \mathcal{H}} \mathbb{P}(P \leq \epsilon) \leq \epsilon, \quad \epsilon \in(0,1)
$$

(ii) A merging function is an increasing Borel function $F:[0,1]^{K} \rightarrow[0, \infty)$ such that $F\left(P_{1}, \ldots, P_{K}\right)$ is a p-variable for all p-variables P_{1}, \ldots, P_{K}.

- Controlled type I error
- Merging functions may be applied iteratively in multiple layers

Merging functions

For an increasing Borel function $F:[0,1]^{K} \rightarrow[0, \infty)$, equivalent are:

- F is a merging function w.r.t. some collection \mathcal{H};
- F is a merging function w.r.t. all collections \mathcal{H};
- fixing $\mathbb{P}, F\left(U_{1}, \ldots, U_{K}\right)$ is a p-variable for all $U_{1}, \ldots, U_{K} \in \mathcal{U}$;
- fixing \mathbb{P}, for all $\epsilon \in(0,1), \overline{\mathbb{P}}(F \leq \epsilon) \leq \epsilon$, where

$$
\overline{\mathbb{P}}(F \leq \epsilon)=\sup \left\{\mathbb{P}\left(F\left(U_{1}, \ldots, U_{K}\right) \leq \epsilon\right) \mid U_{1}, \ldots, U_{K} \in \mathcal{U}\right\}
$$

\mathcal{U} : the set of all uniform $[0,1]$ random variables under \mathbb{P}

Merging functions

For an increasing Borel function $F:[0,1]^{K} \rightarrow[0, \infty)$, equivalent are:

- F is a merging function w.r.t. some collection \mathcal{H};
- F is a merging function w.r.t. all collections \mathcal{H};
- fixing $\mathbb{P}, F\left(U_{1}, \ldots, U_{K}\right)$ is a p-variable for all $U_{1}, \ldots, U_{K} \in \mathcal{U}$;
- fixing \mathbb{P}, for all $\epsilon \in(0,1), \overline{\mathbb{P}}(F \leq \epsilon) \leq \epsilon$, where

$$
\overline{\mathbb{P}}(F \leq \epsilon)=\sup \left\{\mathbb{P}\left(F\left(U_{1}, \ldots, U_{K}\right) \leq \epsilon\right) \mid U_{1}, \ldots, U_{K} \in \mathcal{U}\right\}
$$

It is sufficient to consider $\mathcal{H}=\{\mathbb{P}\}$ for a generic \mathbb{P}
\mathcal{U} : the set of all uniform $[0,1]$ random variables under \mathbb{P}

Precise merging functions

Definition (precise merging functions)

A merging function F is precise if, for all $\epsilon \in(0,1), \overline{\mathbb{P}}(F \leq \epsilon)=\epsilon$.

Precise merging functions

Definition (precise merging functions)

A merging function F is precise if, for all $\epsilon \in(0,1), \overline{\mathbb{P}}(F \leq \epsilon)=\epsilon$.
Examples.

- The Bonferroni method $F\left(p_{1}, \ldots, p_{K}\right)=K \min \left(p_{1}, \ldots, p_{K}\right)$
- $F\left(p_{1}, \ldots, p_{K}\right)=\max \left(p_{1}, \ldots, p_{K}\right)$
- $F\left(p_{1}, \ldots, p_{K}\right)=p_{1}($ trivial $)$

Precise merging functions

The Bonferroni method $F\left(p_{1}, \ldots, p_{K}\right)=K \min \left(p_{1}, \ldots, p_{K}\right)$

$$
\begin{aligned}
\mathbb{P}\left(K \min \left(p_{1}, \ldots, p_{K}\right) \leq \epsilon\right) & =\mathbb{P}\left(\bigcup_{i=1}^{K}\left\{K p_{i} \leq \epsilon\right\}\right) \\
& \leq \sum_{i=1}^{K} \mathbb{P}\left(K p_{i} \leq \epsilon\right) \\
& =\sum_{i=1}^{K} \frac{\epsilon}{K}=\epsilon .
\end{aligned}
$$

The inequality is an equality if $\left\{K p_{i} \leq \epsilon\right\}, i=1, \ldots, K$ are mutually exclusive.
(1) Background on robust risk aggregation
(2) Some interesting results
(3) P-values and hypothesis testing

4 Robust p-merging: validity
(5) Robust p-merging: admissibility and efficiency

6 E-values, robust e-merging, and calibrators
(7) Concluding remarks and open questions

Merging p-values via averaging

A general notion of averaging

- Axiomatized by Kolmogorov'30,

$$
M_{\phi, K}\left(p_{1}, \ldots, p_{K}\right)=\phi^{-1}\left(\frac{\phi\left(p_{1}\right)+\cdots+\phi\left(p_{K}\right)}{K}\right),
$$

where $\phi:[0,1] \rightarrow[-\infty, \infty]$ is continuous and strictly monotonic.

Merging p-values via averaging

A general notion of averaging

- Axiomatized by Kolmogorov'30,

$$
M_{\phi, K}\left(p_{1}, \ldots, p_{K}\right)=\phi^{-1}\left(\frac{\phi\left(p_{1}\right)+\cdots+\phi\left(p_{K}\right)}{K}\right),
$$

where $\phi:[0,1] \rightarrow[-\infty, \infty]$ is continuous and strictly monotonic.

- Most common forms, for $r \in \mathbb{R} \backslash\{0\}$,

$$
M_{r, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\frac{p_{1}^{r}+\cdots+p_{K}^{r}}{K}\right)^{1 / r}
$$

Merging p-values via averaging

A general notion of averaging

- Axiomatized by Kolmogorov'30,

$$
M_{\phi, K}\left(p_{1}, \ldots, p_{K}\right)=\phi^{-1}\left(\frac{\phi\left(p_{1}\right)+\cdots+\phi\left(p_{K}\right)}{K}\right),
$$

where $\phi:[0,1] \rightarrow[-\infty, \infty]$ is continuous and strictly monotonic.

- Most common forms, for $r \in \mathbb{R} \backslash\{0\}$,

$$
M_{r, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\frac{p_{1}^{r}+\cdots+p_{K}^{r}}{K}\right)^{1 / r}
$$

- $\phi(x)=\tan \left(\left(x-\frac{1}{2}\right) \pi\right):$ Cauchy combination test (Liu-Xie'19)

Merging p-values via averaging

Special cases:

- Arithmetic: $M_{1, K}\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{K} \sum_{k=1}^{K} p_{k}$
- Harmonic: $M_{-1, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\frac{1}{K} \sum_{k=1}^{K} \frac{1}{p_{k}}\right)^{-1}$
- Quadratic: $M_{2, K}\left(p_{1}, \ldots, p_{K}\right)=\sqrt{\frac{1}{K} \sum_{k=1}^{K} p_{k}^{2}}$

Merging p-values via averaging

Special cases:

- Arithmetic: $M_{1, K}\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{K} \sum_{k=1}^{K} p_{k}$
- Harmonic: $M_{-1, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\frac{1}{K} \sum_{k=1}^{K} \frac{1}{p_{k}}\right)^{-1}$
- Quadratic: $M_{2, K}\left(p_{1}, \ldots, p_{K}\right)=\sqrt{\frac{1}{K} \sum_{k=1}^{K} p_{k}^{2}}$

Limiting cases:

- Geometric: $M_{0, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\prod_{k=1}^{K} p_{k}\right)^{1 / K}$
- Maximum: $M_{\infty, K}\left(p_{1}, \ldots, p_{K}\right)=\max \left(p_{1}, \ldots, p_{K}\right)$
- Minimum: $M_{-\infty, K}\left(p_{1}, \ldots, p_{K}\right)=\min \left(p_{1}, \ldots, p_{K}\right)$

Merging p-values via averaging

Special cases:

- Arithmetic: $M_{1, K}\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{K} \sum_{k=1}^{K} p_{k}$
- Harmonic: $M_{-1, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\frac{1}{K} \sum_{k=1}^{K} \frac{1}{p_{k}}\right)^{-1}$
- Quadratic: $M_{2, K}\left(p_{1}, \ldots, p_{K}\right)=\sqrt{\frac{1}{K} \sum_{k=1}^{K} p_{k}^{2}}$

Limiting cases:

- Geometric: $M_{0, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\prod_{k=1}^{K} p_{k}\right)^{1 / K}$
- Maximum: $M_{\infty, K}\left(p_{1}, \ldots, p_{K}\right)=\max \left(p_{1}, \ldots, p_{K}\right)$
- Minimum: $M_{-\infty, K}\left(p_{1}, \ldots, p_{K}\right)=\min \left(p_{1}, \ldots, p_{K}\right)$

The cases $r \in\{-1,0,1\}$ are known as Platonic means.

Merging p-values via averaging

The arithmetic average $M_{1, K}\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{K} \sum_{k=1}^{K} p_{k}$ is not a merging function (Rüschendorf'82, Meng'93):

$$
\overline{\mathbb{P}}\left(M_{1, K} \leq \epsilon\right)=\min (2 \epsilon, 1) .
$$

Merging p-values via averaging

The arithmetic average $M_{1, K}\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{K} \sum_{k=1}^{K} p_{k}$ is not a merging function (Rüschendorf'82, Meng'93):

$$
\overline{\mathbb{P}}\left(M_{1, K} \leq \epsilon\right)=\min (2 \epsilon, 1) .
$$

$-\Rightarrow 2 M_{1, K}$ is a precise merging function

Merging p-values via averaging

The arithmetic average $M_{1, K}\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{K} \sum_{k=1}^{K} p_{k}$ is not a merging function (Rüschendorf'82, Meng'93):

$$
\overline{\mathbb{P}}\left(M_{1, K} \leq \epsilon\right)=\min (2 \epsilon, 1)
$$

- $\Rightarrow 2 M_{1, K}$ is a precise merging function

Task. Find $b_{r, K}>0$ such that $b_{r, K} M_{r, K}$ is a precise merging function

Merging p-values via averaging

The arithmetic average $M_{1, K}\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{K} \sum_{k=1}^{K} p_{k}$ is not a merging function (Rüschendorf'82, Meng'93):

$$
\overline{\mathbb{P}}\left(M_{1, K} \leq \epsilon\right)=\min (2 \epsilon, 1)
$$

- $\Rightarrow 2 M_{1, K}$ is a precise merging function

Task. Find $b_{r, K}>0$ such that $b_{r, K} M_{r, K}$ is a precise merging function

- $M_{r, K}$ increases in r
- The constants $b_{r, K}$ should decrease in r.

Translation to a risk aggregation problem

For $\alpha \in(0,1]$ and a random variable X, define

$$
q_{\alpha}(X)=\inf \{x \in \mathbb{R}: \mathbb{P}(X \leq x) \geq \alpha\}=\operatorname{VaR}_{\alpha}(X)
$$

and for a function $F:[0,1]^{K} \rightarrow[0, \infty)$, define

$$
\underline{q}_{\alpha}(F)=\inf \left\{q_{\alpha}\left(F\left(U_{1}, \ldots, U_{K}\right)\right) \mid U_{1}, \ldots, U_{K} \in \mathcal{U}\right\} .
$$

Translation to a risk aggregation problem

Lemma

For $a>0, r \in[-\infty, \infty]$, and $F=a M_{r, K}$, equivalent are:
(i) F is a merging function, i.e. $\overline{\mathbb{P}}(F \leq \epsilon) \leq \epsilon$ for all $\epsilon \in(0,1)$;
(ii) $\underline{q}_{\epsilon}(F) \geq \epsilon$ for all $\epsilon \in(0,1)$;
(iii) $\overline{\mathbb{P}}(F \leq \epsilon) \leq \epsilon$ for some $\epsilon \in(0,1)$;
(iv) $\underline{q}_{\epsilon}(F) \geq \epsilon$ for some $\epsilon \in(0,1)$.

The same conclusion holds if all \leq and \geq are replaced by $=$.

- In statistical practice one only needs to have $\overline{\mathbb{P}}(F \leq \epsilon) \leq \epsilon$ for a specific ϵ, e.g. $0.05,0.01, \ldots$

Translation to a risk aggregation problem

It boils down to calculate $\underline{q}_{\epsilon}\left(M_{r, K}\right)$, or equivalently:
(i) for $r>0$, aggregation of Beta risks

$$
\left(\underline{q_{\epsilon}}\left(M_{r, K}\right)\right)^{r}=\inf _{U_{1}, \ldots, U_{K} \in \mathcal{U}}\left\{q_{\epsilon}\left(\frac{1}{K}\left(U_{1}^{r}+\cdots+U_{K}^{r}\right)\right)\right\}
$$

(ii) for $r=0$, aggregation of exponential risks

$$
\log \left(\underline{q_{\epsilon}}\left(M_{r, K}\right)\right)=\inf _{U_{1}, \ldots, U_{K} \in \mathcal{U}}\left\{q_{\epsilon}\left(\frac{1}{K}\left(\log U_{1}+\cdots+\log U_{K}\right)\right)\right\}
$$

(iii) for $r<0$, aggregation of Pareto risks

$$
\left(\underline{q_{\epsilon}}\left(M_{r, K}\right)\right)^{r}=\sup _{U_{1}, \ldots, U_{K} \in \mathcal{U}}\left\{q_{1-\epsilon}\left(\frac{1}{K}\left(U_{1}^{r}+\cdots+U_{K}^{r}\right)\right)\right\}
$$

Translation to a risk aggregation problem

Breakdown of $U^{r}($ or $\log U)$ for $r \in \mathbb{R}$

Main results summary

Constant multiplier in front of $M_{r, K}$

blue: precise; green: asymptotically precise; red: limit

Main results summary

Methodology breakdown

purple: Rüshcendorf'82; blue: W.-Peng-Yang'13; brown: Wang-W'11 green: Wang-W.'15; red: Bignozzi-Mao-Wang-W.'16

Weighted averaging

Consider weighted averaging functions

$$
M_{\phi, \mathbf{w}}\left(p_{1}, \ldots, p_{K}\right)=\phi^{-1}\left(w_{1} \phi\left(p_{1}\right)+\cdots+w_{K} \phi\left(p_{K}\right)\right)
$$

and in particular,

$$
M_{r, \mathbf{w}}\left(p_{1}, \ldots, p_{K}\right)=\left(w_{1} p_{1}^{r}+\cdots+w_{K} p_{K}^{r}\right)^{1 / r}
$$

where $\mathbf{w}=\left(w_{1}, \ldots, w_{K}\right) \in \Delta_{K}$.

- Intuitively, the weights reflect the prior importance of the p -values.

$$
\begin{aligned}
\Delta_{K}= & \left\{\left(w_{1}, \ldots, w_{K}\right) \in[0,1]^{K} \mid w_{1}+\cdots+w_{K}=1\right\} \text { is the standard } K \text {-simplex } \\
& \text { Ruodu Wang (wang@uwaterloo.ca) } \quad \text { Merging P-values }
\end{aligned}
$$

Weighted averaging

Proposition

For $\mathbf{w}=\left(w_{1}, \ldots, w_{K}\right) \in \Delta_{K}, w=\max (\mathbf{w})$ and $r \in(-1, \infty)$,
(i) $(r+1)^{1 / r} M_{r, w}$ is a merging function;
(ii) $(r+1)^{1 / r} M_{r, w}$ is precise $\Leftrightarrow w \leq 1 / 2$ and $r \in\left[\frac{w}{1-w}, \frac{1-w}{w}\right]$;
(iii) if $r \in[1, \infty)$, $\min \left(r+1, \frac{1}{w}\right)^{1 / r} M_{r, w}$ is a precise merging function.

Weighted averaging

Conjecture

For $a>0$ and any r and K, if $a M_{r, K}$ is a merging function, then $a M_{r, w}$ is also a merging function for all $\mathbf{w} \in \Delta_{K}$.

$$
\text { (Proof available for } r \leq-1 \text { and } r \geq 1 /(K-1) \text {) }
$$

Weighted averaging

Conjecture

For $a>0$ and any r and K, if $a M_{r, K}$ is a merging function, then $a M_{r, w}$ is also a merging function for all $\mathbf{w} \in \Delta_{K}$.

$$
\text { (Proof available for } r \leq-1 \text { and } r \geq 1 /(K-1) \text {) }
$$

A deeper conjecture: under some conditions

$$
\mathcal{D}_{n}\left(F_{1}, \ldots, F_{n}\right) \subset \mathcal{D}_{n}\left(F_{H}, \ldots, F_{H}\right), \quad \text { where } F_{H}^{-1}=\frac{1}{n} \sum_{i=1}^{n} F_{i}^{-1}
$$

Bernard-Jiang-W.'14, Theorem 3.5:

$$
\mathcal{D}_{n}\left(F_{1}, \ldots, F_{n}\right) \subset \mathcal{D}_{n}\left(F_{A}, \ldots, F_{A}\right), \quad \text { where } F_{A}=\frac{1}{n} \sum_{i=1}^{n} F_{i}
$$

(1) Background on robust risk aggregation
(2) Some interesting results
(3) P-values and hypothesis testing

4 Robust p-merging: validity
(5) Robust p-merging: admissibility and efficiency
(6) E-values, robust e-merging, and calibrators
(7) Concluding remarks and open questions

Robust p-merging: admissibility

Admissibility and domination structure

- A merging function F dominates another merging function G if $F \leq G$.
- A merging function is admissible if it is not dominated by any other merging functions.
- We also consider admissibility within a family
- For $r \in[-\infty, \infty]$ and $K \geq 2, b_{r, K}$ is the constant such that $b_{r, K} M_{r, K}$ is a precise merging function.
- We write $F_{r, K}=b_{r, K} M_{r, K}$.

Robust p-merging: admissibility

Lemma

(i) If $r<s$, then $b_{s, K} \leq b_{r, K}$.
(ii) If $r<s$ and $r s>0$, then $b_{r, K} K^{-1 / r} \leq b_{s, K} K^{-1 / s}$.

- For $r<s$ and $r s>0$,

$$
K^{1 / s-1 / r} b_{r, K} \leq b_{s, K} \leq b_{r, K}
$$

\Rightarrow continuity of $b_{r, K}$ for $r \in[-\infty, 0) \cup(0, \infty]$.

Robust p-merging: admissibility

Proposition

For $r<s$ and $K \geq 2$, the following statements hold.
(i) $F_{r, K}$ dominates $F_{s, K}$ if and only if $b_{r, K}=b_{s, K}$.
(ii) If $r s>0$, then $F_{s, K}$ dominates $F_{r, K}$ if and only if $b_{r, K} K^{-1 / r}=b_{s, K} K^{-1 / s}$.
(iii) If $r s \leq 0$, then $F_{s, K}$ does not dominate $F_{r, K}$.

- Both (i) and (ii) may happen in some cases; $F_{r, K}$ is not necessarily admissible even within the family $\left(F_{r, K}\right)_{r \in[-\infty, \infty]}$.
- Example. $F_{1,2}\left(p_{1}, p_{2}\right)=p_{1}+p_{2}$ is dominated by every other member of the family, although it is precise.

Robust p-merging: admissibility

Theorem

(i) All admissible merging functions are precise.
(ii) $F_{-\infty, K}$ is admissible among all merging functions.
(iii) $F_{\infty, K}$ is admissible among all symmetric and continuous merging functions.
(iv) $F_{1, K}$ is admissible within the family $\left(F_{r, K}\right)_{r \in[-\infty, \infty]}$ for $K \geq 3$.
(v) The merging functions $F_{r, K}$ and $F_{s, K}$ do not dominate each other for $r \neq s$ and K large enough.

Robust p-merging: efficiency

Among (admissible) merging methods for $r \in[-\infty, \infty]$:

- Which method is the most efficient? In which situation?
- Requires the distributions of p-values under alternative hypotheses
- p-values from different experiments tend to be highly heterogeneous
- impossible to make inference of their dependence structure
- an adaptive learning method is difficult to design
- \Rightarrow this relies on prior or side information
- Some results on correlated z-tests are obtained

Data-driven choices

General form: for some $r_{1}, \ldots, r_{m} \in[-\infty, \infty]$,

$$
F\left(p_{1}, \ldots, p_{K}\right)=b \sum_{i=1}^{m} F_{r_{i}, K}\left(p_{1}, \ldots, p_{K}\right) \mathbb{1}_{A_{i}}\left(p_{1}, \ldots, p_{K}\right)
$$

- $\left(A_{1}, \ldots, A_{m}\right)$ is a partition of $[0,1]^{K}$
- $b>0$ is a constant so that F is a valid merging function

Special case:

$$
F\left(p_{1}, \ldots, p_{K}\right)=b \min _{i=1, \ldots, m} F_{r_{i}, K}\left(p_{1}, \ldots, p_{K}\right)
$$

- b : the price to pay to exploit the power of different methods
- $b=m$ is always valid (finding optimal $b \Rightarrow$ open question)

Compound methods

Consider the compound Bonferroni-arithmetic (BA) method

$$
F_{K}^{\mathrm{BA}}=2 \min \left(K M_{-\infty, K}, 2 M_{1, K}\right)
$$

and the compound Bonferroni-geometric (BG) method

$$
F_{K}^{\mathrm{BG}}=2 \min \left(K M_{-\infty, K}, e M_{0, K}\right)
$$

Proposition

Both families of merging functions F_{K}^{BA} and $F_{K}^{\mathrm{BG}}, K=2,3, \ldots$ are asymptotically precise.

- The price to pay for exploiting the power of Bonferroni and arithmetic/geometric methods is precisely a factor of 2 .

Simulation: $\mathbb{E}\left[P_{r, K}\right]$ for finite K

$K=400, \mathrm{mu}=3 \mathrm{rho}=0.1$

$K=50, \mathrm{mu}=3 \mathrm{rho}=0.5$

$\mathrm{K}=400, \mathrm{mu}=3 \mathrm{rho}=0.5$

$K=50, \mathrm{mu}=3$ rho $=0.9$

$K=400, \mathrm{mu}=3 \mathrm{rho}=0.9$

Efficiency: a rule of thumb

- stronger dependence \Rightarrow higher r
- independence $\Rightarrow r \leq-1$
- finite K : Bonferroni performs well for small to moderate ρ
- mixed-merging: the compound BG method performs very well for unknown dependence
(1) Background on robust risk aggregation
(2) Some interesting results
(3) P-values and hypothesis testing

4 Robust p-merging: validity
(5) Robust p-merging: admissibility and efficiency
(6) E-values, robust e-merging, and calibrators
(7) Concluding remarks and open questions

E-values

E-value: non-negative random variable E with mean 1 .

- Related to Bayesian factor:

$$
E(\text { Obs. })=\frac{\operatorname{Pr}(\text { Obs. } \mid \mathbb{Q})}{\operatorname{Pr}(\text { Obs. } \mid \mathbb{P})}
$$

- E (Obs.) very large \Rightarrow reject
- Alternative to p -values
- Also related to the algorithmic theory of randomness of Kolmogorov'65, 68

E-values, robust e-merging, and calibrators

Again, let \mathcal{H} be a collection of atomless probability measures ...
Definition (e-variables, e-merging functions, and calibrators)
(i) An e-variable is a non-negative random variable E that satisfies $\sup _{\mathbb{P} \in \mathcal{H}} \int E d \mathbb{P} \leq 1$.
(ii) An e-merging function is an increasing Borel function $F:[0, \infty]^{K} \rightarrow[0, \infty]$ such that $F\left(E_{1}, \ldots, E_{K}\right)$ is an e-variable for all e-variables E_{1}, \ldots, E_{K}.
(iii) A p-to-e calibrator is a decreasing function $f:[0,1] \rightarrow[0, \infty]$ such that $f(P)$ is an e-variable for all p -variables P.
(iv) An e-to-p calibrator is a decreasing function $g:[0, \infty] \rightarrow[0,1]$ such that $g(E)$ is an p-variable for all e-variables E.

Characterization of calibrators

Proposition (Shafer-Shen-Vereshchagin-Vovk'11)

A decreasing function $f:[0,1] \rightarrow[0, \infty]$ is a p-to-e calibrator if and only if $\int_{0}^{1} f(x) \mathrm{d} x \leq 1$. It is admissible if and only if f is upper semicontinuous, $f(0)=\infty$, and $\int_{0}^{1} f(x) \mathrm{d} x=1$.

Proposition

The function $f:[0, \infty] \rightarrow[0,1]$ defined by $f(t)=\min (1,1 / t)$ is an e-to-p calibrator. It is the only admissible e-to-p calibrator.

- $1 / e$ is a p-value for any e-value e
- $\kappa p^{\kappa-1}$ is a p-value for any p-value p and $\kappa \in(0,1)$
- In the algorithmic theory of randomness, roughly $p \sim 1 / e$

Characterization of e-merging functions

Proposition

A symmetric e-merging function F satisfying $F(0, \ldots, 0)=0$ is admissible if and only if it is the arithmetic mean.

- Admissibility of p-merging functions is quite complicated
- Similar for p-to-e merging and e-to-p merging functions

Conjecture

F is an admissible e-merging function if and only if
$\mathbb{E}\left[F\left(E_{1}, \ldots, E_{K}\right)\right]=1$ for e-variables E_{1}, \ldots, E_{K} with mean 1 .
("if" part is true; "only-if" part is true for symmetric functions)

Test supermartingales

Another important e-merging function is

$$
F\left(e_{1}, \ldots, e_{K}\right)=\prod_{k=1}^{K} e_{k}
$$

valid for independent e-values.

- E-values e_{1}, \ldots, e_{K} are obtained by laboratories $1, \ldots, K$
- Laboratory k makes sure that its result e_{k} is a valid e-value given the previous results e_{1}, \ldots, e_{k-1}
- $\mathbb{E}\left[E_{k} \mid E_{1}, \ldots, E_{k-1}\right] \leq 1$ for all $k \in\{1, \ldots, K\}$
- $\prod_{k=1}^{K} E_{k}$ is a test supermartingale and is an e-variable
(1) Background on robust risk aggregation
(2) Some interesting results
(3) P-values and hypothesis testing

4 Robust p-merging: validity
(5) Robust p-merging: admissibility and efficiency

6 E-values, robust e-merging, and calibrators
(7) Concluding remarks and open questions

Concluding remarks

Statistical questions

- Power analysis for other classic statistical models
- Adaptive selection of the merging function
- Relation between prior knowledge of dependence and the optimal choice of merging functions
- Domination structure of other merging methods
- The price of robustness for different methods
- Admissibility of of p-to-e and e-to-p merging functions
- Choice of w: robustness-power tradeoff (e.g., entropy regularized choice?)

Open questions on risk aggregation

Mathematical questions on robust risk aggregation:

- Characterization of $\mathcal{S}_{n}, \mathcal{D}_{n}$ and joint mixability
- Analytical formulas for $\overline{\mathrm{VaR}}_{p}, \underline{\mathrm{VaR}}_{p}$ and ES_{p}
- Aggregation of random vectors
- Partial information on dependence
- RDU and CPT risk aggregation
- Other aggregation functionals

Open questions on risk aggregation

A few concrete mathematical questions:

- For a given F, determine whether $F \in \mathcal{D}_{2}(\mathrm{U}[0,1], \mathrm{U}[0,1])$?
- For a given correlation matrix Σ and F_{1}, \ldots, F_{n}, determine whether

$$
\mathcal{V}_{\Sigma}=\left\{\mathbf{X}: \operatorname{Corr}(\mathbf{X})=\Sigma, X_{i} \sim F_{i}, i=1, \ldots, n\right\}
$$

is empty?

- If $\mathcal{V}_{\Sigma} \neq \varnothing$, what are the values of

$$
\sup \left\{\operatorname{VaR}_{p}(S): \mathbf{X} \in \mathcal{V}_{\Sigma}\right\} \text { and } \sup \left\{\operatorname{ES}_{p}(S): \mathbf{X} \in \mathcal{V}_{\Sigma}\right\} ?
$$

Here $S=X_{1}+\cdots+X_{n}$.

Thank you

Thank you for your kind attention

Based on

- Vovk-W., Combining p-values via averaging. Biometrika, 2019. SSRN: 3166304
- Vovk-W., Admissibility of p-value merging methods. Working paper, 2019.
- Vovk-W., Combining and calibrating e-values. Working paper, 2019.

References I

Bernard, C., Jiang, X. and Wang, R. (2014). Risk aggregation with dependence uncertainty. Insurance: Mathematics and Economics, 54, 93-108.Bignozzi, V., Mao, T., Wang, B. and Wang, R. (2016). Diversification limit of quantiles under dependence uncertainty. Extremes, 19(2), 143-170.

Embrechts, P. and Puccetti, G. (2006). Bounds for functions of dependent risks. Finance and Stochastics, 10, 341-352.Jakobsons, E., Han, X. and Wang, R. (2016). General convex order on risk aggregation. Scandinavian Actuarial Journal, 2016(8), 713-740.

专
Wang, B. and Wang, R. (2015). Extreme negative dependence and risk aggregation. Journal of Multivariate Analysis, 136, 12-25.Wang, B. and Wang, R. (2016). Joint mixability. Mathematics of Operations Research, 41(3), 808-826.
R- Wang, R., Peng, L. and Yang, J. (2013). Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. Finance and Stochastics, 17(2), 395-417.

References II

R
Dunn, O. J. (1958). Estimation of the means for dependent variables. Annals of Mathematical Statistics. 29(4), 1095-1111.

Fisher, R. A. (1948). Combining independent tests of significance. American Statistician, 2, 30.

Hedges, L. V. and Olkin, I. (1985). Statistical Methods for Meta-Analysis. Orlando, FL: Academic Press.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65-70.Mattner, L. (2012). Combining individually valid and arbitrarily dependent P-variables. In Abstract Book of the Tenth German Probability and Statistics Days, p. 104. Institut für Mathematik, Johannes Gutenberg-Universität Mainz.Meng, X.-L. (1993). Posterior predictive p-values. Annals of Statistics, 22, 1142-1160.

Rüschendorf, L. (1982). Random variables with maximum sums. Advances in Applied Probability, 14(3), 623-632.

References III

Glenn Shafer, G., Alexander Shen, Nikolai Vereshchagin, and Vladimir Vovk. Test martingales, Bayes factors, and p-values.
Statistical Science, 26:84-101, 2011.

Andrei N. Kolmogorov.
Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1:1-7, 1965.

Andrei N. Kolmogorov.
Logical basis for information theory and probability theory.
IEEE Transactions on Information Theory, IT-14:662-664, 1968.

Analysis for the sex differences data

For the sex differences dataset, the combined p-values are (compared with 0.05 significance level; weighted by sample size)

- Bonferroni: 0.029
- harmonic: 0.045 (weighted 0.041)
- geometric: 0.157 (weighted 0.198)
- arithmetic: 0.613 (weighted 0.793)
(significant)
(significant)
(not significant)
(not significant)

Analysis for the passive smoking data

For the passive smoking dataset (Hartung-Knapp-Sinha'08, Table 3.1, p.31, $K=19$), the combined p-values are (compared with 0.05 significance level)

- Bonferroni: 0.051
- harmonic: 0.126
- geometric: 0.254
- arithmetic: 0.449
(not significant)
(not significant)
(not significant)
(not significant)

The integrable case: $r>-1$

Proposition 1

For $r \in(-1, \infty],(r+1)^{1 / r} M_{r, K}, K \in\{2,3, \ldots\}$, is a family of merging functions and it is asymptotically precise.

$$
\left.(1+r)^{1 / r}\right|_{r=0}=e .
$$

The integrable case: $r>-1$

Proposition 1

For $r \in(-1, \infty],(r+1)^{1 / r} M_{r, K}, K \in\{2,3, \ldots\}$, is a family of merging functions and it is asymptotically precise.

Proof.

- $r>0, q_{\epsilon}\left(\sum_{k=1}^{K} U_{k}^{r}\right) \geq \sum_{k=1}^{K} \operatorname{ES}_{\epsilon}^{\leftarrow}\left(U_{k}^{r}\right)=K \frac{1}{r+1} \epsilon^{r}$
- $r=0, q_{\epsilon}\left(\sum_{k=1}^{K} \log U_{k}\right) \geq \sum_{k=1}^{K} \mathrm{ES}_{\epsilon}^{\leftarrow}\left(\log U_{k}\right)=K(\log \epsilon+1)$
- $r<0, q_{1-\epsilon}\left(\sum_{k=1}^{K} U_{k}^{r}\right) \leq \sum_{k=1}^{K} E S_{1-\epsilon}\left(U_{k}^{r}\right)=K \frac{1}{r+1} \epsilon^{r}$
- In all cases, $\underline{q}_{\epsilon}\left((r+1)^{1 / r} M_{r, K}\right) \geq \epsilon$
- Use the $\mathrm{VaR} / \mathrm{ES}$ asymptotic equivalence of Wang-W.'15.

$$
\left.(1+r)^{1 / r}\right|_{r=0}=e
$$

The non-integrable Pareto case: $r<-1$

No VaR/ES asymptotic equivalence for $r \leq-1$.

The non-integrable Pareto case: $r<-1$

No VaR/ES asymptotic equivalence for $r \leq-1$.

Proposition 2

For $r \in(-\infty,-1), \frac{r}{r+1} K^{1+1 / r} M_{r, K}, K \in\{2,3, \ldots\}$, is a family of merging functions and it is asymptotically precise.

The non-integrable Pareto case: $r<-1$

No VaR/ES asymptotic equivalence for $r \leq-1$.

Proposition 2

For $r \in(-\infty,-1), \frac{r}{r+1} K^{1+1 / r} M_{r, K}, K \in\{2,3, \ldots\}$, is a family of merging functions and it is asymptotically precise.

Proof.

- To show $\frac{r}{r+1} K^{1+1 / r} M_{r, K}$ is a merging function, directly apply the dual bound of Embrechts-Puccetti'06.
- To show the asymptotic precision, use the aggregation ratio of Bignozzi-Mao-Wang-W.'16 for super-heavy Pareto risks.

Letting $r \rightarrow-\infty$ one recovers the Bonferroni method: $K M_{-\infty, K}$.

Precise results for the Beta case: $r \geq 1 /(K-1)$

Proposition 3

For $K \in\{2,3, \ldots\}$ and $r \in(-1, \infty)$,
(i) $(r+1)^{1 / r} M_{r, K}$ is a precise merging function \Leftrightarrow

$$
r \in\left[\frac{1}{K-1}, K-1\right] .
$$

(ii) If $r \geq K-1, K^{1 / r} M_{r, K}$ is a precise merging function.

Precise results for the Beta case: $r \geq 1 /(K-1)$

Proposition 3

For $K \in\{2,3, \ldots\}$ and $r \in(-1, \infty)$,
(i) $(r+1)^{1 / r} M_{r, K}$ is a precise merging function \Leftrightarrow

$$
r \in\left[\frac{1}{K-1}, K-1\right] .
$$

(ii) If $r \geq K-1, K^{1 / r} M_{r, K}$ is a precise merging function.

Proof.

- $r \geq 1, U^{r}$ has a decreasing density
- $r \in\left[\frac{1}{K-1}, 1\right], U^{r}$ has an increasing density
- The $\overline{\mathrm{VaR}}_{p}$ and $\underline{\mathrm{VaR}}_{p}$ formulas of W .-Peng-Yang'13 give the precise value of $\underline{q}_{\epsilon}\left(M_{r, K}\right)$

Precise results for the Beta case: $r \geq 1 /(K-1)$

Examples.

- $\min (r+1, K)^{1 / r} M_{r, K}$ is precise for $r \geq 1 /(K-1)$.
- The arithmetic average times 2 is precise for $K \geq 2$
- The quadratic average times $\sqrt{3}$ is precise for $K \geq 3$
- Letting $r \rightarrow \infty$, the maximum $M_{\infty, K}$ is precise

Geometric averaging

Proposition 4

For each $K \in\{2,3, \ldots\}, a_{K} M_{0, K}$ is a precise merging function, where

$$
a_{K}=\frac{1}{c_{K}} \exp \left(-(K-1)\left(1-K c_{K}\right)\right)
$$

and c_{K} is the unique solution to the equation

$$
\log (1 / c-(K-1))=K-K^{2} c
$$

over $c \in(0,1 / K)$. Moreover, $a_{K} \leq e$ and $a_{K} \rightarrow e$ as $K \rightarrow \infty$.

Geometric averaging

Proposition 4

For each $K \in\{2,3, \ldots\}, a_{K} M_{0, K}$ is a precise merging function, where

$$
a_{K}=\frac{1}{c_{K}} \exp \left(-(K-1)\left(1-K c_{K}\right)\right)
$$

and c_{K} is the unique solution to the equation

$$
\log (1 / c-(K-1))=K-K^{2} c
$$

over $c \in(0,1 / K)$. Moreover, $a_{K} \leq e$ and $a_{K} \rightarrow e$ as $K \rightarrow \infty$.

Proof.

- Obtained from the $\overline{\mathrm{VaR}}_{p}$ formula of W.-Peng-Yang'13.

Geometric averaging

Table: Numeric values of a_{K} / e for the geometric mean

K	a_{K} / e	K	a_{K} / e	K	a_{K} / e
2	0.7357589	5	0.9925858	10	0.9999545
3	0.9286392	6	0.9974005	15	0.9999997
4	0.9779033	7	0.9990669	20	1.0000000

- In practice, use $a_{K} \approx e$ for $K \geq 5$
- $e M_{0, K}$ is always a merging function (noted by Mattner'12)

Harmonic averaging

Proposition 5

For $K>2,(e \log K) M_{-1, K}$ is a merging function.

Harmonic averaging

Proposition 5

For $K>2,(e \log K) M_{-1, K}$ is a merging function.

Proof.

- For a given $K>2$, e $\log K=\min _{r<-1} \frac{r}{r+1} K^{1+1 / r}$
- $(e \log K) M_{r, K}$ is a merging function for some $r<-1$
- $M_{-1, K} \geq M_{r, K}$ for $r<-1$

Harmonic averaging

Proposition 6

Set $a_{K}=\frac{\left(y_{K}+K\right)^{2}}{\left(y_{K}+1\right) K}, K>2$, where y_{K} is the unique solution to the equation

$$
y^{2}=K((y+1) \log (y+1)-y), \quad y \in(0, \infty)
$$

Then $a_{K} M_{-1, K}$ is a precise merging function. Moreover, $a_{K} / \log K \rightarrow 1$ as $K \rightarrow \infty$.

Harmonic averaging

Proposition 6

Set $a_{K}=\frac{\left(y_{K}+K\right)^{2}}{\left(y_{K}+1\right) K}, K>2$, where y_{K} is the unique solution to the equation

$$
y^{2}=K((y+1) \log (y+1)-y), \quad y \in(0, \infty)
$$

Then $a_{K} M_{-1, K}$ is a precise merging function. Moreover, $a_{K} / \log K \rightarrow 1$ as $K \rightarrow \infty$.

Proof.

- Again obtained from the $\overline{\mathrm{VaR}}_{p}$ formula of W.-Peng-Yang'13.

Harmonic averaging

Table: Numeric values of $a_{K} / \log K$ for the harmonic mean

K	$a_{K} / \log K$	K	$a_{K} / \log K$	K	$a_{K} / \log K$
3	2.499192	10	1.980287	100	1.619631
4	2.321831	20	1.828861	200	1.561359
5	2.214749	50	1.693497	400	1.514096

- The rate of convergence $a_{K} / \log K \rightarrow 1$ is very slow

Harmonic averaging

Table: Numeric values of $a_{K} / \log K$ for the harmonic mean

K	$a_{K} / \log K$	K	$a_{K} / \log K$	K	$a_{K} / \log K$
3	2.499192	10	1.980287	100	1.619631
4	2.321831	20	1.828861	200	1.561359
5	2.214749	50	1.693497	400	1.514096

- The rate of convergence $a_{K} / \log K \rightarrow 1$ is very slow
- Suggestions:
- for $K \geq 3$, use $(2.5 \log K) M_{-1, K}$
- for $K \geq 10$, use $(2 \log K) M_{-1, K}$
- for $K \geq 50$, use $(1.7 \log K) M_{-1, K}$

General formulas

Proposition 7

For $K>2$ and $r \in\left(-\infty, \frac{1}{K-1}\right) \backslash\{-1,0\}$, set

$$
b_{r, K}:=\left(\frac{K}{(K-1)\left(1-(K-1) c^{*}\right)^{r}+c^{* r}}\right)^{1 / r}
$$

where c^{*} is the unique solution $c \in(0,1 / K)$ to the equation

$$
(K-1)(1-(K-1) c)^{r}+c^{r}=K \frac{(1-(K-1) c)^{r+1}-c^{r+1}}{(r+1)(1-K c)}
$$

Then $b_{r, K} M_{r, K}$ is a precise p-merging function.

Efficiency: iid

Assume an iid setting under the true nature (different from H_{0}):

- p_{1}, \ldots, p_{K} are iid Q-distributed
- Let

$$
\Pi=\Pi(Q)=\sup \left\{m \in[0, \infty): \int p^{-m} Q(\mathrm{~d} p)<\infty\right\}
$$

- $\Pi(\mathrm{U}[0,1])=1$ (under H_{0})
- Write $P_{r, K}=a_{r, K} M_{r, K}$
- Consider $K \rightarrow \infty$

Note: we are not interested in the iid case

Efficiency: iid

Some results:

The combined p -value for different r in the cases $\Pi<1$ (top) and $\Pi>1$ (bottom).

- If $\Pi<1$, then $r \in[-\infty,-1]$ has the best rate of convergence to zero $P_{r, K} \approx c K^{1-1 / \Pi}$
- If $\Pi>1$, then $r \in[-\infty,-\Pi]$ has the worst rate of convergence to infinity $P_{r, K} \approx c K^{1-1 / \Pi}$
- Usually $\Pi \leq 1$ which indicates some power

Efficiency: dependence

Suppose that p_{1}, \ldots, p_{K} comes from an exchangeable distribution.

- By de Finetti's Theorem, there is some latent random variable Z, and p_{1}, \ldots, p_{K} are iid conditional on Z
- Let Q_{z} be the conditional distribution of p_{1} given $Z=z$
- The power of the merging methods depends on $\Pi\left(Q_{z}\right)$
- It may happen that $\Pi(Q) \leq 1$ but $\Pi\left(Q_{z}\right)>1$ for all z (e.g. identical p-values)

Efficiency: dependence

Dependent one-sided z-tests

- X_{1}, \ldots, X_{K} are jointly normal, $X_{k} \sim \mathrm{~N}(-\mu, 1)$ where $\mu \geq 0$ and $\operatorname{Cov}\left(X_{k}, X_{j}\right)=\rho \in[0,1]$ for $k \neq j$
- H_{0} is $\mu=0$
- p-values are $p_{k}=\Phi\left(X_{k}\right)$ where Φ is the standard normal cdf
- $\rho=0$ means iid tests; $\rho=1$ means identical tests
- $\Pi(Q)=1$ and $\Pi\left(Q_{z}\right)=1 /\left(1-\rho^{2}\right) \geq 1$ for all z

Efficiency: dependence

Proposition 8

Assume $\rho>0$ and $\mu>0$ in the above model. As $K \rightarrow \infty$, if $r \leq-1$, then $P_{r, K} \rightarrow \infty$; if $r>-1$, then $\mathbb{E}\left[P_{r, K}\right] \rightarrow A(r, \mu, \rho)$ which is

$$
(1+r)^{1 / r} \mathbb{E}\left[\left(\mathbb{E}\left[\left(\Phi\left(\sqrt{1-\rho^{2}} W+\rho Z-\mu\right)\right)^{r} \mid Z\right]\right)^{1 / r}\right]<\infty
$$

where Z and W are iid standard normal random variables.

Remark.

- For $r<-1, P_{r, K} \approx c K^{\rho^{2}}$ (grows very slow)

Simulation: $A(r, \mu, \rho)$

$\mathrm{mu}=3 \mathrm{rho}=0.5$

$\mathrm{mu}=2 \mathrm{rho}=0.7$

$\mathrm{mu}=3 \mathrm{rho}=0.7$

$\mathrm{mu}=2 \mathrm{rho}=0.9$

$\mathrm{mu}=3 \mathrm{rho}=0.9$

Numerical results

	$\rho=0.3$	$\rho=0.5$	$\rho=0.7$	$\rho=0.9$	$\rho=0.95$
$\mu=1$	-0.880	-0.559	0.314	≥ 2	≥ 2
$\mu=2$	-0.849	-0.769	-0.418	1.037	≥ 2
$\mu=3$	-0.880	-0.910	-0.789	0.244	1.207
$\mu=4$	-0.890	-0.870	-0.779	-0.077	0.555
$\mu=5$	-0.900	-0.880	-0.839	-0.478	0.064

Table: r^{*} which minimizes $A(r, \mu, \rho)$ for different values of μ, ρ. Red choices lead to insignificant p -values for $\alpha=0.05$

