Empirical studies

ompatibility 000000

Summary 000

Scenario-based risk evaluation

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

Risk Management Institute, National University of Singapore Singapore July 2018

ELE DQQ

00000000000	000000000000	000000	000000000000000000000000000000000000000	0000000	000
Agenda					

- 1 Motivation and the Basel ES formula
- 2 Scenario-based risk evaluation
- 3 Axiomatic characterization
- 4 Empirical studies
- 5 Compatibility of scenarios

6 Summary

Based on some joint work with Damir Filipovic (Lausanne), Jie Shen (Waterloo), Yi Shen (Waterloo), Bin Wang (Beijing) and Johanna Ziegel (Bern)

Motivation •00000000000	Scenario-based risk evaluation	Characterization 000000	Empirical studies	Compatibility 0000000	Summary 000
Risk mea	sures				

A risk measure maps a risk (via a model) to a number

- ► regulatory capital calculation ← our main interpretation
- management, optimization and decision making
- performance analysis and capital allocation
- pricing

Risks ...

- modelled by random losses in a specified period
- in some probability space $(\Omega, \mathcal{F}, \mathbb{P})$

Scenario-based risk evaluation

Characterization 000000 Empirical studies

Compatibility 0000000 Summary 000

Value-at-Risk and Expected Shortfall

Value-at-Risk (VaR) at level
$$p \in (0,1)$$

 $\operatorname{VaR}_{p}^{\mathbb{P}}:\mathcal{L}\to\mathbb{R},$

$$\operatorname{VaR}_p^{\mathbb{P}}(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) \ge p\}.$$

Expected Shortfall (ES/TVaR/CVaR/AVaR) at level $p \in (0,1)$

 $\mathrm{ES}_{p}^{\mathbb{P}}:\mathcal{L}
ightarrow\mathbb{R}\cup\{\infty\}$,

$$\mathrm{ES}_{\rho}^{\mathbb{P}}(X) = \frac{1}{1-\rho} \int_{\rho}^{1} \mathrm{VaR}_{q}^{\mathbb{P}}(X) \mathrm{d}q.$$

- positive values of X represent losses
- \mathcal{L} : the set of all random variables in (Ω, \mathcal{A})

⇒ ↓ = ↓ = | = √QC

Scenario-based risk evaluation

Characterization 000000 Empirical studies

Compatibility

Summary 000

Value-at-Risk and Expected Shortfall

The ongoing co-existence of VaR and ES:

- Basel III & IV both
- Solvency II VaR
- Swiss Solvency Test ES
- US Solvency Framework (NAIC ORSA) both

Motivation 00000000000	Scenario-based risk evaluation	Characterization	Empirical studies	Compatibility 0000000	Summary 000

Law-based risk measures

VaR and ES are law-based (thus statistical risk functionals): $\rho(X) = \rho(Y)$ if $X \stackrel{d}{=}_{\mathbb{P}} Y$ (equal in distribution under \mathbb{P})

- distributional models
- statistical inference and data analysis
- simulation tractability

However...

- Is the distribution alone enough to describe a risk, especially in a complex financial system?
- relation with economic scenarios?
- model uncertainty and robustness?

Law-based risk measures

Practical considerations

- statistical and simulation tractability
 - typically results in a law-based risk measure
- economic scenario sensitivity
 - typically results in a non-law-based risk measure
- model uncertainty and robustness
 - could be either law-based or not

Question

Can we incorporate the above considerations into a unified

framework?

Scenario-based risk evaluation

Characterization 000000 Empirical studies

Compatibility 0000000 Summary 000

Basel's IMA ES formula for market risk

BIS (Bank for International Settlements) market risk formula:

[B16] Basel Committee on Banking Supervision: Standards, January 2016, *Minimum capital requirements for Market Risk*

The standard risk measure in [B16] for market risk is $ES_{0.975}$.

- internal model approach (IMA): approved desks
- standard approach (SA): others

Scenario-based risk evaluation

Characterization 000000 Empirical studies

Compatibility 0000000 Summary 000

Basel's IMA ES formula for market risk

Aim: calculate capital charge for loss from a portfolio

- T = 10d in [B16]
- p = 0.975, omitted below
- $X = \sum_{i=1}^{n} X_i$ is the aggregate portfolio loss at a given day
- Each risk factor is adjusted for their category of liquidity
- Two layers of further adjustments in p.52 p.69 of [B16]

Summary 000

Basel's IMA ES formula for market risk

(i) Stress adjustment.

- Specify a set *R* of reduced risk factors which has a sufficiently long history of observation ("at least span back to and including 2007"), such that θ = ES_F(X) ≤ 4/3, where ES_F(X) = ES_p(∑ⁿ_{i=1} X_i) and ES_R(X) = ES_p(∑_{i∈R} X_i).
- ► Compute ES_{R,S}(X), the ES of a model with the reduced risk factors, "calibrated to the most severe 12-month period of stress".
- Mathematically, for the collection Q of estimated models,

$$\mathrm{ES}_{R,S}(X) = \max_{Q \in \mathcal{Q}} \mathrm{ES}_{p}^{Q} \left(\sum_{i \in R} X_{i} \right).$$

Scenario-based risk evaluation

Characterization 000000 Empirical studies

Compatibility 2000000 Summary

Basel's IMA ES formula for market risk

Use the formula

$$\widetilde{\operatorname{ES}}({\sf X}) = \operatorname{ES}_{{\sf R},{\sf S}}({\sf X}) imes{\sf max}\{ heta,1\}$$

to get the stress-adjusted ES value,

► In particular, if the portfolio loss is modelled by only risk factors of sufficiently long history, then R = {1,..., n} and

$$\widetilde{\mathrm{ES}}(X) = \max_{Q \in \mathcal{Q}} \mathrm{ES}_p^Q \left(\sum_{i=1}^n X_i \right) = \max_{Q \in \mathcal{Q}} \mathrm{ES}_p^Q (X).$$

Basel's IMA ES formula for market risk

(ii) Dependence adjustment.

- Risk factors are grouped into a range of broad regulatory risk classes
- ► Under the stressed scenario, compute the ES of each risk class, and take their sum ES_C(X)
 - equivalent to comonotonic ("non-diversified") risk classes
 - worst case dependence scenario
- Use the formula, for a constant λ (= 0.5),

$$\operatorname{ES}(X) = \lambda \widetilde{\operatorname{ES}}(X) + (1 - \lambda) \widetilde{\operatorname{ES}}_{\mathcal{C}}(X)$$

• ES(X) is called the capital charge for modellable risk factors (IMCC)

Summary 000

Basel's IMA ES formula for market risk

In summary, the Basel's IMA ES formula¹:

- ► Calculates ES of the same portfolio under different scenarios
 - stress (stressed, non-stressed)
 - dependence (diversified, non-diversified)
- These values are aggregated with mainly two operations (iteratively): maximum and linear combination

¹In addition to (i) and (ii), the IMCC value will finally be adjusted by using the maximum of its present calculation and a moving average calculation of 60 days times a constant (currently 1.5). $(\Box \Rightarrow \langle \Box \Rightarrow \langle \Xi \Rightarrow \langle \Xi \Rightarrow \langle \Xi \rangle)$

Scenario-based risk evaluation

Characterization 000000 Empirical studies

Compatibility 0000000 Summary 000

Basel's IMA ES formula for market risk

Two other examples.

- The margin requirements calculation developed by the Chicago Mercantile Exchange
- The rating of a structured finance security is calculated according to its conditional distributions under each economic stress scenario (e.g. Standard and Poor's and Moody's).

Scenario-based risk evaluation

Characterization

Empirical studies

ompatibility 000000 Summary 000

Progress of the talk

- Motivation and the Basel ES formula
- 2 Scenario-based risk evaluation
- 3 Axiomatic characterization
- 4 Empirical studies
- 5 Compatibility of scenarios

6 Summary

Scenario-based risk evaluation

Characterization 000000

Empirical studies

ompatibility

Summary 000

Scenario-based risk evaluation

Some metaphor

- Scenarios: light sources
- Risks (random outcomes): objects
- Distributions: shadows

< ロ > < 同 > < 回 > < 回 > < 回 > <

Scenario-based risk evaluation

Characterization 000000 Empirical studies

ompatibility

Summary 000

Scenario-based risk evaluation

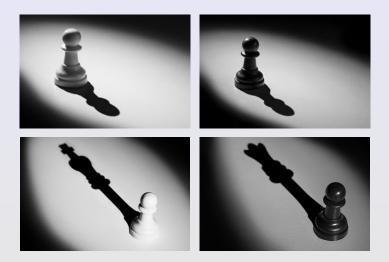
Scenario-based risk evaluation

Characterization 000000

Empirical studies

ompatibility 000000 Summary 000

Scenario-based risk evaluation



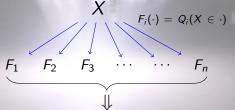
Scenario-based risk evaluation

Empirical studies

Scenario-based risk evaluation

. .

 Q_3



risk evaluation

Motivation 000000000000	Scenario-based risk evaluation	Characterization 000000	Empirical studies	Summary 000

- Q-based risk measures
 - \blacktriangleright Take a collection of scenarios $\mathcal{Q} \subset \mathcal{P}$ of interest
 - \mathcal{P} : the set of probability measures (scenarios) on (Ω, \mathcal{A})
 - \mathcal{X} : a convex cone of random variables

Definition 1

A mapping ρ on \mathcal{X} is \mathcal{Q} -based if $\rho(X) = \rho(Y)$ for $X, Y \in \mathcal{X}$ whenever $X \stackrel{d}{=}_{\mathcal{Q}} Y$ for all $\mathcal{Q} \in \mathcal{Q}$.

- Two risks are equally risky if they are identically distributed under all scenarios of interest
- The scenarios should be pre-specified according to the application

Examples		000000	000000000000000000000000000000000000000	0000000	000
	Scenario-based risk evaluation	Characterization 000000	Empirical studies	Compatibility 0000000	Summary 000

- (Basel formula) In the [B16] ES formula, Q is the collection of many practical scenarios
- (Economic scenario) $Q = \{\mathbb{P}(\cdot | \Theta = \theta) : \theta \in \mathbb{R}^d\}$, where Θ is an economic factor
- (Robust evaluation) Q = {Q ∈ P : d(Q, P) ≤ δ} where d is some statistical distance (e.g. Kullback-Leibler)
- (Bayesian) $Q = \{Q_{\theta} : \theta \in \mathbb{R}^d\}$, a parametric family of models
- ► (Simulation) Q = {P_i : i = 1,..., N}, where P_i is the empirical measure of data or simulated sample
- ► (Financial market) Q = {P} ∪ Q_M where Q_M is the set of martingale pricing measures in a financial market

◆□ → ◆□ → ◆ = → ◆ = → ◆ □ → ◆ ○ ◆

Q-based risk measures

 \mathcal{Q} -based risk measures bridge law-based ones and generic ones

 Simplest Q-based risk measures: taking an operation on some law-based risk measures under different scenarios

Motivation 000000000000	Scenario-based risk evaluation	Characterization 000000	Empirical studies	Summary 000
Obeced	rick moneyroe			

Q-based risk measures

Example (Systemic risk measures).

For a fixed random variable S (the system) and $p \in (0,1)$, CoVaR is defined as:

$$\mathrm{CoVaR}^{\mathcal{S}}_{p}(X) = \mathrm{VaR}^{\mathbb{P}}_{p}(\mathcal{S}|X = \mathrm{VaR}^{\mathbb{P}}_{p}(X)), \ \ X \in \mathcal{L},$$

and CoES is defined as:

$$\operatorname{CoES}_p^{\mathcal{S}}(X) = \mathbb{E}^{\mathbb{P}}[\mathcal{S}|\mathcal{S} \geq \operatorname{CoVaR}_p^{\mathcal{S}}(X)], \ X \in \mathcal{L}.$$

CoVaR and CoES are determined by the joint distribution of (X, S), thus Q-based risk measures for $Q = \{\mathbb{P}(\cdot|S = s) : s \in \mathbb{R}\}$.

e.g. Adrian-Brunnermeier'16	(口) (聞) (言) (言)	三日 のへで
Ruodu Wang (wang@uwaterloo.ca)	Scenario-based risk evaluation	22/62

Scenario-based risk evaluation

Characterization Empirical studies

tudies Compa 0000000 0000 Summa 000

Q-based risk measures

Example.

The risk measure ρ based on multiple scenarios, given by

$$\rho(X) = \sup_{(w_1,\ldots,w_n)\in\mathcal{W}} \left\{ \sum_{i=1}^n w_i \rho_{h_i}^{Q_i}(X) \right\}, \quad X \in \mathcal{L},$$

is a \mathcal{Q} -based risk measure for $Q \in \{Q_1, \ldots, Q_n\}$.

 Introduced in Section 3 of Kou-Peng'16
 Image: Comparison of Kou-Peng'16
 Image: Comparison of Kou-Peng'16

 Ruodu Wang (wang@uwaterloo.ca)
 Scenario-based risk evaluation
 23/62

Max-ES and Max-VaR

Fix Q and $p \in (0, 1)$.

Max-ES

The Max-ES (MES) is defined as

$$\operatorname{MES}_p^{\mathcal{Q}}(X) = \sup_{Q \in \mathcal{Q}} \operatorname{ES}_p^Q(X), \ X \in \mathcal{L}.$$

Max-VaR

The Max-VaR (MVaR) is defined as

$$\operatorname{MVaR}_p^{\mathcal{Q}}(X) = \sup_{Q \in \mathcal{Q}} \operatorname{VaR}_p^Q(X), \ X \in \mathcal{L}.$$

-

(日) (同) (三) (三)

Motivation 000000000000	Scenario-based risk evaluation	Characterization	Empirical studies	Compatibility 0000000	Summary 000

Max-ES and Max-VaR

Theorem 2

For $p \in (0,1)$, the following hold.

(i) MES_{p}^{Q} is coherent, but generally not comonotonic-additive.

(ii) $MVaR_{p}^{Q}$ is comonotonic-additive, but generally not coherent.

Sharp contrast to the case of a single scenario!

Notes.

- a risk measure is coherent if it is monotone, translation-invariant, positively homogeneous and convex (or subadditive); this includes ES^Q_p
- ▶ a risk measure is comonotonic-additive if it is additive for comonotonic random variables; this includes ES^Q_p and VaR^Q_p

(Properties of risk measures: Artzner-Delbaen-Eber-Heath'99, Kusuoka'01) + E =

Ruodu Wang (wang@uwaterloo.ca) Scenario-based risk evaluation 25/62

Max-ES and Max-VaR

Alternative generalizations of ES ($Q = \{Q_1, \dots, Q_n\}$): (i) Average-ES

$$\operatorname{AES}_p^{\mathcal{Q}}(X) = \frac{1}{n} \sum_{i=1}^n \operatorname{ES}_p^{Q_i}(X), \ X \in \mathcal{L}.$$

(ii) integral Max-ES

$$\mathrm{iMES}_p^{\mathcal{Q}}(X) = \frac{1}{1-p} \int_p^1 \mathrm{MVaR}_q^{\mathcal{Q}}(X) \mathrm{d}q, \ X \in \mathcal{L}.$$

(iii) replicated Max-ES

$$\mathrm{rMES}_p^\mathcal{Q}(X) = \mathrm{ES}_p^\mathbb{P}\left(\max_{i=1,...,n}F_{X,Q_i}^{-1}(U_i)
ight), \ \ X\in\mathcal{L},$$

where U_1, \ldots, U_n are iid U[0, 1] under \mathbb{P} .

Motivation 000000000000	Scenario-based risk evaluation	Characterization	Compatibility 0000000	Summary 000

Max-ES and Max-VaR

Theorem 3

Let \mathcal{Q} be a collection of n scenarios and $p \in (0, 1)$.

- (i) AES_{p}^{Q} is comonotonic-additive and coherent.
- (ii) $iMES_p^Q$ is comonotonic-additive, but generally not coherent.

(iii) $\mathrm{rMES}_{p}^{\mathcal{Q}}$ is comonotonic-additive and coherent.

(iv)
$$\operatorname{AES}_{p}^{\mathcal{Q}} \leq \operatorname{MES}_{p}^{\mathcal{Q}} \leq \operatorname{iMES}_{p}^{\mathcal{Q}} \leq \operatorname{rMES}_{p}^{\mathcal{Q}}$$
 on \mathcal{L} .

(v) If n = 1, then $\operatorname{AES}_p^{\mathcal{Q}} = \operatorname{MES}_p^{\mathcal{Q}} = \operatorname{iMES}_p^{\mathcal{Q}} = \operatorname{rMES}_p^{\mathcal{Q}}$ on \mathcal{L} .

 After all, it is not clear which definition is the most natural generalization of ES.

김 글 제 김 제 글 말 글 날

Motivation 000000000000	Scenario-based risk evaluation	Characterization 000000	Empirical studies	Compatibility 0000000	Summary 000

Q-based risk measures

Example. $\mathcal{Q} = \{Q_1, Q_2\},\$

$$\rho(X) = 2\mathbb{E}^{Q_1}[X] - \mathbb{E}^{Q_2}[X], \quad X \in \mathcal{X}.$$

• ρ is coherent $\Leftrightarrow Q_2 \leq 2Q_1$, i.e. $\rho(X) = \mathbb{E}^{2Q_1 - Q_2}[X]$

<u>Remarks.</u>

- Properties of ρ depends on
 - how distributions are aggregated
 - relationship among ${\cal Q}$
- Many ways of aggregating distributions under each scenario
- Mathematical treatment is different from the law-based case
- New challenges!

Motivation 000000000000	Scenario-based risk evaluation	Characterization	Compatibility 0000000	Summary 000

Progress of the talk

- Motivation and the Basel ES formula
- 2 Scenario-based risk evaluation
- 3 Axiomatic characterization
- 4 Empirical studies
- 5 Compatibility of scenarios

6 Summary

4 E > 4 E > E

Mathematical contributions:

- Axiomatic characterization for all comonotonic-additive \mathcal{Q} -based risk measures
- Axiomatic characterization for all coherent *Q*-based risk measures, if \mathcal{Q} is mutually singular
- Equivalent condition for compatibility of scenarios with a given set of distributions

Assumptions:

- X: the set of bounded random variables
- $Q = \{Q_1, \ldots, Q_n\}$: a finite set of scenarios

Motivation 000000000000	Scenario-based risk evaluation	Characterization 0●0000	Empirical studies	Compatibility 0000000	Summary 000

Distortion risk measures

- ► Q-distortion risk measure
 - $\Leftrightarrow \{Q\}\text{-based, comonotonic-additive, monetary}$
- Q-spectral risk measure
 - $\Leftrightarrow \{Q\}\text{-based, comonotonic-additive, coherent}$
- They have a Choquet integral form, for $X \ge 0$,

$$\rho_g(X) = \int X \mathrm{d}g \circ Q = \int_0^\infty g \circ Q(X > x) \mathrm{d}x.$$

The distortion function g:[0,1]
ightarrow [0,1], g(0)=1-g(1)=0,

- g increasing $\Leftrightarrow \rho_g$ distortion
- g increasing and concave $\Leftrightarrow \rho_g$ spectral

(Yaari'87, Wang-Young-Panjer'97, Kusuoka'01, Föllmer=Schied'16) = → < = → = = → へ (

Summary 000

\mathcal{Q} -distortion risk measures

$\mathcal Q\text{-distortion}$ risk measures

• Q-distortion risk measure

 $\Leftrightarrow \mathcal{Q}\text{-based, comonotonic-additive, monetary}$

Q-spectral risk measure

 $\Leftrightarrow \mathcal{Q}\text{-based, comonotonic-additive, coherent}$

They have a Choquet integral form, for $X \ge 0$,

$$\rho_{\psi}(X) = \int_0^\infty \psi \circ (Q_1, \ldots, Q_n)(X > x) \mathrm{d}x.$$

The distortion function $\psi: [0,1]^n
ightarrow [0,1]$, $\psi(\mathbf{0}) = 1 - \psi(\mathbf{1}) = 0$,

- ψ componentwise increasing $\Rightarrow \rho_{\psi}$ distortion
- ▶ ψ componentwise increasing, componentwise concave and submodular $\Rightarrow \rho_{\psi}$ spectral

Q-distortion risk measures

Example.

$$2\mathbb{E}^{\mathcal{Q}_1}[X] - \mathbb{E}^{\mathcal{Q}_2}[X] = \int X \mathrm{d}\psi \circ (\mathcal{Q}_1, \mathcal{Q}_2)$$

where $\psi(u_1, u_2) = 2u_1 - u_2$, $(u_1, u_2) \in [0, 1]^2$. If $Q_2 \leq 2Q_1$, then ρ is a Q-spectral risk measure, but ψ is not componentwise increasing.

- A characterization of ψ for Q-distortion risk measures is available depending on Q.
- One can choose $\psi(\mathbf{u}) = 1 C(1 \mathbf{u})$ for some copula C

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 のへで

Scenario-based risk evaluation

Characterization 0000●0 Empirical studies

Compatibility 0000000

Coherent Q-based risk measures

Theorem 4

Suppose that Q is mutually singular. A functional $\rho : \mathcal{X} \to \mathbb{R}$ is a Q-based coherent risk measure if and only if it is the maximum of some mixtures of Q-Expected Shortfalls, $Q \in Q$.

- mutual singularity is used twice: once to establish the Fatou property, once to show that a Kusuoka-type argument leads to spectral risk measures
- Characterization is unclear if Q is not mutually singular

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 のへで

Scenario-based risk evaluation

Characterization

Empirical studies

Compatibility 0000000 Summary 000

Basel's IMA ES formula

The Basel's IMA ES formula is roughly a combination of maximums and linear combinations of ES under various scenarios.

Compare with Theorem 4: not too bad, after all!

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 のへで

Motivation 00000000000 Scenario-based risk evaluation

Characterization

Empirical studies

Compatibility

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ► ● ○ ● ○ ● ○

Summary 000

Progress of the talk

- Motivation and the Basel ES formula
- 2 Scenario-based risk evaluation
- 3 Axiomatic characterization
- 4 Empirical studies
- 5 Compatibility of scenarios

6 Summary

Motivation 0000000000 Scenario-based risk evaluation 000000000000 Characterization 000000 Empirical studies

Compatibility 0000000 Summary 000

Non-parametric statistical inference

Suppose observations are available under \mathbb{P} , and we aim to calculate a \mathcal{Q} -based risk measure evaluated at X, e.g. $\operatorname{MES}_{p}^{\mathcal{Q}}(X)$.

- Only observations of X under \mathbb{P} are not enough
- ▶ We need a framework to allow for inference of dQ/dP for $Q \in Q$.
- Think about the Basel evaluation procedure: each observation is observed together with the economic scenarios

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ⊨ ● の Q @

Motivation	Scenario-based risk evaluation	Characterization	Empirical studies	Compatibility	Summary
000000000000		000000	000000000000000000000000000000000000	0000000	000
Statistica	l inference				

General settings

- (i) **Full model.** Vector data X_1, \ldots, X_N are observed, where $X_j = (X_j, Z_{1,j}, \ldots, Z_{n,j}), j = 1, \ldots, N$, are observations from $(X, \frac{\mathrm{d}Q_1}{\mathrm{d}\mathbb{P}}, \ldots, \frac{\mathrm{d}Q_n}{\mathrm{d}\mathbb{P}})$ under \mathbb{P} .
- (ii) **Categorical model.** Suppose that $Q_i(\cdot) = \mathbb{P}(\cdot|A_i)$ for some $A_i \in \mathcal{F}$ with $\mathbb{P}(A_i) > 0$, i = 1, ..., n. Vector data $\mathbf{X}_1, ..., \mathbf{X}_N$ are observed, where $\mathbf{X}_j = (X_j, Z_{1,j}, ..., Z_{n,j})$, j = 1, ..., N, are observations from $(X, I_{A_1}, ..., I_{A_n})$ under \mathbb{P} .
- (iii) Individual models. *n* sequences of data $\{X_1^1, \ldots, X_{N_1}^1\}, \ldots, \{X_1^n, \ldots, X_{N_n}^n\}$ are observed, where for $i = 1, \ldots, n$, $X_1^i, \ldots, X_{N_i}^i$ are observations of X under Q_i .

の ク ピ エー・ イ ヨー・ く 見

Motivation	Scenario-based risk evaluation	Characterization	Empirical studies	Compatibility	Summary
			000000000000000000000000000000000000000		

Empirical distributions

The empirical distribution $\hat{F}_N^{Q_i}$ of X under Q_i , i = 1, ..., n: (i) **Full model.**

$$\hat{F}_N^{Q_i}(x) = rac{1}{N}\sum_{j=1}^N Z_{i,j}\mathrm{I}_{\{X_j\leq x\}}, \ x\in\mathbb{R}.$$

(ii) Categorical model.

$$\hat{F}_N^{Q_i}(x) = \frac{\sum_{j=1}^N Z_{i,j} \mathrm{I}_{\{X_j \leq x\}}}{\sum_{j=1}^N Z_{i,j}}, \ x \in \mathbb{R}.$$

(iii) Individual models. $(N = \sum_{i=1}^{n} N_i)$

$$\hat{F}_N^{Q_i}(x) = rac{1}{N_i} \sum_{j=1}^{N_i} \mathrm{I}_{\{X_j^i \leq x\}}, \ x \in \mathbb{R}.$$

A = A = A = A = A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	Scenario-based risk evaluation	Characterization 000000	Empirical studies	
Empirical	estimators			

- ► Under regular assumptions on the observations, consistency of *F_N^{Q_i* for *F_{X,Q_i}*, i.e. *F_{Q_i}^N* → *F_{X,Q_i}* can be established in each setting}
- One can empirically estimate a Q-based risk measure by applying it to the empirical distributions
- Consistency and asymptotics of such empirical estimators are possible, under suitable assumptions on both the observations and the risk measure

▲ E ► ▲ E ► ▲ E ► <</p>

Q-based Expected Shortfalls for economic scenarios

Simple empirical study

- A series of returns $(X_t)_{t\in\mathbb{N}}$ for each trading day
- Rolling window of length 250 for the estimation
- n = 4 scenarios taken from {high volatility, low volatility} × {good economy, bad economy}.
- Divide the data into 4 categories according to first VIX (since 1990) and then S&P 500.
- $\triangleright \quad Q_i = \mathbb{P}(\cdot | \Theta = \theta_i).$
- Estimate the risk measures $\mathrm{ES}_p^\mathbb{P}$, $\mathrm{MES}_p^\mathcal{Q}$, $\mathrm{iMES}_p^\mathcal{Q}$, and $\mathrm{rMES}_p^\mathcal{Q}$
- Take *p* = 0.9

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

Scenario-based risk evaluation

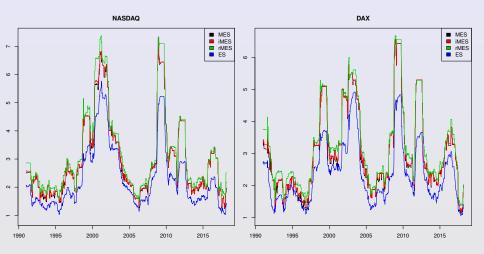
Characterization

Empirical studies

mpatibility 000000

Summary 000

Q-based Expected Shortfalls for economic scenarios



(日) (四) (日) (日) (日)

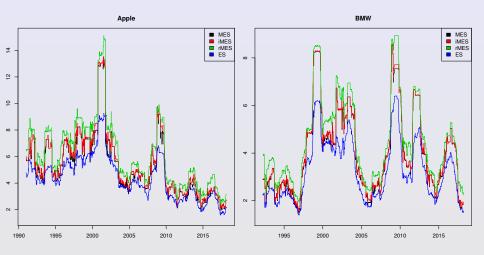
Scenario-based risk evaluatior 000000000000 Characterization

Empirical studies

mpatibility

Summary 000

Q-based Expected Shortfalls for economic scenarios



< 日 > < 同 > < 三 > < 三 > :

315

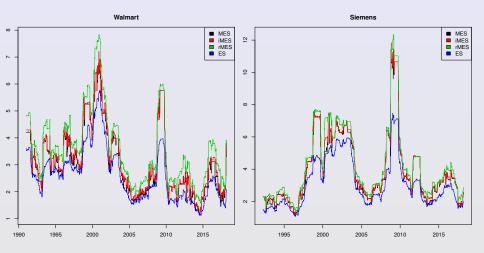
Scenario-based risk evaluation

Characterization 000000

Empirical studies

npatibility 00000

Q-based Expected Shortfalls for economic scenarios



(a)

315

Q-based Expected Shortfalls for economic scenarios

Observations

- MES_p and $iMES_p$ yield similar values.
- During times of financial stress, MES_p and ES_p deviate substantially.
- ► For the indices MES_p and rMES_p are closer than for the stock returns.
- During economically stable periods, the ratio between rMES_p and MES_p is generally larger than during financial stress.
- ► The ratio MES_p/ES_p distinguishes the early 2000s recession from the 2008 financial crisis, except for Apple.

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ⊨ ● の Q @

Summary 000

The Basel stress-adjustment for Expected Shortfall

- ▶ P_t^i , i = 1, ..., n, $t \in \mathbb{N}$ denote the time-*t* price of security *i*
- $X_t^i = -(P_t^i/P_{t-1}^i 1)$ the daily negative return
- Construct a portfolio with price process $V_t = \sum_{i=1}^n \alpha_i P_t^i$ where α_i is fixed throughout the investment period
- Each portfolio starts from \$1
- At time t 1, the numbers α_i and P_{t-1}^i are known
- Calculate ES of the daily loss $V_{t-1} V_t$

$$\mathrm{ES}_{p}^{P}(V_{t-1}-V_{t})=\mathrm{ES}_{p}^{P}\left(\sum_{i=1}^{n}X_{t}^{i}\alpha_{i}P_{t-1}^{i}\right),$$

where p = 0.975 in [B16]

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Summary 000

The Basel stress-adjustment for Expected Shortfall

- Stress-adjustment: to mimic [B16] (dating back to 2007), we date back to 10 years for all t
- Evaluate

$$\mathrm{MES}_{p}^{\mathcal{Q}}(V_{t-1}-V_{t}) = \max_{j=1,\ldots,N} \mathrm{ES}_{p}^{Q_{j}}\left(\sum_{i=1}^{n} X_{t}^{i} \alpha_{i} P_{t-1}^{i}\right),$$

- where N = 2251, $Q = \{Q_j\}_{j=1,...,N}$, and under Q_j , (X_t^1, \ldots, X_t^n) is distributed according to its empirical distribution over the time period [t j 249, t j].
- A US stocks portfolio (Apple and Walmart) and a German stocks portfolio (BMW and Siemens)

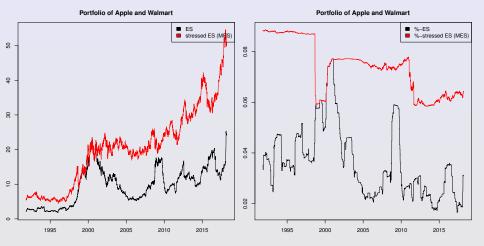
◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Motivation 00000000000 Scenario-based risk evaluation

Characterization 000000 Empirical studies

mpatibility 000000 Summar 000

The Basel stress-adjustment for Expected Shortfall



Ruodu Wang (wang@uwaterloo.ca) Scenario-based risk evaluation

Image: Image:

고 노

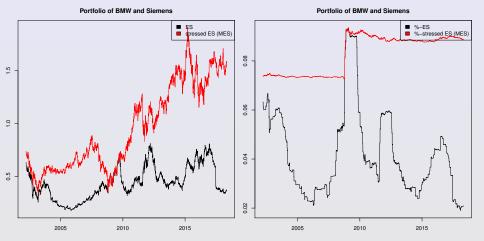
A B > A B >

Motivation 00000000000 Scenario-based risk evaluation 000000000000 Characterization

Empirical studies

mpatibility

The Basel stress-adjustment for Expected Shortfall



< ロ > < 同 > < 回 > < 回 > < 回 > <

글 날

Summary 000

The Basel stress-adjustment for Expected Shortfall

Observations

- The percentage MES is relatively stable (6% 9%), and the ES is changing drastically (2% 9%).
- The US portfolio has a high percentage MES till 1998 (because of the Black Monday, Oct 19, 1987).
- Right before 2007:
 - Using ES, both portfolio exhibit serious under capitalization, and their ES values increased drastically when the financial crisis took place.
 - Using MES, the requirement of capital for both portfolios only increased moderately during the financial crisis.

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ► ● ○ ● ○ ● ○

Motivation 000000000000 Scenario-based risk evaluation

Characterization

Empirical studies

Compatibility

Summary

Progress of the talk

- Motivation and the Basel ES formula
- 2 Scenario-based risk evaluation
- 3 Axiomatic characterization
- 4 Empirical studies
- 5 Compatibility of scenarios

6 Summary

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ► ● ○ ● ○ ● ○

Scenario-based risk evaluation

 Q_1

 F_1

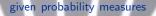
 F_2

Characterization

Empirical studies

Compatibility ●000000 Summary 000

Compatibility of scenarios



 $F_i(\cdot) = Q_i(X \in \cdot)$

 F_n

exists?

given distributions

 F_3

Motivation 000000000000 Scenario-based risk evaluation

Characterization

Empirical studies

Compatibility ○●○○○○○ Summary 000

Compatibility of scenarios

Notation

- \mathcal{F} : the set of distribution measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- ► *J*: a (possibly uncoutable) set of indices.

Definition 5

 $(Q_i)_{i \in \mathcal{J}} \subset \mathcal{P}$ and $(F_i)_{i \in \mathcal{J}} \subset \mathcal{F}$ are compatible if there exists a random variable X in (Ω, \mathcal{A}) such that $X \sim_{Q_i} F_i$ for $i \in \mathcal{J}$.

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ► ● ○ ● ○ ● ○

Empirical studies

Compatibility 000000 Summary 000

Compatibility of scenarios

Simple intuitions

- Q_1, \ldots, Q_n identical $\Rightarrow F_1, \ldots, F_n$ identical
- Q_1, \ldots, Q_n equivalent $\Rightarrow F_1, \ldots, F_n$ equivalent
- Q_1, \ldots, Q_n mutually singular $\Rightarrow F_1, \ldots, F_n$ arbitrary
- F_1, \ldots, F_n mutually singular $\Rightarrow Q_1, \ldots, Q_n$ mutually singular

 Q_1, \ldots, Q_n are more different (heterogeneous) than F_1, \ldots, F_n !

▶ How do we model heterogeneity of $(Q_i)_{i \in \mathcal{J}}$ and $(F_i)_{i \in \mathcal{J}}$?

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Characterization 000000 Empirical studies

Compatibility 0000000 Summary 000

Characterization of compatibility via heterogeneity

Theorem 6

Suppose that $(Q_1, ..., Q_n) \in \mathcal{P}^n$ is conditionally atomless. $(Q_1, ..., Q_n)$ and $(F_1, ..., F_n) \in \mathcal{F}^n$ are compatible if and only if $\left(\frac{\mathrm{d}F_1}{\mathrm{d}F}, ..., \frac{\mathrm{d}F_n}{\mathrm{d}F}\right)\Big|_F \prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q}, ..., \frac{\mathrm{d}Q_n}{\mathrm{d}Q}\right)\Big|_Q$ for some $F \in \mathcal{F}$, $(F_1, ..., F_n) \ll F$ and $Q \in \mathcal{P}$, $(Q_1, ..., Q_n) \ll Q$,

where \prec_{cx} is the multivariate convex order.

We call this relation heterogeneity order

more technical details

 (Q_1, \ldots, Q_n) is conditionally atomless if there exist $Q \in \mathcal{P}$, $(Q_1, \ldots, Q_n) \ll Q$ and a continuous random variable independent of $(\frac{dQ_1}{dQ}, \ldots, \frac{dQ_n}{dQ})$ under Q.

Summary 000

Characterization of compatibility via heterogeneity

Remarks

- Easy to check, especially for n = 2
- It is insufficient to assume each $(\Omega, \mathcal{A}, Q_i)$ is atomless
- ► The result can be generalized to measures on a general measurable space, e.g. measures on ℝ^d or on the path space of càdlàg processes

 Motivation
 Scenario-based risk evaluation
 Characterization
 Er

 0000000000
 0000000000
 000000
 000000
 000000

Empirical studies

Compatibility S

Relation to the Girsanov Theorem

- $P \in \mathcal{P}$ and $B = \{B_t\}_{t \in [0, \mathcal{T}]}$ is a P-standard BM
- θ and μ are [0, T]-square integrable deterministic processes
- Q_{θ} is given by

$$\frac{\mathrm{d}Q_{\theta}}{\mathrm{d}P} = e^{\int_0^T \theta_t \mathrm{d}B_t - \frac{1}{2}\int_0^T \theta_t^2 \mathrm{d}t}$$

• G_{μ} is the distribution measure of a BM with drift process μ

Theorem 7

Suppose that $\mu_t \neq 0$ for a.e. $t \in [0, T]$. (P, Q_θ) and (G_0, G_μ) are compatible if and only if $\int_0^T \mu_t^2 dt \leq \int_0^T \theta_t^2 dt$.

《日》《圖》《문》《문》 문법

Motivation 00000000000 Scenario-based risk evaluation

Characterization 000000 Empirical studies

Compatibility 000000● Summary 000

Related optimization problems

Given $P, Q \in \mathcal{P}$,

- If X ∼_Q G, find the maximum and minimum values of E^P[X], VaR^P_p(X), ES^P_p(X), Var^P(X), ...
- What if we know $X \sim_{Q_i} F_i$, i = 1, ..., n? (very challenging)
- Connected to many well-known problems, e.g. the knapsack problem (continuous setting), robust utility, robust variance, Fréchet-Hoeffding, Neyman-Pearson, ...

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Scenario-based risk evaluation	Characterization	Empirical studies	Compatibility 0000000	Summary

Progress of the talk

- Motivation and the Basel ES formula
- 2 Scenario-based risk evaluation
- 3 Axiomatic characterization
- 4 Empirical studies
- 5 Compatibility of scenarios

6 Summary

4 E > 4 E > E

Motivation 000000000000	Scenario-based risk evaluation	000000	Empirical studies 000000000000000	•00
Summary	,			

- A framework for scenario-based risk evaluation
 - new classes of risk measures (e.g. MES and MVaR)
 - axiomatic characterization
 - statistical analysis
 - characterization of compatibility
 - applicable to almost all existing distributional problems
- Related mathematics:

Juillia

- functional analysis (e.g. Hahn-Banach, Meyer-Choquet)
- vector measure theory (e.g. Lyapunov)
- statistical decision theory (e.g. Blackwell)
- dependence modeling (e.g. Fréchet-Hoeffding)
- many open mathematical and optimization questions!

물 비 에 물 비

Motivation 000000000000		Empirical studies	Summary 0●0

Allegory

"How could they see anything but the shadows if they were never allowed to move their heads?"

- Plato, Republic (380 BC), The Allegory of the Cave

Motivation	Scenario-based risk evaluation	Characterization	Empirical studies	Compatibility	Summary
000000000000	000000000000	000000	000000000000000	0000000	000

References I

- Adrian, T. and Brunnermeier, M. K. (2016). CoVaR. American Economic Review, 106(7), 1705-1741.
- Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. *Mathematical Finance*, **9**(3), 203–228.
 - Blackwell, D. (1951). Comparison of experiments. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1, 93–102.
- Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An academic response to Basel 3.5. *Risks*, 2(1), 25-48.
 - Föllmer, H. and Schied, A. (2016). *Stochastic Finance. An Introduction in Discrete Time*. Walter de Gruyter, Berlin, Fourth Edition.
 - Kou, S. and Peng, X. (2016). On the measurement of economic tail risk. *Operations Research*, **64**(5), 1056–1072.
 - Kusuoka, S. (2001). On law invariant coherent risk measures. Advances in Mathematical Economics, 3, 83–95.
- Wang, S., Young, V. R. and Panjer, H. H. (1997). Axiomatic characterization of insurance prices. *Insurance: Mathematics and Economics*, **21**(2), 173–183.
- Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55(1), 95-115.

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ◆ □ ▶ ◆ ○ ●

Multivariate convex order

Fix a positive integer n.

- ▶ For $\mathbf{X} \in L_1^n(\Omega_1, \mathcal{A}_1, P_1)$ and $\mathbf{Y} \in L_1^n(\Omega_2, \mathcal{A}_2, P_2)$, write $\mathbf{X}|_{P_1} \prec_{\mathrm{cx}} \mathbf{Y}|_{P_2}$, if $\mathbb{E}^{P_1}[f(\mathbf{X})] \leq \mathbb{E}^{P_2}[f(\mathbf{Y})]$ for all convex functions $f : \mathbb{R}^n \to \mathbb{R}$.
- ► Let M₁ and M₂ be the sets of probability measures on two arbitrary measurable spaces.

▲冊▶ ▲目▶ ▲目▶ 目目 のへべ

Heterogeneity order

Definition 8 (Heterogeneity order)

 $(P_1, \ldots, P_n) \in \mathcal{M}_1^n$ is dominated by $(Q_1, \ldots, Q_n) \in \mathcal{M}_2^n$ in heterogeneity, denoted by $(P_1, \ldots, P_n) \prec_{\mathrm{h}} (Q_1, \ldots, Q_n)$, if

$$\left(\frac{\mathrm{d}P_1}{\mathrm{d}P},\ldots,\frac{\mathrm{d}P_n}{\mathrm{d}P}\right)\Big|_P\prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\ldots,\frac{\mathrm{d}Q_n}{\mathrm{d}Q}\right)\Big|_Q$$

for some $P \in \mathcal{M}_1$ and $Q \in \mathcal{M}_2$ with $(P_1, \ldots, P_n) \ll P$ and $(Q_1, \ldots, Q_n) \ll Q$.

• $\prec_{\rm h}$ is easy to check, especially for n=2

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ⊨ ● の Q @

Properties of heterogeneity order

The reference measures P and Q in

$$\left(\frac{\mathrm{d}P_1}{\mathrm{d}P},\ldots,\frac{\mathrm{d}P_n}{\mathrm{d}P}\right)\Big|_P \prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\ldots,\frac{\mathrm{d}Q_n}{\mathrm{d}Q}\right)\Big|_Q \tag{1}$$

do not matter, and therefore \prec_h is a partial order.

Lemma 9 For $(P_1, \ldots, P_n) \in \mathcal{M}_1^n$ and $(Q_1, \ldots, Q_n) \in \mathcal{M}_2^n$, equivalent are: (i) $(P_1, \ldots, P_n) \prec_h (Q_1, \ldots, Q_n)$. (ii) For $P = \frac{1}{n} \sum_{i=1}^n P_i$ and $Q = \frac{1}{n} \sum_{i=1}^n Q_i$, (1) holds. (iii) For any $Q \in \mathcal{M}_2^*$, there exists $P \in \mathcal{M}_1^*$ such that (1) holds.

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ⊨ ● の Q @

Properties of heterogeneity order

For
$$(P_1, \ldots, P_n) \in \mathcal{M}_1^n$$
 and $(Q_1, \ldots, Q_n) \in \mathcal{M}_2^n$,
(i) P_1, \ldots, P_n identical $\Rightarrow (P_1, \ldots, P_n) \prec_h (Q_1, \ldots, Q_n)$;
(ii) Q_1, \ldots, Q_n mutually singular $\Rightarrow (P_1, \ldots, P_n) \prec_h (Q_1, \ldots, Q_n)$.
If $(P_1, \ldots, P_n) \prec_h (Q_1, \ldots, Q_n)$,
(iii) Q_1, \ldots, Q_n identical $\Rightarrow P_1, \ldots, P_n$ identical;
(iv) Q_1, \ldots, Q_n equivalent $\Rightarrow P_1, \ldots, P_n$ equivalent;
(v) P_1, \ldots, P_n mutually singular $\Rightarrow Q_1, \ldots, Q_n$ mutually singular.

(ii) is due to the Meyer-Choquet Theorem Ruodu Wang (wang@uwaterloo.ca) Scenario-based risk evaluation 66/62

Heterogeneity order and compatibility

Lemma 10

If $(Q_1, \ldots, Q_n) \in \mathcal{P}^n$ and $(F_1, \ldots, F_n) \in \mathcal{F}^n$ are compatible, then $(F_1, \ldots, F_n) \prec_{\mathrm{h}} (Q_1, \ldots, Q_n).$

why are heterogeneity order and compatibility closely related?

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ► ● ○ ● ○ ● ○

Second characterization of compatibility

Theorem 11

For $(Q_i)_{i \in \mathcal{J}} \subset \mathcal{P}$ and $(F_i)_{i \in \mathcal{J}} \subset \mathcal{F}$ and $X \in L(\Omega, \mathcal{A})$, assuming that there exists a probability measure in \mathcal{P} dominating $(Q_i)_{i \in \mathcal{J}}$, equivalent are:

(i)
$$X \sim_{Q_i} F_i$$
 for all $i \in \mathcal{J}$.

(ii) For all $Q \in \mathcal{P}$ dominating $(Q_i)_{i \in \mathcal{J}}$, the probability measure $F = Q \circ X^{-1}$ dominates $(F_i)_{i \in \mathcal{J}}$, and

$$\frac{\mathrm{d}F_i}{\mathrm{d}F}(X) = \mathbb{E}^Q \left[\frac{\mathrm{d}Q_i}{\mathrm{d}Q} \middle| X \right] \quad \text{for all } i \in \mathcal{J}.$$
(2)

(iii) For some $Q \in \mathcal{P}$ dominating $(Q_i)_{i \in \mathcal{J}}$, the probability measure $F = Q \circ X^{-1}$ dominates $(F_i)_{i \in \mathcal{J}}$ and (2) holds.

Special case: n = 2

Corollary 12

For $(Q_1, Q_2) \in \mathcal{P}^2$, $Q_1 \ll Q_2$ and $(F_1, F_2) \in \mathcal{F}^2$, (Q_1, Q_2) and (F_1, F_2) are compatible if and only if there exists $X \in L(\Omega, \mathcal{A})$ with distribution F_2 under Q_2 , such that $F_1 \ll F_2$ and

$$\frac{\mathrm{d}F_1}{\mathrm{d}F_2}(X) = \mathbb{E}^{Q_2} \left[\frac{\mathrm{d}Q_1}{\mathrm{d}Q_2} \Big| X \right].$$

Such conditions are not easy to check in general

Second characterization of compatibility

Is $(F_1, \ldots, F_n) \prec_{\mathrm{h}} (Q_1, \ldots, Q_n)$ sufficient for compatibility?

From

$$\left(\frac{\mathrm{d}F_1}{\mathrm{d}F},\ldots,\frac{\mathrm{d}F_n}{\mathrm{d}F}\right)\Big|_F\prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\ldots,\frac{\mathrm{d}Q_n}{\mathrm{d}Q}\right)\Big|_Q$$

to the existence of X such that

$$\left(\frac{\mathrm{d}F_1}{\mathrm{d}F},\ldots,\frac{\mathrm{d}F_n}{\mathrm{d}F}\right)(X) = \mathbb{E}^Q\left[\left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\ldots,\frac{\mathrm{d}Q_n}{\mathrm{d}Q}\right)\Big|X\right].$$

is a martingale construction problem in the same probability space.

Conditionally atomless measures

Definition 13

 $(Q_1, \ldots, Q_n) \in \mathcal{P}^n$ is conditionally atomless if there exist $Q \in \mathcal{P}$ dominating (Q_1, \ldots, Q_n) and a continuous random variable in (Ω, \mathcal{A}) independent of $(\frac{\mathrm{d}Q_1}{\mathrm{d}Q}, \ldots, \frac{\mathrm{d}Q_n}{\mathrm{d}Q})$ under Q.

- Q can always be chosen as $\frac{1}{n} \sum_{i=1}^{n} Q_i$.
- If (Q₁,..., Q_n) is conditionally atomless, then each of (Ω, A, Q_i), i = 1,..., n, is atomless.
- If Q₁,..., Q_n are mutually singular and each of (Ω, A, Q_i), i = 1,..., n, is atomless, then (Q₁,..., Q_n) is conditionally atomless.

◆□ → ◆□ → ◆ = → ◆ = → ◆ □ → ◆ ○ ◆

Characterization of compatibility via heterogeneity

Assume $(F_1, \ldots, F_n) \ll F$ and $(Q_1, \ldots, Q_n) \ll Q$. A key condition

$$\left(\frac{\mathrm{d}F_1}{\mathrm{d}F},\ldots,\frac{\mathrm{d}F_n}{\mathrm{d}F}\right)\Big|_F \prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\ldots,\frac{\mathrm{d}Q_n}{\mathrm{d}Q}\right)\Big|_Q.$$
(3)

Theorem 14

Suppose that $(Q_1, ..., Q_n) \in \mathcal{P}^n$ is conditionally atomless, and $(F_1, ..., F_n) \in \mathcal{F}^n$. Equivalent are (i) $(Q_1, ..., Q_n)$ and $(F_1, ..., F_n)$ are compatible. (ii) For some $F \in \mathcal{F}$ and $Q \in \mathcal{P}$, (3) holds. (iii) For $F = \frac{1}{n} \sum_{i=1}^n F_i$ and $Q = \sum_{i=1}^n Q_i$, (3) holds.

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ⊨ ● の Q @