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Risk measures

A risk measure maps a risk (via a model) to a number

I regulatory capital calculation ← our main interpretation

I management, optimization and decision making

I performance analysis and capital allocation

I pricing

Risks ...

I modelled by random losses in a specified period

I in some probability space (Ω,F ,P)
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Value-at-Risk and Expected Shortfall

Value-at-Risk (VaR) at level p ∈ (0, 1)

VaRP
p : L → R,

VaRP
p(X ) = inf{x ∈ R : P(X ≤ x) ≥ p}.

Expected Shortfall (ES/TVaR/CVaR/AVaR) at level p ∈ (0, 1)

ESPp : L → R ∪ {∞},

ESPp(X ) =
1

1− p

∫ 1

p
VaRP

q(X )dq.

I positive values of X represent losses

I L: the set of all random variables in (Ω,A)
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Value-at-Risk and Expected Shortfall

The ongoing co-existence of VaR and ES:

I Basel III & IV - both

I Solvency II - VaR

I Swiss Solvency Test - ES

I US Solvency Framework (NAIC ORSA) - both
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Law-based risk measures

VaR and ES are law-based (thus statistical risk functionals):

ρ(X ) = ρ(Y ) if X
d
=P Y (equal in distribution under P)

I distributional models

I statistical inference and data analysis

I simulation tractability

However...

I Is the distribution alone enough to describe a risk, especially

in a complex financial system?

I relation with economic scenarios?

I model uncertainty and robustness?
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Law-based risk measures

Practical considerations

I statistical and simulation tractability

• typically results in a law-based risk measure

I economic scenario sensitivity

• typically results in a non-law-based risk measure

I model uncertainty and robustness

• could be either law-based or not

Question

Can we incorporate the above considerations into a unified

framework?
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Basel’s IMA ES formula for market risk

BIS (Bank for International Settlements) market risk formula:

[B16] Basel Committee on Banking Supervision: Standards,

January 2016, Minimum capital requirements for Market Risk

The standard risk measure in [B16] for market risk is ES0.975.

I internal model approach (IMA): approved desks

I standard approach (SA): others
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Basel’s IMA ES formula for market risk

Aim: calculate capital charge for loss from a portfolio

I T = 10d in [B16]

I p = 0.975, omitted below

I X =
∑n

i=1 Xi is the aggregate portfolio loss at a given day

I Each risk factor is adjusted for their category of liquidity

I Two layers of further adjustments in p.52 - p.69 of [B16]
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Basel’s IMA ES formula for market risk

(i) Stress adjustment.

I Specify a set R of reduced risk factors which has a sufficiently long

history of observation (“at least span back to and including 2007”),

such that θ = ESF (X )
ESR (X ) ≤

4
3 , where ESF (X ) = ESp(

∑n
i=1 Xi ) and

ESR(X ) = ESp(
∑

i∈R Xi ).

I Compute ESR,S(X ), the ES of a model with the reduced risk

factors, “calibrated to the most severe 12-month period of stress”.

I Mathematically, for the collection Q of estimated models,

ESR,S(X ) = max
Q∈Q

ESQp

(∑
i∈R

Xi

)
.
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Basel’s IMA ES formula for market risk

I Use the formula

ẼS(X ) = ESR,S(X )×max{θ, 1}

to get the stress-adjusted ES value,

I In particular, if the portfolio loss is modelled by only risk factors of

sufficiently long history, then R = {1, . . . , n} and

ẼS(X ) = max
Q∈Q

ESQp

(
n∑

i=1

Xi

)
= max

Q∈Q
ESQp (X ).
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Basel’s IMA ES formula for market risk

(ii) Dependence adjustment.

I Risk factors are grouped into a range of broad regulatory risk classes

I Under the stressed scenario, compute the ES of each risk class, and

take their sum ẼSC (X )

• equivalent to comonotonic (“non-diversified”) risk classes

• worst case dependence scenario

I Use the formula, for a constant λ (= 0.5),

ES(X ) = λẼS(X ) + (1− λ)ẼSC (X )

I ES(X ) is called the capital charge for modellable risk factors (IMCC)
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Basel’s IMA ES formula for market risk

In summary, the Basel’s IMA ES formula1:

I Calculates ES of the same portfolio under different scenarios

• stress (stressed, non-stressed)

• dependence (diversified, non-diversified)

I These values are aggregated with mainly two operations

(iteratively): maximum and linear combination

1In addition to (i) and (ii), the IMCC value will finally be adjusted by using the

maximum of its present calculation and a moving average calculation of 60 days times

a constant (currently 1.5).
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Basel’s IMA ES formula for market risk

Two other examples.

I The margin requirements calculation developed by the

Chicago Mercantile Exchange

I The rating of a structured finance security is calculated

according to its conditional distributions under each economic

stress scenario (e.g. Standard and Poor’s and Moody’s).
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Progress of the talk

1 Motivation and the Basel ES formula

2 Scenario-based risk evaluation

3 Axiomatic characterization

4 Empirical studies

5 Compatibility of scenarios

6 Summary
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Scenario-based risk evaluation

Some metaphor

I Scenarios: light sources

I Risks (random outcomes): objects

I Distributions: shadows
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Scenario-based risk evaluation
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Scenario-based risk evaluation
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Scenario-based risk evaluation

Q1 Q2 Q3 · · · · · · Qn

X

scenarios (probability measures)

Fi (·) = Qi (X ∈ ·)

F1 F2 F3 · · · · · · Fn

risk evaluation

⇒
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Q-based risk measures

I Take a collection of scenarios Q ⊂ P of interest

I P: the set of probability measures (scenarios) on (Ω,A)

I X : a convex cone of random variables

Definition 1

A mapping ρ on X is Q-based if ρ(X ) = ρ(Y ) for X ,Y ∈ X
whenever X

d
=Q Y for all Q ∈ Q.

I Two risks are equally risky if they are identically distributed

under all scenarios of interest

I The scenarios should be pre-specified according to the

application
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Examples of Q

I (Basel formula) In the [B16] ES formula, Q is the collection of

many practical scenarios

I (Economic scenario) Q = {P(·|Θ = θ) : θ ∈ Rd}, where Θ is an

economic factor

I (Robust evaluation) Q = {Q ∈ P : d(Q,P) ≤ δ} where d is some

statistical distance (e.g. Kullback-Leibler)

I (Bayesian) Q = {Qθ : θ ∈ Rd}, a parametric family of models

I (Simulation) Q = {Pi : i = 1, . . . ,N}, where Pi is the empirical

measure of data or simulated sample

I (Financial market) Q = {P} ∪ QM where QM is the set of

martingale pricing measures in a financial market
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Q-based risk measures

Q-based risk measures bridge law-based ones and generic ones

{P}︸︷︷︸
law-based

⊂ Q︸︷︷︸
Q-based

⊂ P︸︷︷︸
generic

I Simplest Q-based risk measures: taking an operation on some

law-based risk measures under different scenarios
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Q-based risk measures

Example (Systemic risk measures).

For a fixed random variable S (the system) and p ∈ (0, 1), CoVaR

is defined as:

CoVaRS
p (X ) = VaRP

p(S |X = VaRP
p(X )), X ∈ L,

and CoES is defined as:

CoESSp (X ) = EP[S |S ≥ CoVaRS
p (X )], X ∈ L.

CoVaR and CoES are determined by the joint distribution of

(X , S), thus Q-based risk measures for Q = {P(·|S = s) : s ∈ R}.

e.g. Adrian-Brunnermeier’16
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Q-based risk measures

Example.

The risk measure ρ based on multiple scenarios, given by

ρ(X ) = sup
(w1,...,wn)∈W

{
n∑

i=1

wiρ
Qi
hi

(X )

}
, X ∈ L,

is a Q-based risk measure for Q ∈ {Q1, . . . ,Qn}.

Introduced in Section 3 of Kou-Peng’16
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Max-ES and Max-VaR

Fix Q and p ∈ (0, 1).

Max-ES

The Max-ES (MES) is defined as

MESQp (X ) = sup
Q∈Q

ESQp (X ), X ∈ L.

Max-VaR

The Max-VaR (MVaR) is defined as

MVaRQp (X ) = sup
Q∈Q

VaRQ
p (X ), X ∈ L.
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Max-ES and Max-VaR

Theorem 2

For p ∈ (0, 1), the following hold.

(i) MESQp is coherent, but generally not comonotonic-additive.

(ii) MVaRQp is comonotonic-additive, but generally not coherent.

Sharp contrast to the case of a single scenario!

Notes.

I a risk measure is coherent if it is monotone, translation-invariant, positively

homogeneous and convex (or subadditive); this includes ESQp

I a risk measure is comonotonic-additive if it is additive for comonotonic random

variables; this includes ESQp and VaRQ
p

(Properties of risk measures: Artzner-Delbaen-Eber-Heath’99, Kusuoka’01)
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Max-ES and Max-VaR

Alternative generalizations of ES (Q = {Q1, . . . ,Qn}):

(i) Average-ES

AESQp (X ) =
1

n

n∑
i=1

ESQi
p (X ), X ∈ L.

(ii) integral Max-ES

iMESQp (X ) =
1

1− p

∫ 1

p
MVaRQq (X )dq, X ∈ L.

(iii) replicated Max-ES

rMESQp (X ) = ESPp

(
max

i=1,...,n
F−1
X ,Qi

(Ui )

)
, X ∈ L,

where U1, . . . ,Un are iid U[0, 1] under P.
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Max-ES and Max-VaR

Theorem 3

Let Q be a collection of n scenarios and p ∈ (0, 1).

(i) AESQp is comonotonic-additive and coherent.

(ii) iMESQp is comonotonic-additive, but generally not coherent.

(iii) rMESQp is comonotonic-additive and coherent.

(iv) AESQp ≤ MESQp ≤ iMESQp ≤ rMESQp on L.

(v) If n = 1, then AESQp = MESQp = iMESQp = rMESQp on L.

I After all, it is not clear which definition is the most natural

generalization of ES.
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Q-based risk measures

Example. Q = {Q1,Q2},

ρ(X ) = 2EQ1 [X ]− EQ2 [X ], X ∈ X .

I ρ is coherent ⇔ Q2 ≤ 2Q1, i.e. ρ(X ) = E2Q1−Q2 [X ]

Remarks.

I Properties of ρ depends on

• how distributions are aggregated

• relationship among Q

I Many ways of aggregating distributions under each scenario

I Mathematical treatment is different from the law-based case

I New challenges!
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Progress of the talk

1 Motivation and the Basel ES formula

2 Scenario-based risk evaluation

3 Axiomatic characterization

4 Empirical studies

5 Compatibility of scenarios

6 Summary
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Mathematical results

Mathematical contributions:

I Axiomatic characterization for all comonotonic-additive

Q-based risk measures

I Axiomatic characterization for all coherent Q-based risk

measures, if Q is mutually singular

I Equivalent condition for compatibility of scenarios with a

given set of distributions

Assumptions:

I X : the set of bounded random variables

I Q = {Q1, . . . .Qn}: a finite set of scenarios
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Distortion risk measures

I Q-distortion risk measure

⇔ {Q}-based, comonotonic-additive, monetary

I Q-spectral risk measure

⇔ {Q}-based, comonotonic-additive, coherent

They have a Choquet integral form, for X ≥ 0,

ρg (X ) =

∫
Xdg ◦ Q =

∫ ∞
0

g ◦ Q(X > x)dx .

The distortion function g : [0, 1]→ [0, 1], g(0) = 1− g(1) = 0,

I g increasing ⇔ ρg distortion

I g increasing and concave ⇔ ρg spectral

(Yaari’87, Wang-Young-Panjer’97, Kusuoka’01, Föllmer-Schied’16)
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Q-distortion risk measures

Q-distortion risk measures

I Q-distortion risk measure

⇔ Q-based, comonotonic-additive, monetary

I Q-spectral risk measure

⇔ Q-based, comonotonic-additive, coherent

They have a Choquet integral form, for X ≥ 0,

ρψ(X ) =

∫ ∞
0

ψ ◦ (Q1, . . . ,Qn)(X > x)dx .

The distortion function ψ : [0, 1]n → [0, 1], ψ(0) = 1− ψ(1) = 0,

I ψ componentwise increasing ⇒ ρψ distortion

I ψ componentwise increasing, componentwise concave and

submodular ⇒ ρψ spectral
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Q-distortion risk measures

Example.

2EQ1 [X ]− EQ2 [X ] =

∫
Xdψ ◦ (Q1,Q2)

where ψ(u1, u2) = 2u1 − u2, (u1, u2) ∈ [0, 1]2. If Q2 ≤ 2Q1, then ρ

is a Q-spectral risk measure, but ψ is not componentwise

increasing.

I A characterization of ψ for Q-distortion risk measures is

available depending on Q.

I One can choose ψ(u) = 1− C (1− u) for some copula C

Ruodu Wang (wang@uwaterloo.ca) Scenario-based risk evaluation 33/62

wang@uwaterloo.ca


Motivation Scenario-based risk evaluation Characterization Empirical studies Compatibility Summary

Coherent Q-based risk measures

Theorem 4

Suppose that Q is mutually singular. A functional ρ : X → R is a

Q-based coherent risk measure if and only if it is the maximum of

some mixtures of Q-Expected Shortfalls, Q ∈ Q.

I mutual singularity is used twice: once to establish the Fatou

property, once to show that a Kusuoka-type argument leads

to spectral risk measures

I Characterization is unclear if Q is not mutually singular

Ruodu Wang (wang@uwaterloo.ca) Scenario-based risk evaluation 34/62

wang@uwaterloo.ca


Motivation Scenario-based risk evaluation Characterization Empirical studies Compatibility Summary

Basel’s IMA ES formula

The Basel’s IMA ES formula is roughly a combination of

maximums and linear combinations of ES under various scenarios.

Compare with Theorem 4: not too bad, after all!
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Progress of the talk

1 Motivation and the Basel ES formula

2 Scenario-based risk evaluation

3 Axiomatic characterization

4 Empirical studies

5 Compatibility of scenarios

6 Summary
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Non-parametric statistical inference

Suppose observations are available under P, and we aim to

calculate a Q-based risk measure evaluated at X , e.g. MESQp (X ).

I Only observations of X under P are not enough

I We need a framework to allow for inference of dQ/dP for

Q ∈ Q.

I Think about the Basel evaluation procedure: each observation

is observed together with the economic scenarios
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Statistical inference

General settings

(i) Full model. Vector data X1, . . . ,XN are observed, where

Xj = (Xj ,Z1,j , . . . ,Zn,j), j = 1, . . . ,N, are observations from

(X , dQ1
dP , . . . ,

dQn
dP ) under P.

(ii) Categorical model. Suppose that Qi (·) = P(·|Ai ) for some

Ai ∈ F with P(Ai ) > 0, i = 1, . . . , n. Vector data X1, . . . ,XN

are observed, where Xj = (Xj ,Z1,j , . . . ,Zn,j), j = 1, . . . ,N,

are observations from (X , IA1 , . . . , IAn) under P.

(iii) Individual models. n sequences of data {X 1
1 , . . . ,X

1
N1
}, . . . ,

{X n
1 , . . . ,X

n
Nn
} are observed, where for i = 1, . . . , n,

X i
1, . . . ,X

i
Ni

are observations of X under Qi .
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Empirical distributions

The empirical distribution F̂Qi
N of X under Qi , i = 1, . . . , n:

(i) Full model.

F̂Qi
N (x) =

1

N

N∑
j=1

Zi ,j I{Xj≤x}, x ∈ R.

(ii) Categorical model.

F̂Qi
N (x) =

∑N
j=1 Zi ,j I{Xj≤x}∑N

j=1 Zi ,j

, x ∈ R.

(iii) Individual models. (N =
∑n

i=1 Ni )

F̂Qi
N (x) =

1

Ni

Ni∑
j=1

I{X i
j≤x}

, x ∈ R.
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Empirical estimators

I Under regular assumptions on the observations, consistency of

FQi
N for FX ,Qi

, i.e. FN
Qi
→ FX ,Qi

can be established in each

setting

I One can empirically estimate a Q-based risk measure by

applying it to the empirical distributions

I Consistency and asymptotics of such empirical estimators are

possible, under suitable assumptions on both the observations

and the risk measure
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Q-based Expected Shortfalls for economic scenarios

Simple empirical study

I A series of returns (Xt)t∈N for each trading day

I Rolling window of length 250 for the estimation

I n = 4 scenarios taken from {high volatility, low volatility} ×
{good economy, bad economy}.

I Divide the data into 4 categories according to first VIX (since

1990) and then S&P 500.

I Qi = P(·|Θ = θi ).

I Estimate the risk measures ESPp , MESQp , iMESQp , and rMESQp

I Take p = 0.9
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Q-based Expected Shortfalls for economic scenarios

1990 1995 2000 2005 2010 2015
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ES

DAX
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Q-based Expected Shortfalls for economic scenarios
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Q-based Expected Shortfalls for economic scenarios
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Q-based Expected Shortfalls for economic scenarios

Observations

I MESp and iMESp yield similar values.

I During times of financial stress, MESp and ESp deviate

substantially.

I For the indices MESp and rMESp are closer than for the

stock returns.

I During economically stable periods, the ratio between rMESp

and MESp is generally larger than during financial stress.

I The ratio MESp/ESp distinguishes the early 2000s recession

from the 2008 financial crisis, except for Apple.
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The Basel stress-adjustment for Expected Shortfall

I P i
t , i = 1, . . . , n, t ∈ N denote the time-t price of security i

I X i
t = −(P i

t/P
i
t−1 − 1) the daily negative return

I Construct a portfolio with price process Vt =
∑n

i=1 αiP
i
t

where αi is fixed throughout the investment period

I Each portfolio starts from $1

I At time t − 1, the numbers αi and P i
t−1 are known

I Calculate ES of the daily loss Vt−1 − Vt

ESPp (Vt−1 − Vt) = ESPp

(
n∑

i=1

X i
tαiP

i
t−1

)
,

where p = 0.975 in [B16]
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The Basel stress-adjustment for Expected Shortfall

I Stress-adjustment: to mimic [B16] (dating back to 2007), we

date back to 10 years for all t

I Evaluate

MESQp (Vt−1 − Vt) = max
j=1,...,N

ES
Qj
p

(
n∑

i=1

X i
tαiP

i
t−1

)
,

where N = 2251, Q = {Qj}j=1,...,N , and under Qj ,

(X 1
t , . . . ,X

n
t ) is distributed according to its empirical

distribution over the time period [t − j − 249, t − j ].

I A US stocks portfolio (Apple and Walmart) and a German

stocks portfolio (BMW and Siemens)
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The Basel stress-adjustment for Expected Shortfall
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The Basel stress-adjustment for Expected Shortfall
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The Basel stress-adjustment for Expected Shortfall

Observations

I The percentage MES is relatively stable (6% - 9%), and the

ES is changing drastically (2% - 9%).

I The US portfolio has a high percentage MES till 1998

(because of the Black Monday, Oct 19, 1987).

I Right before 2007:

• Using ES, both portfolio exhibit serious under capitalization,

and their ES values increased drastically when the financial

crisis took place.

• Using MES, the requirement of capital for both portfolios only

increased moderately during the financial crisis.

Ruodu Wang (wang@uwaterloo.ca) Scenario-based risk evaluation 50/62

wang@uwaterloo.ca


Motivation Scenario-based risk evaluation Characterization Empirical studies Compatibility Summary

Progress of the talk

1 Motivation and the Basel ES formula

2 Scenario-based risk evaluation

3 Axiomatic characterization

4 Empirical studies

5 Compatibility of scenarios

6 Summary
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Compatibility of scenarios

Q1 Q2 Q3 · · · · · · Qn

X exists?

given probability measures

given distributions

Fi (·) = Qi (X ∈ ·)

F1 F2 F3 · · · · · · Fn
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Compatibility of scenarios

Notation

I F : the set of distribution measures on (R,B(R)).

I J : a (possibly uncoutable) set of indices.

Definition 5

(Qi )i∈J ⊂ P and (Fi )i∈J ⊂ F are compatible if there exists a

random variable X in (Ω,A) such that X ∼Qi
Fi for i ∈ J .
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Compatibility of scenarios

Simple intuitions

I Q1, . . . ,Qn identical ⇒ F1, . . . ,Fn identical

I Q1, . . . ,Qn equivalent ⇒ F1, . . . ,Fn equivalent

I Q1, . . . ,Qn mutually singular ⇒ F1, . . . ,Fn arbitrary

I F1, . . . ,Fn mutually singular ⇒ Q1, . . . ,Qn mutually singular

Q1, . . . ,Qn are more different (heterogeneous) than F1, . . . ,Fn!

I How do we model heterogeneity of (Qi )i∈J and (Fi )i∈J ?
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Characterization of compatibility via heterogeneity

Theorem 6

Suppose that (Q1, . . . ,Qn) ∈ Pn is conditionally atomless.

(Q1, . . . ,Qn) and (F1, . . . ,Fn) ∈ Fn are compatible if and only if(
dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

for some F ∈ F , (F1, . . . ,Fn)� F and Q ∈ P, (Q1, . . . ,Qn)� Q,

where ≺cx is the multivariate convex order.

I We call this relation heterogeneity order more technical details

(Q1, . . . ,Qn) is conditionally atomless if there exist Q ∈ P, (Q1, . . . ,Qn)� Q

and a continuous random variable independent of (dQ1
dQ

, . . . , dQn
dQ

) under Q.
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Characterization of compatibility via heterogeneity

Remarks

I Easy to check, especially for n = 2

I It is insufficient to assume each (Ω,A,Qi ) is atomless

I The result can be generalized to measures on a general

measurable space, e.g. measures on Rd or on the path space

of càdlàg processes

There is a deep connection between heterogeneity order and the comparison of

experiments in statistical decision theory (e.g. Blackwell’51).
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Relation to the Girsanov Theorem

I P ∈ P and B = {Bt}t∈[0,T ] is a P-standard BM

I θ and µ are [0,T ]-square integrable deterministic processes

I Qθ is given by

dQθ
dP

= e
∫ T

0 θtdBt− 1
2

∫ T
0 θ2

t dt

I Gµ is the distribution measure of a BM with drift process µ

Theorem 7

Suppose that µt 6= 0 for a.e. t ∈ [0,T ]. (P,Qθ) and (G0,Gµ) are

compatible if and only if
∫ T

0 µ2
tdt ≤

∫ T
0 θ2

t dt.
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Related optimization problems

Given P,Q ∈ P,

I If X ∼Q G , find the maximum and minimum values of EP [X ],

VaRP
p (X ), ESPp (X ), VarP(X ), ...

I What if we know X ∼Qi
Fi , i = 1, . . . , n? (very challenging)

I Connected to many well-known problems, e.g. the knapsack

problem (continuous setting), robust utility, robust variance,

Fréchet-Hoeffding, Neyman-Pearson, ...
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Progress of the talk

1 Motivation and the Basel ES formula

2 Scenario-based risk evaluation

3 Axiomatic characterization

4 Empirical studies

5 Compatibility of scenarios

6 Summary
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Summary

I A framework for scenario-based risk evaluation

• new classes of risk measures (e.g. MES and MVaR)

• axiomatic characterization

• statistical analysis

• characterization of compatibility

• applicable to almost all existing distributional problems

I Related mathematics:

• functional analysis (e.g. Hahn-Banach, Meyer-Choquet)

• vector measure theory (e.g. Lyapunov)

• statistical decision theory (e.g. Blackwell)

• dependence modeling (e.g. Fréchet-Hoeffding)

• many open mathematical and optimization questions!
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Allegory

“How could they see anything but the shadows if they were never allowed

to move their heads?”

- Plato, Republic (380 BC), The Allegory of the Cave
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Technical notes

Multivariate convex order

Fix a positive integer n.

I For X ∈ Ln1(Ω1,A1,P1) and Y ∈ Ln1(Ω2,A2,P2), write

X|P1 ≺cx Y|P2 , if EP1 [f (X)] ≤ EP2 [f (Y)] for all convex

functions f : Rn → R.

I Let M1 and M2 be the sets of probability measures on two

arbitrary measurable spaces.
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Heterogeneity order

Definition 8 (Heterogeneity order)

(P1, . . . ,Pn) ∈Mn
1 is dominated by (Q1, . . . ,Qn) ∈Mn

2 in

heterogeneity, denoted by (P1, . . . ,Pn) ≺h (Q1, . . . ,Qn), if(
dP1

dP
, . . . ,

dPn

dP

)∣∣∣∣
P

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

.

for some P ∈M1 and Q ∈M2 with (P1, . . . ,Pn)� P and

(Q1, . . . ,Qn)� Q.

I ≺h is easy to check, especially for n = 2
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Properties of heterogeneity order

The reference measures P and Q in(
dP1

dP
, . . . ,

dPn

dP

)∣∣∣∣
P

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

(1)

do not matter, and therefore ≺h is a partial order.

Lemma 9

For (P1, . . . ,Pn) ∈Mn
1 and (Q1, . . . ,Qn) ∈Mn

2, equivalent are:

(i) (P1, . . . ,Pn) ≺h (Q1, . . . ,Qn).

(ii) For P = 1
n

∑n
i=1 Pi and Q = 1

n

∑n
i=1 Qi , (1) holds.

(iii) For any Q ∈M∗2, there exists P ∈M∗1 such that (1) holds.
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Properties of heterogeneity order

For (P1, . . . ,Pn) ∈Mn
1 and (Q1, . . . ,Qn) ∈Mn

2,

(i) P1, . . . ,Pn identical ⇒ (P1, . . . ,Pn) ≺h (Q1, . . . ,Qn);

(ii) Q1, . . . ,Qn mutually singular ⇒ (P1, . . . ,Pn) ≺h (Q1, . . . ,Qn).

If (P1, . . . ,Pn) ≺h (Q1, . . . ,Qn),

(iii) Q1, . . . ,Qn identical ⇒ P1, . . . ,Pn identical;

(iv) Q1, . . . ,Qn equivalent ⇒ P1, . . . ,Pn equivalent;

(v) P1, . . . ,Pn mutually singular ⇒ Q1, . . . ,Qn mutually singular.

(ii) is due to the Meyer-Choquet Theorem
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Heterogeneity order and compatibility

Lemma 10

If (Q1, . . . ,Qn) ∈ Pn and (F1, . . . ,Fn) ∈ Fn are compatible, then

(F1, . . . ,Fn) ≺h (Q1, . . . ,Qn).

I why are heterogeneity order and compatibility closely related?

Ruodu Wang (wang@uwaterloo.ca) Scenario-based risk evaluation 67/62

wang@uwaterloo.ca


Technical notes

Second characterization of compatibility

Theorem 11

For (Qi )i∈J ⊂ P and (Fi )i∈J ⊂ F and X ∈ L(Ω,A), assuming

that there exists a probability measure in P dominating (Qi )i∈J ,

equivalent are:

(i) X ∼Qi
Fi for all i ∈ J .

(ii) For all Q ∈ P dominating (Qi )i∈J , the probability measure

F = Q ◦ X−1 dominates (Fi )i∈J , and

dFi
dF

(X ) = EQ

[
dQi

dQ

∣∣∣X] for all i ∈ J . (2)

(iii) For some Q ∈ P dominating (Qi )i∈J , the probability measure

F = Q ◦ X−1 dominates (Fi )i∈J and (2) holds.
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Special case: n = 2

Corollary 12

For (Q1,Q2) ∈ P2, Q1 � Q2 and (F1,F2) ∈ F2, (Q1,Q2) and

(F1,F2) are compatible if and only if there exists X ∈ L(Ω,A) with

distribution F2 under Q2, such that F1 � F2 and

dF1

dF2
(X ) = EQ2

[
dQ1

dQ2

∣∣∣X] .
I Such conditions are not easy to check in general

For relation between convex order and conditional expectations, see e.g. Theorem

3.4.2 of Müller-Stoyan 2002; Theorem 7.A.1, Shaked-Shanthikumar 2007

Ruodu Wang (wang@uwaterloo.ca) Scenario-based risk evaluation 69/62

wang@uwaterloo.ca


Technical notes

Second characterization of compatibility

Is (F1, . . . ,Fn) ≺h (Q1, . . . ,Qn) sufficient for compatibility?

From (
dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

to the existence of X such that(
dF1

dF
, . . . ,

dFn
dF

)
(X ) = EQ

[(
dQ1

dQ
, . . . ,

dQn

dQ

) ∣∣∣X] .
is a martingale construction problem in the same probability space.

e.g. Hirsch-Profeta-Roynette-Yor 2011 (martingale construction for peacocks)
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Conditionally atomless measures

Definition 13

(Q1, . . . ,Qn) ∈ Pn is conditionally atomless if there exist Q ∈ P
dominating (Q1, . . . ,Qn) and a continuous random variable in

(Ω,A) independent of (dQ1
dQ , . . . ,

dQn
dQ ) under Q.

I Q can always be chosen as 1
n

∑n
i=1 Qi .

I If (Q1, . . . ,Qn) is conditionally atomless, then each of

(Ω,A,Qi ), i = 1, . . . , n, is atomless.

I If Q1, . . . ,Qn are mutually singular and each of (Ω,A,Qi ),

i = 1, . . . , n, is atomless, then (Q1, . . . ,Qn) is conditionally

atomless.
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Characterization of compatibility via heterogeneity

Assume (F1, . . . ,Fn)� F and (Q1, . . . ,Qn)� Q. A key condition(
dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

. (3)

Theorem 14

Suppose that (Q1, . . . ,Qn) ∈ Pn is conditionally atomless, and

(F1, . . . ,Fn) ∈ Fn. Equivalent are

(i) (Q1, . . . ,Qn) and (F1, . . . ,Fn) are compatible.

(ii) For some F ∈ F and Q ∈ P, (3) holds.

(iii) For F = 1
n

∑n
i=1 Fi and Q =

∑n
i=1 Qi , (3) holds. back
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