An Axiomatic Foundation of the Expected Shortfall

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science

University of Waterloo

INFORMS Annual Meeting 2019 Seattle, USA October 2019 (revised talk slides)

1/39

<ロト < 同ト < ヨト < ヨト

Why ES? 00000000	00000000000	000000	Risk aggregation 0000000	0000
Agenda				

1 The main question

 \mathbf{o}

- 2 Economic axioms
- 3 Tail events and risk concentration
- 4 Risk aggregation
- **5** Concluding remarks

Based on joint work with Ričardas Zitikis (Western Ontario)

Why ES? ●0000000	Axioms 00000000000	Risk concentration	Risk aggregation	Conclusion 0000
Risk meas	sures			

A risk measure $\rho:\mathcal{X}\to\mathbb{R}$ maps a risk (via a model) to a number

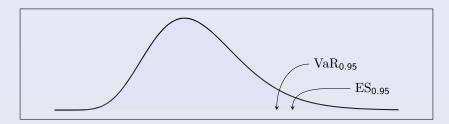
- ▶ regulatory capital calculation ← our main focus
- decision making, optimization, portfolio selection, ...
- performance analysis and capital allocation
- pricing

Risks ...

- X is a set of random losses in one period (e.g. 10d) in an atomless probability space (Ω, F, P)
- F_X denotes the cdf of $X \in \mathcal{X}$

周 ト イ ヨ ト イ ヨ ト

Why ES? ○●○○○○○○	Axioms 00000000000	Risk concentration	Risk aggregation	Conclusion 0000
VaR and	ES			



Value-at-Risk (VaR), $p \in (0,1)$	Expected Shortfall (ES), $p \in (0,1)$
$\operatorname{VaR}_p: L^0 \to \mathbb{R},$	$\mathrm{ES}_{p}: L^{1} ightarrow \mathbb{R}$,
$\operatorname{VaR}_p(X) = F_X^{-1}(p)$	$\mathrm{ES}_p(X) = rac{1}{1-p}\int_p^1 \mathrm{VaR}_q(X)\mathrm{d}q$
$=\inf\{x\in\mathbb{R}:\mathbb{P}(X\leq x)\geq p\}.$	$1 - p \int_p \sqrt{ang}(x) dy$
(right-quantile)	(also: TVaR/CVaR/AVaR)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣。

Why ES?	Axioms 00000000000	Risk concentration	Risk aggregation	Conclusion 0000
FRTB				

The Basel Committee on Banking Supervision (BCBS) Fundamental Review of the Trading Book (FRTB), Jan 2016

- \blacktriangleright $VaR_{0.99}$ is officially replaced by $\rm ES_{0.975}$ as the standard risk measure for market risk
- 10-day portfolio loss

Page 1, Executive Summary:

"Use of ES will help to ensure a more prudent capture of "tail risk" and capital adequacy ..." Why ES? Axioms Risk concentration 00000000

What is so special about ES?

What is magical about ES?

An ES is

- Coherent (Artzner-Delbaen-Eber-Heath'99, Acerbi-Tasche'02)
- Comonotone-additive (Kusuoka'01) (also VaR)
- Tail-relevant (Liu-W.'18) (also VaR)
- Min-convex expectation (Rockafellar-Uryasev'00)

(日)

Why ES? Axioms Risk concentration 00000000

What is so special about ES?

What is magical about ES?

An ES is

- Coherent (Artzner-Delbaen-Eber-Heath'99, Acerbi-Tasche'02)
- Comonotone-additive (Kusuoka'01) (also VaR)
- Tail-relevant (Liu-W.'18) (also VaR)
- Min-convex expectation (Rockafellar-Uryasev'00)

None of the above, and not even all together, characterizes ES

e.g. Gini Shortfall (Furman-W.-Zitikis'17)

<ロト < 同ト < ヨト < ヨト

Axiomatic approach for ES

Target: Find a set of meaningful axioms that uniquely characterizes the family of ES

Theory and Decision https://doi.org/10.1007/s11238-018-09685-1

What are axiomatizations good for?

Itzhak Gilboa^{1,2} · Andrew Postlewaite³ · Larry Samuelson⁴ · David Schmeidler²

© Springer Science+Business Media, LLC, part of Springer Nature 2019

<ロト < 同ト < ヨト < ヨト

 Why ES?
 Axioms
 Risk concentration
 Risk aggregation
 Conclusion

 00000000
 000000000
 0000000
 0000000
 0000000
 0000000

Axiomatic approaches for VaR

Axiomatic characterizations of VaR (quantile):

- Chambers'09: ordinal-covariance + monotonicity + law-invariance
- Kou-Peng'16: elicitability + comonotonic-additivity + monotonicity
- ► He-Peng'18: surplus-invariance + law-invariance + positive homogeneity
- Liu-W.'18: elicitability + tail-relevance + positive homogeneity

all + some form of continuity

(日)

Why ES?

00000000

Axiomatic approach for ES

If the set of economic axioms for ES:

- correctly reflects the regulators' practical intentions
 justify and support the use of ES in regulation
- contradicts the regulators' intentions
 - \Rightarrow discuss whether ES is still the best risk measure to use

(日)

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclus
0000000				

Axiomatic approach for risk functionals

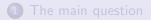
Decision theory

- Expected utility: von Neumann-Morgenstern'44, Savage'54
- Dual utility: Yaari'87
- Variational preferences: Gilboa-Schmeidler'89, Schmeidler'89, Maccheroni-Marinacci-Rustichini'06

Banking and insurance

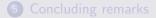
- Coherent risk measures: Artzner-Delbaen-Eber-Heath'99
- Convex risk measures: Föllmer-Schied'02, Fritteli-Rosazza Gianin'02
- Insurance pricing: Wang-Young-Panjer'97
- Systemic risk measures: Chen-Iyengar-Moallemi'13

Why ES? 00000000	Axioms ●oooooooooooo	Risk concentration	Risk aggregation	Conclusion 0000
Progress				



3 Tail events and risk concentration

4 Risk aggregation



< 同 > < 三 > < 三 >

Axioms M		000000	000000	0000
Why ES? 00000000	Axioms ○●○○○○○○○○○	Risk concentration	Risk aggregation 0000000	Conclusion

- A risk measure $\rho: \mathcal{X} \to \mathbb{R}$
 - ρ(X) is the amount of regulatory capital for a particular risk
 model X

▶ e.g.
$$\mathcal{X} = L^0$$
, L^1 , L^∞ , ...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Axioms M		000000	000000	0000
Why ES? 00000000	Axioms ○●○○○○○○○○○	Risk concentration	Risk aggregation 0000000	Conclusion

- A risk measure $\rho : \mathcal{X} \to \mathbb{R}$
 - ρ(X) is the amount of regulatory capital for a particular risk
 model X

• e.g.
$$\mathcal{X} = L^0$$
, L^1 , L^∞ , ...

Two intuitive axioms

M. (Monotonicity) A surely larger or equal loss leads to a larger or equal risk value, that is, $\rho(X) \leq \rho(Y)$ whenever $X \leq Y$.

(日) (日) (日)

Δ	MandII			
Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion

- A risk measure $\rho : \mathcal{X} \to \mathbb{R}$
 - ρ(X) is the amount of regulatory capital for a particular risk
 model X

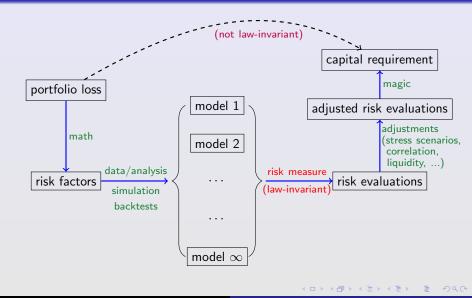
• e.g.
$$\mathcal{X} = L^0$$
, L^1 , L^∞ , ...

Two intuitive axioms

- M. (Monotonicity) A surely larger or equal loss leads to a larger or equal risk value, that is, $\rho(X) \le \rho(Y)$ whenever $X \le Y$.
- L1. (Law-invariance) The risk value depends on the loss via its distribution, that is, $\rho(X) = \rho(Y)$ whenever $X \stackrel{d}{=} Y$.

< ロ > < 同 > < 三 > < 三 >

The risk assessment process



Aviom D				
Why ES? 00000000	Axioms ○○○●○○○○○○○	Risk concentration	Risk aggregation	Conclusion 0000

A third intuitive axiom

1XIUI

- P. (Prudence) The risk value is not underestimated by approximations, that is, $\lim_{n} \rho(\xi_n) \ge \rho(X)$ whenever $\xi_n \to X$ point-wise and $\lim_{n} \rho(\xi_n)$ exists.
 - ► The loss X is modelled truthfully (e.g. consistent estimators)
 ⇒ estimated risk ≥ true risk asymptotically

• • = • • = •

Aviom D				
Why ES? 00000000	Axioms ○oo●oooooooo	Risk concentration	Risk aggregation	Conclusion 0000

A third intuitive axiom

۱VIVI

- P. (Prudence) The risk value is not underestimated by approximations, that is, $\lim_{n} \rho(\xi_n) \ge \rho(X)$ whenever $\xi_n \to X$ point-wise and $\lim_{n} \rho(\xi_n)$ exists.
 - ► The loss X is modelled truthfully (e.g. consistent estimators) ⇒ estimated risk ≥ true risk asymptotically

Proposition

For $p \in (0,1)$, both ES_p and VaR_p on $\mathcal{X} = L^1$ satisfy Axioms M, LI and P.

 Why ES?
 Axioms
 Risk concentration
 Risk aggregation
 Conclusion

 00000000
 00000000
 0000000
 0000000
 0000000

Toward the fourth axiom: step 0

Practitioners' intuitions: BCBS (Feb 2019)

- 10.22 Diversification: the reduction in risk at a portfolio level due to holding risk positions in different instruments that are not perfectly correlated with one another.
 - 22.4 No diversification benefit is recognised between the DRC requirements for:(1) non-securitisations; (2) securitisations (non-CTP); and (3) securitisations (CTP).
- 30.17(3b) [...] with sufficient consideration given to ensuring: [...] that the models reflect concentration risk that may arise in an undiversified portfolio.
 - 30.20 Banks' stress scenarios must cover a range of factors that (i) can create extraordinary losses or gains in trading portfolios, or (ii) make the control of risk in those portfolios very difficult. These factors include low-probability events in all major types of risk, [...]

< ロ > < 同 > < 回 > < 回 > .

 Why ES?
 Axioms
 Risk concentration
 Risk aggregation
 Conclusion

 00000000
 000000
 000000
 000000
 000000

Toward the fourth axiom: step 1

For a portfolio vector (X_1, \ldots, X_n) , there is diversification benefit if

$$\rho\left(\sum_{i=1}^n X_i\right) < \sum_{i=1}^n \rho(X_i).$$

(日)

Toward the fourth axiom: step 1

For a portfolio vector (X_1, \ldots, X_n) , there is diversification benefit if

$$\rho\left(\sum_{i=1}^n X_i\right) < \sum_{i=1}^n \rho(X_i).$$

Three features of portfolio regulatory capital:

rewards diversification: ρ (∑ⁿ_{i=1} X_i) < ∑ⁿ_{i=1} ρ(X_i) if the portfolio is properly diversified

(日)

 Why ES?
 Axioms
 Risk concentration
 Risk aggregation
 Conclusion

 000000000
 000000000
 0000000
 0000000
 0000000

Toward the fourth axiom: step 1

For a portfolio vector (X_1, \ldots, X_n) , there is diversification benefit if

$$\rho\left(\sum_{i=1}^n X_i\right) < \sum_{i=1}^n \rho(X_i).$$

Three features of portfolio regulatory capital:

- rewards diversification: ρ (∑ⁿ_{i=1} X_i) < ∑ⁿ_{i=1} ρ(X_i) if the portfolio is properly diversified

< ロ > < 同 > < 回 > < 回 > < 回 > <

 Why ES?
 Axioms
 Risk concentration
 Risk aggregation
 Conclusion

 000000000
 000000000
 0000000
 0000000
 0000000

Toward the fourth axiom: step 1

For a portfolio vector (X_1, \ldots, X_n) , there is diversification benefit if

$$\rho\left(\sum_{i=1}^n X_i\right) < \sum_{i=1}^n \rho(X_i).$$

Three features of portfolio regulatory capital:

- rewards diversification: ρ (∑ⁿ_{i=1} X_i) < ∑ⁿ_{i=1} ρ(X_i) if the portfolio is properly diversified
- tail events: a focus on events of small probability that the most severe loss occurs

(日)

Axioms

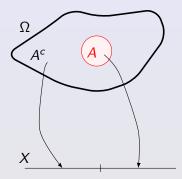
Risk concentration

Risk aggregation

Conclusion 0000

Toward the fourth axiom: step 2

Definition (Tail events) A tail event of X is $A \in \mathcal{F}$ such that a) $0 < \mathbb{P}(A) < 1$ b) $X(\omega) \ge X(\omega')$ for a.s. all $\omega \in A$ and $\omega' \in A^c$



(日)

Remark.

• tail event \implies most severe loss

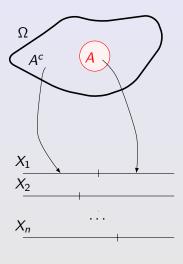
Why ES?AxiomsRisk concentrationRisk aggregationConclusion000000000000000000000000000000000000000

Toward the fourth axiom: step 3

Main idea

concentrated portfolio ↔ severe losses occur simultaneously on a stress event

 A: a stress event specified by the regulator



(日)

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	○○○○○○○●○○○		0000000	0000
The fourt	h axiom			

The fourth key axiom

NRC. (No reward for concentration) There exists an event $A \in \mathcal{F}$ such that $\rho(X + Y) = \rho(X) + \rho(Y)$ holds for all risks X and Y sharing the tail event A.

<u>Remark.</u>

- Axiom NRC may be equivalently formulated via: for all $n \ge 2$, $\rho(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \rho(X_i)$ whenever X_1, \ldots, X_n share a tail event A
- Axioms M, P and NRC are model-free (independent of \mathbb{P})

(日) ト イ ヨ ト イ ヨ ト

Why ES?AxiomsRisk concentrationRisk aggregation000000000000000000000000000000

Axiomatic characterization of ES

Theorem

A functional $\rho : L^1 \to \mathbb{R}$ with $\rho(1) = 1$ satisfies Axioms M, LI, P and NRC if and only if $\rho = ES_p$ for some $p \in (0, 1)$.

<u>Remarks.</u>

- In the forward direction, the value of p = P(A) specified in Axiom NRC
- $\rho(1) = 1$ is normalizing

3

Conclusion

 Why ES?
 Axioms
 Risk concentration
 Risk aggregation
 Conclusion

 000000000
 0000000
 000000
 0000000
 000000

Axiomatic characterization of ES

None of the axioms rely on integrability. Is the domain $\mathcal{X} = L^1$ natural?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Э

Axiomatic characterization of ES

None of the axioms rely on integrability. Is the domain $\mathcal{X} = L^1$ natural?

Theorem

For any $q \in [0, 1)$, a functional $\rho : L^q \to \mathbb{R}$ satisfies Axioms M, LI, P and NRC if and only if $\rho = 0$ on L^q .

- No meaningful risk measure satisfying M, LI, P and NRC is defined beyond L¹
- ▶ For $L^q, q \in [1,\infty]$, the previous ES characterization holds

21/39

< ロ > < 同 > < 回 > < 回 > .

 /hy ES?
 Axioms
 Risk concentration
 Risk aggregation
 Conclusion

 00000000
 0000000000
 0000000
 0000000
 0000000
 0000000

Independence of the axioms

Axioms M, LI, P and NRC are independent on $\mathcal{X} = L^1$:

- ► M + LI + P NRC: VaR_p $p \in (0, 1)$
- M + LI + NRC P: \mathbb{E}
- $\blacktriangleright \mathsf{M} + \mathsf{P} + \mathsf{NRC} \mathsf{LI}: \quad X \mapsto X(\omega) \qquad \qquad \omega \in \Omega$
- ► LI + P + NRC M: $X \mapsto ES_p(-X)$ $p \in (0,1)$

3

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	000000000000	●○○○○○		0000
Progress				

- 1 The main question
- 2 Economic axioms
- 3 Tail events and risk concentration
- 4 Risk aggregation
- 5 Concluding remarks

Tail events and risk concentration

For $p \in (0,1)$ and a random vector (X_1, \ldots, X_n) :

- *p*-tail event: a tail event of probability 1 p
- ► (X₁,...,X_n) is *p*-concentrated: X₁,...,X_n share a *p*-tail event

< ロ > < 同 > < 三 > < 三 > 、

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	000000000000	○0●000		0000
Tail event	ts			

- A p-tail event of X
 - always exists
 - ▶ is a.s. unique if X is continuously distributed
 - is invariant under strictly increasing marginal transformations
 - A is a p-tail event of X

$$\iff \mathbb{P}(A) = 1 - p \text{ and } \{X > x\} \subset A \subset \{X \ge x\} \text{ a.s.}$$

where $x = \operatorname{VaR}_{p}(X)$.

<u>Remark.</u>

The case for discrete random variables is more complicated, but crucial for our theory

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	000000000000	○00●00	0000000	0000
Risk cond	centration			

p-concentration as a dependence concept

A notion of positive dependence

• • = • • = •

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	00000000000	○00●00		0000
Risk conce	entration			

p-concentration as a dependence concept

A notion of positive dependence

Theorem

A random vector is p-concentrated for all $p \in (0,1)$ if and only if it

is comonotonic.

- Concentration is a weaker notion than comonotonicity
- Comonotonicity may be too strong a requirement for a "non-diversified portfolio"
- ▶ Additional flexibility: $p \in (0,1)$ is specified by the regulator
- Axiom NRC implies comonotone-additivity

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion			
00000000	00000000000	○○○○●○		0000			
Properties of risk concentration							

 (X_1, \ldots, X_n) is *p*-concentrated \Rightarrow so is each pair (X_i, X_j)

- ► The converse is true if some X_i is continuously distributed
- The converse is generally not true in sharp contrast to the case of comonotonicity

Example (Pair-wise concentration does not imply concentration)

• A_1, A_2, A_3 are three disjoint, each of probability p = 1/3

•
$$X_i = \mathbb{1}_{A_i}$$
 for $i = 1, 2, 3$

- (X_i, X_j) has a common *p*-tail event $A_i \cup A_j$
- (X_1, X_2, X_3) does not have a common *p*-tail event

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Why ES? 00000000	Axioms 00000000000	Risk concentration	Risk aggregation	Conclusion 0000

Properties of risk concentration

Theorem

For every $p \in (0,1)$ and every random vector (X_1, \ldots, X_n) , writing

 $S = X_1 + \cdots + X_n$, equivalent are:

(V)
$$(X_1, \ldots, X_n)$$
 is p-concentrated;

$$(X_1, \ldots, X_n, S) \text{ is } p\text{-concentrated};$$

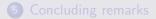
(
$$X_i, S - X_i$$
) is p-concentrated for every $i = 1, ..., n$;

- (f₁(X₁),..., f_n(X_n)) is p-concentrated for all increasing functions f₁,..., f_n;
 - a copula C of (X_1, \ldots, X_n) satisfies $C(p, \ldots, p) = p$.

< 口 > < 同 > < 三 > < 三 > 、

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	000000000000	000000	●○○○○○○	0000
Progress				

- 1 The main question
- 2 Economic axioms
- 3 Tail events and risk concentration
- 4 Risk aggregation



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	000000000000		○●00000	0000
Risk aggre	egation			

Given any $p \in (0, 1)$, the random vector $(X_1, \ldots, X_n) \in (L^1)^n$ is said to maximize the ES_p aggregation if

$$\operatorname{ES}_p\left(\sum_{i=1}^n X_i\right) = \max\left\{\operatorname{ES}_p\left(\sum_{i=1}^n X_i'\right) : X_i' \stackrel{d}{=} X_i, \ i = 1, \dots, n\right\}.$$

30/39

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	00000000000		○●00000	0000
Risk aggr	egation			

Given any $p \in (0, 1)$, the random vector $(X_1, \ldots, X_n) \in (L^1)^n$ is said to maximize the ES_p aggregation if

$$\operatorname{ES}_p\left(\sum_{i=1}^n X_i\right) = \max\left\{\operatorname{ES}_p\left(\sum_{i=1}^n X_i'\right) : X_i' \stackrel{d}{=} X_i, \ i = 1, \dots, n\right\}.$$

Known: Comonotonicity maximizes ES_p aggregation

Q: Is comonotonicity necessary?

Hint: Comonotonicity $\iff p$ -concentration for all $p \in (0, 1)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	000000000000		○0●0000	0000
Risk aggr	regation			

Theorem

For $p \in (0,1)$ and $(X_1, \ldots, X_n) \in (L^1)^n$, equivalent are:

(
$$X_1, \ldots, X_n$$
) is p-concentrated;

$$(X_1,\ldots,X_n) \text{ maximizes the } \mathrm{ES}_p \text{ aggregation};$$

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	000000000000		○○●○○○○	0000
Risk aggr	egation			

Theorem

For $p \in (0,1)$ and $(X_1, \ldots, X_n) \in (L^1)^n$, equivalent are:

(
$$X_1, \ldots, X_n$$
) maximizes the ES_p aggregation;

<u>Remarks.</u>

- Comonotonicity is not necessary for max ES_p aggregation
- ▶ ES_p is additive for and only for a *p*-concentrated portfolio
- ES_p satisfies Axiom NRC

(4回) * 注) * 注)

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	000000000000		○00●000	0000
Risk agg	regation			

Proof of (i) \Leftrightarrow (iii). Note the dual representation of ES_p :

$$\operatorname{ES}_{\rho}(X) = \sup_{\mathbb{P}(A)=1-\rho} \mathbb{E}[X|A], \ X \in L^1.$$

• Lemma. For $p \in (0,1)$, $X \in L^1$ and $\mathbb{P}(A) = 1 - p$,

 $\mathrm{ES}_p(X) = \mathbb{E}[X|A] \Leftrightarrow A \text{ is a } p\text{-tail event of } X.$

(i)
$$\Leftrightarrow_{(\text{thm})} \exists$$
 a common *p*-tail event *A* of $X_1, \ldots, X_n, S \Rightarrow$

$$\sum_{i=1}^{n} \mathrm{ES}_{p}(X_{i}) = \sum_{i=1}^{n} \mathbb{E}[X_{i}|A] = \mathbb{E}[S|A] = \mathrm{ES}_{p}(S) \Rightarrow \text{ (iii)}.$$

• (iii)
$$\Rightarrow$$
 for a *p*-tail event *A* of *S*,

$$\sum_{i=1}^{n} \mathrm{ES}_{p}(X_{i}) = \mathrm{ES}_{p}(S) \underset{(\text{lemma})}{=} \mathbb{E}[S|A] = \sum_{i=1}^{n} \mathbb{E}[X_{i}|A] \underset{(\text{lemma})}{\Rightarrow} (i).$$

Why ES? 00000000	Axioms 00000000000	Risk concentration	Risk aggregation	Conclusion 0000
Risk aggre	gation			

Define the right *p*-quantile

$$\operatorname{VaR}_p^+(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) > p\}, X \in L^0, p \in (0,1).$$

Theorem

For every $p \in (0, 1)$ and every p-concentrated vector (X_1, \ldots, X_n) , writing $S = X_1 + \cdots + X_n$, we have

$$\operatorname{VaR}_p(S) \leq \sum_{i=1}^n \operatorname{VaR}_p(X_i) \leq \sum_{i=1}^n \operatorname{VaR}_p^+(X_i) \leq \operatorname{VaR}_p^+(S).$$

If the quantile function of *S* is continuous at *p*, then all inequalities above are equalities.

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	00000000000		○0000€0	0000
Rick 200	regation			

<u>Remarks</u> on VaR_p and VaR_p^+

55'55

- They are both additive for any comonotonic portfolio
 - Generally not additive for a p-concentrated portfolio
 - Fail to satisfy Axiom NRC
- ▶ VaR_p is subadditive for any *p*-concentrated portfolio
- ► VaR⁺_p is superadditive for any *p*-concentrated portfolio
- ▶ $\operatorname{VaR}_p(S) < \operatorname{VaR}_p^+(S) \Leftrightarrow$ the quantile of S has a jump at p
 - Such a jump is not strange as *p*-concentration already imposes some degeneracy

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	00000000000		○○○○○○●	0000
D ! 1				

Risk aggregation

Example (VaR_p does not satisfy Axiom **NRC**)

- $U \sim \mathrm{U}[0,1]$ and $p \in (0,1)$
- A is an event with $\mathbb{P}(A) = p$ independent of U
- $X = U \mathbb{1}_A + \mathbb{1}_{A^c}$ and $Y = (1 U) \mathbb{1}_A + \mathbb{1}_{A^c}$
- A^c is a common *p*-tail event of X and Y

•
$$\operatorname{VaR}_p(X) = \operatorname{VaR}_p(Y) = 1$$

- $\blacktriangleright \operatorname{VaR}_{\rho}(X+Y) = \operatorname{VaR}_{\rho}(\mathbb{1}_{A} + 2\mathbb{1}_{A^{c}}) = 1$
- $\blacktriangleright \Rightarrow \operatorname{VaR}_{\rho}(X + Y) < \operatorname{VaR}_{\rho}(X) + \operatorname{VaR}_{\rho}(Y)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
00000000	000000000000		0000000	●○○○
Progress				

- 1 The main question
- 2 Economic axioms
- 3 Tail events and risk concentration
- 4 Risk aggregation

< 同 > < 三 > < 三 >

Why ES? 00000000	Axioms 000000000000	Risk concentration	Risk aggregation	Conclusion ○●○○
	1			

Concluding remarks

Main contributions

- ► Four axioms, M, LI, P and NRC, uniquely identify ES
- Mathematical concepts and results
 - Tail events and risk concentration
 - Risk aggregation for ES and VaR
 - Characterization theorems

Discussions

- Are the axioms consistent with regulator's intentions?
- How special is ES?
- Are there other ways to characterize ES?

Why ES?	Axioms	Risk concentration	Risk aggregation	Conclusion
				0000

VaR versus ES: Summary

	Value-at-Risk	Expected Shortfall	
Domain	always exists	needs first moment	
Capturing	only frequency	frequency and severity	
Diversification	non-coherent/non-NRC	coherent/NRC	
Optimization	non-convex/non-robust	convex/robust	
Backtesting	straightforward	complicated	
Estimation	comparably difficult	comparably difficult	
Allocation	difficult to estimate	straightforward (Euler)	
Robustness	weak topology	L-metrics	
Elicitation	complexity = 1	complexity = 2	
Numéraire invariance	yes	no	
Surplus invariance	yes	no	
	1	▲口> ▲御> ▲園> ▲園>	

(wang@uwaterloo.ca) Expected Shortfall Ruodu Wang

æ

 Why ES?
 Axioms
 Risk concentration
 Risk aggregation
 Conclusion

 00000000
 000000
 000000
 000000
 000000

 Thank you

Thank you for your kind attention

The manuscript is available at SSRN: 3423042 Comments are welcome

39/39

(日)