Competitive Equilibria in a Comonotone Market

Ruodu Wang
http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

The 2nd International Workshop on Optimal (Re)Insurance CUFE Beijing, China July 2018

Table of contents

Introduction

Competitive equilibria with dual utilities

Competitive equilibria with rank dependent utilities

An algorithm for computing competitive equilibria

Conclusion

Based on joint work with Tim Boonen (Amsterdam) and Fangda Liu (CUFE, Beijing)

Introduction

Competitive equilibria with dual utilities

Competitive equilibria with rank dependent utilities

An algorithm for computing competitive equilibria

Conclusion

The market

A one-period exchange market is described by a probability space $(\Omega, \mathcal{B}, \mathbb{P})$ and a set of bounded random future wealths \mathcal{X}.

- There are n agents and $N=\{1, \ldots, n\}$. Each of them is endowed with an endowment $\xi_{i} \in \mathcal{X}$ and uses an objective functional $V_{i}: \mathcal{X} \rightarrow \mathbb{R}$ to model his preference.
- The total future wealth is $X=\sum_{i=1}^{n} \xi_{i}$, and its range $R(X) \subset \mathbb{R}$ is an interval.
- The current price of a random wealth $Y \in \mathcal{X}$ is given by $\mathbb{E}^{\mathbb{Q}}[Y]$ for some pricing measure $\mathbb{Q} \in \mathcal{P}$, where \mathcal{P} is the set of probability measures absolutely continuous w.r.t. \mathbb{P}.
\mathbb{Q} will be an output of the market equilibrium.

Competitive Equilibria (Arrow-Debreu Equilibria)

In an equilibrium, aggregate supplies will equal aggregate demands for every market state.

Competitive Equilibria (Arrow-Debreu Equilibria)

In an equilibrium, aggregate supplies will equal aggregate demands for every market state.

Definition

An allocation $\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{X}^{n}$ and a pricing measure $\mathbb{Q} \in \mathcal{P}$ constitute an (Arrow-Debreu) competitive equilibrium if

- For $i \in N, X_{i}$ satisfies the budget constraint: $\mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]$
- For $i \in N, X_{i}$ maximizes the agent's objective:

$$
V_{i}(Y) \leq V_{i}\left(X_{i}\right), \quad \text { for all } Y \in \mathcal{X} \text { and } \mathbb{E}^{\mathbb{Q}}[Y] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]
$$

- The market is cleared:

$$
\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} \xi_{i}
$$

In a complete market, the set of admissible allocations is

$$
\mathbb{A}_{n}(X)=\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{X}^{n}: \sum_{i=1}^{n} X_{i}=X\right\}
$$

Competitive equilibria in a complete market:

- Early work (expected utility): Arrow-Debreu'54, Borch'62
- Cumulative perspective theory: De Gorgi-Hens-Rieger'10
- Concave dual utility: Garlier-Dana'08, Dana'11, Boonen'15
- Rank dependent utility: Xia-Zhou'16, Jin-Xia-Zhou'18

For objectives other than expected utilities, finding competitive equilibria is a generally very challenging question

Comonotonicity

Definition

A random vector $\left(Y_{1}, \ldots, Y_{n}\right)$ is comonotonic if

$$
\left(Y_{1}, \ldots, Y_{n}\right)=\left(f_{1}(Y), \ldots, f_{n}(Y)\right)
$$

holds for some non-decreasing functions f_{1}, \ldots, f_{n} and a random variable Y.

- Y can be chosen as $\sum_{i=1}^{n} Y_{i}$; e.g. Denneberg'94.
- $\left(Y_{1}, Y_{2}\right)$ is counter-monotonic if $\left(-Y_{1}, Y_{2}\right)$ is comonotonic.

Known results.

In a complete market, when agents have the same belief \mathbb{P}, under mild conditions, a competitive equilibrium $\left(\left(X_{1}^{*}, \ldots, X_{n}^{*}\right), \mathbb{Q}\right) \in \mathbb{A}_{n}(X) \times \mathcal{P}$ satisfies
i. $\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$ is comonotonic.
ii. $\left(X_{i}^{*}, \eta\right)$ is counter-monotonic.
iii. (X, η) is counter-monotonic, where η is the pricing kernel

$$
\eta=\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}}
$$

Obsevation.
A complete market leads to comonotonic allocations, which are counter-monotone with the pricing kernel.

Known results.

In a complete market, when agents have the same belief \mathbb{P}, under mild conditions, a competitive equilibrium $\left(\left(X_{1}^{*}, \ldots, X_{n}^{*}\right), \mathbb{Q}\right) \in \mathbb{A}_{n}(X) \times \mathcal{P}$ satisfies
i. $\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$ is comonotonic.
ii. $\left(X_{i}^{*}, \eta\right)$ is counter-monotonic.
iii. (X, η) is counter-monotonic, where η is the pricing kernel

$$
\eta=\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}}
$$

Obsevation.
A complete market leads to comonotonic allocations, which are counter-monotone with the pricing kernel.

Question.
What happens if we constrain the feasible set of allocations to be comonotonic in the first place?

Insurance

- In an insurance policy, the underlying risk is Y.
- Y is shared by a policyholder and several insurers.
- To avoid Moral Hazard, no one should have the incentive to hope for a larger loss.
- Slow growth property. For the policyholder, the ceded part $f(Y)$ should be comonotonic with the retained part $Y-f(Y)$, or equivalently

$$
0 \leq f(x)-f(y) \leq x-y, \quad 0 \leq y \leq x
$$

Comonotone Market

- Allocations are constrained in the set

$$
C(X)=\{Y \in \mathcal{X}:(Y, X-Y) \text { is comonotonic }\} .
$$

Thus $Y \in C(X)$ if and only if $Y=f(X)$ for some $f \in \mathcal{F}$, where

$$
\mathcal{F}=\left\{\begin{array}{l|l}
f: \mathbb{R} \rightarrow \mathbb{R} & \begin{array}{l}
f \text { is continuous and a.e. differentiable, } \\
0 \leq f^{\prime}(z) \leq 1 \text { for } z \in \mathbb{R}
\end{array}
\end{array}\right\}
$$

Comonotone Market

- Allocations are constrained in the set

$$
C(X)=\{Y \in \mathcal{X}:(Y, X-Y) \text { is comonotonic }\} .
$$

Thus $Y \in C(X)$ if and only if $Y=f(X)$ for some $f \in \mathcal{F}$, where

$$
\mathcal{F}=\left\{\begin{array}{l|l}
f: \mathbb{R} \rightarrow \mathbb{R} & \begin{array}{l}
f \text { is continuous and a.e. differentiable, } \\
0 \leq f^{\prime}(z) \leq 1 \text { for } z \in \mathbb{R}
\end{array}
\end{array}\right\} .
$$

- The set of admissible allocations if

$$
\mathbb{A}_{n}^{c}(X)=\left\{\left(X_{1}, \ldots, X_{n}\right) \in(C(X))^{n}: \sum_{i=1}^{n} X_{i}=X\right\}
$$

Comonotone Market

- Allocations are constrained in the set

$$
C(X)=\{Y \in \mathcal{X}:(Y, X-Y) \text { is comonotonic }\} .
$$

Thus $Y \in C(X)$ if and only if $Y=f(X)$ for some $f \in \mathcal{F}$, where

$$
\mathcal{F}=\left\{\begin{array}{l|l}
f: \mathbb{R} \rightarrow \mathbb{R} & \begin{array}{l}
f \text { is continuous and a.e. differentiable, } \\
0 \leq f^{\prime}(z) \leq 1 \text { for } z \in \mathbb{R}
\end{array}
\end{array}\right\}
$$

- The set of admissible allocations if

$$
\mathbb{A}_{n}^{c}(X)=\left\{\left(X_{1}, \ldots, X_{n}\right) \in(C(X))^{n}: \sum_{i=1}^{n} X_{i}=X\right\}
$$

- In the comonotone market, a competitive equilibrium is a pair $\left(\left(X_{1}, \ldots, X_{n}\right), \mathbb{Q}\right) \in \mathbb{A}_{n}^{c}(X) \times \mathcal{P}$ such that $\mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]$ and

$$
V_{i}\left(X_{i}\right)=\max \left\{V_{i}\left(Y_{i}\right): Y_{i} \in C(X), \mathbb{E}^{\mathbb{Q}}\left[Y_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]\right\}, \quad i \in N .
$$

For the same set of agents
Comonotone market
\varsubsetneqq

Complete market

For the same set of agents

For the same set of agents

Some results.

- A UCE is always a CCE (under some mild conditions).

For the same set of agents

Some results.

- A UCE is always a CCE (under some mild conditions).
- A CCE is not necessarily a UCE.
- In a CCE $\left(\left(X_{1}^{*}, \ldots, X_{n}^{*}\right), \mathbb{Q}\right), X_{i}^{*}, i \in N$ and X may not be counter-monotonic with $\eta=\mathrm{d} \mathbb{Q} / \mathrm{dP}$. Thus, a sharp contrast to the case of complete market.

Pareto-optimality

Definition (Pareto-optimal allocations)

Fix objective functionals V_{1}, \ldots, V_{n}, total wealth $X \in \mathcal{X}$ and initial endowments $\xi_{1}, \ldots, \xi_{n} \in \mathcal{X}$.
(i) In the comonotone market, an allocation $\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{A}_{n}^{c}(X)$ is Pareto-optimal if for any allocation $\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{n}^{c}(X)$, $V_{i}\left(Y_{i}\right) \geq V_{i}\left(X_{i}\right)$ for $i \in N$ implies $V_{i}\left(Y_{i}\right)=V_{i}\left(X_{i}\right)$ for $i \in N$.
(ii) In the complete market, an allocation $\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{A}_{n}(X)$ is Pareto-optimal if for any allocation $\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{n}(X)$, $V_{i}\left(Y_{i}\right) \geq V_{i}\left(X_{i}\right)$ for $i \in N$ implies $V_{i}\left(Y_{i}\right)=V_{i}\left(X_{i}\right)$ for $i \in N$.

Dual utility

The set of distortion functions

$$
\mathcal{G}=\left\{g:[0,1] \rightarrow[0,1] \left\lvert\, \begin{array}{c}
g \text { is continuous and increasing, } \\
g(0)=0 \text { and } g(1)=1
\end{array}\right.\right\} .
$$

Definition
A dual utility ($D U$) functional D_{g} with distortion function $g \in \mathcal{G}$ is defined as a Choquet integral, namely, for $Y \in \mathcal{X}$,

$$
D_{g}(Y)=\int Y \mathrm{~d}(g \circ \mathbb{P}):=\int_{-\infty}^{0}\left(g\left(S_{Y}(z)\right)-1\right) \mathrm{d} z+\int_{0}^{\infty} g\left(S_{Y}(z)\right) \mathrm{d} z
$$

References: Yaari'87, Denneberg'94, Wang-Panjer-Young'97

Rank dependent utility

Definition

For an increasing function $u: \mathbb{R} \rightarrow \mathbb{R} \cup\{-\infty\}$ and a distortion function $g \in \mathcal{G}$, a rank-dependent utility ($R D U$) functional $R_{u, g}$ is given by

$$
R_{u, g}(Y)=D_{g}(u(Y))=\int u(Y) \mathrm{d}(g \circ \mathbb{P}), \quad Y \in \mathcal{X}
$$

- $R_{u, g}$ is consistent with strong risk aversion if and only if u is concave and g is convex.
- The expected utility functional (EU) is a special case of RDU when $g(x)=x$ for $x \in[0,1]$.
- The DU is a special case of an RDU when $u(x)=x$ for $x \in \mathbb{R}$.

Introduction

Competitive equilibria with dual utilities

Competitive equilibria with rank dependent utilities

An algorithm for computing competitive equilibria

Conclusion

Competitive equilibria with dual utilities

In a comonotone market, where agents are equipped with dual utilities, we investigate following issues.

- Solving the individual optimization.
- Existence and the close form of a competitive equilibrium.
- Fundamental theorems of welfare economics.

DU-comonotone market

Individual optimization:
Each agent is to find X_{i}^{*} which solves

$$
\begin{align*}
& \max _{X_{i} \in C(X)} V_{i}\left(X_{i}\right)=D_{g}\left(X_{i}\right)=\int_{\Omega} X_{i} \mathrm{~d}\left(g_{i} \circ \mathbb{P}\right), \tag{1}\\
& \text { s.t. } \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right] .
\end{align*}
$$

DU-comonotone market

Individual optimization:
Each agent is to find X_{i}^{*} which solves

$$
\begin{align*}
\max _{X_{i} \in C(X)} & V_{i}\left(X_{i}\right) \tag{1}\\
\text { s.t. } & \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right)=\int_{\Omega} X_{i} \mathrm{~d}\left(g_{i} \circ \mathbb{P}\right),
\end{align*}
$$

Proposition

For a fixed \mathbb{Q} and $f_{i} \in \mathcal{F}$, the random variable $X_{i}^{*}=f_{i}(X)$ solves (1) if and only if for a.e. $z \in R(X)$,

$$
f_{i}^{\prime}(z)= \begin{cases}1, & \text { if } g_{i}\left(S_{X}(z)\right)>\mathbb{Q}(X>z) \tag{2}\\ 0, & \text { if } g_{i}\left(S_{X}(z)\right)<\mathbb{Q}(X>z) .\end{cases}
$$

Existence of CCE

Theorem (1)
In the DU-comonotone market, the following holds:
(i) A competitive equilibrium always exists.

Existence of CCE

Theorem (1)
In the DU-comonotone market, the following holds:
(i) A competitive equilibrium always exists.
(ii) The pair $\left(\left(X_{1}^{*}, \ldots, X_{n}^{*}\right), \mathbb{Q}\right)$ is a competitive equilibrium if and only if
(a) $g_{N, 2}\left(S_{X}(z)\right) \leq \mathbb{Q}(X>z) \leq g_{N, 1}\left(S_{X}(z)\right)$ for $z \in R(X)$, where $g_{N, 1}$ and $g_{N .2}$ is the largest and the second largest in $\left\{g_{i}, i \in N\right\}$.
(b) For $i \in N, X_{i}^{*}=f_{i}(X)-\mathbb{E}^{\mathbb{Q}}\left[f_{i}(X)\right]+\mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]$ almost surely where f_{i} satisfies (2) with $\sum_{i=1}^{n} f_{i}(X)=X$.

Existence of CCE

Theorem (1)
In the DU-comonotone market, the following holds:
(i) A competitive equilibrium always exists.
(ii) The pair $\left(\left(X_{1}^{*}, \ldots, X_{n}^{*}\right), \mathbb{Q}\right)$ is a competitive equilibrium if and only if
(a) $g_{N, 2}\left(S_{X}(z)\right) \leq \mathbb{Q}(X>z) \leq g_{N, 1}\left(S_{X}(z)\right)$ for $z \in R(X)$, where $g_{N, 1}$ and $g_{N .2}$ is the largest and the second largest in $\left\{g_{i}, i \in N\right\}$.
(b) For $i \in N, X_{i}^{*}=f_{i}(X)-\mathbb{E}^{\mathbb{Q}}\left[f_{i}(X)\right]+\mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]$ almost surely where f_{i} satisfies (2) with $\sum_{i=1}^{n} f_{i}(X)=X$.

Sharp contrast I: A competitive equilibrium

- always exists in a DU-comonotone market;
- does NOT necessary exist in a DU-complete market where the distortion functions are not convex (e.g. Embrechts-Liu-Wang'18, the case of VaR)

Example of equilibrium pricing measure

(a) Distortion functions and equilibrium price

Uniqueness of CCE

In the DU-comonotone market,
(i) If $g_{N, 1}(t)>g_{N, 2}(t)$ for almost everywhere $t \in[0,1]$, then the equilibrium allocation is unique up to constant shifts, and the equilibrium price is not unique.

Uniqueness of CCE

In the DU-comonotone market,
(i) If $g_{N, 1}(t)>g_{N, 2}(t)$ for almost everywhere $t \in[0,1]$, then the equilibrium allocation is unique up to constant shifts, and the equilibrium price is not unique.
(ii) If $g_{N, 1}(t)=g_{N, 2}(t)$ for almost everywhere $t \in[0,1]$, then the equilibrium price is unique, and the equilibrium allocation is not unique.

Uniqueness of CCE

In the DU-comonotone market,
(i) If $g_{N, 1}(t)>g_{N, 2}(t)$ for almost everywhere $t \in[0,1]$, then the equilibrium allocation is unique up to constant shifts, and the equilibrium price is not unique.
(ii) If $g_{N, 1}(t)=g_{N, 2}(t)$ for almost everywhere $t \in[0,1]$, then the equilibrium price is unique, and the equilibrium allocation is not unique.
Sharp contrast II: The equilibrium price

- is unique in a DU-complete market; e.g. Boonen'15
- is NOT necessary unique in a DU-comonotone market.

FTWE

Theorem (2)
In the DU-comonotone market,

Without central coordination

FTWE

Theorem (2)
In the DU-comonotone market,
(i) an equilibrium allocation is necessarily Pareto-optimal;

Without central coordination

- 1st FTWE
"Invisible hand": a competitive market leads to an efficient allocation of resources.

FTWE

Theorem (2)
In the DU-comonotone market,
(i) an equilibrium allocation is necessarily Pareto-optimal;
(ii) a Pareto-optimal allocation is necessarily an equilibrium allocation for some choice of endowments.

Without central coordination

- 1st FTWE
"Invisible hand": a competitive market leads to an efficient allocation of resources.
- 2nd FTWE

Any desired Pareto-efficient allocation can be attained by market competition with transfers.

Introduction

Competitive equilibria with dual utilities

Competitive equilibria with rank dependent utilities

An algorithm for computing competitive equilibria

Conclusion

Competitive equilibria with rank-dependent utilities

In a comonotone market, where agents are equipped with rank-dependent utilities, we investigate following issues.

- Existence of a competitive equilibrium.
- First fundamental theorems of welfare economics.
- EU market approach.

RDU-comonotone market

Individual optimization:

$$
\begin{aligned}
& \max _{X_{i} \in C(X)} V_{i}\left(X_{i}\right)=R_{u_{i}, g_{i}}\left(X_{i}\right)=\int_{\Omega} u_{i}\left(X_{i}\right) \mathrm{d}\left(g_{i} \circ \mathbb{P}\right) \\
& \text { s.t. } \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right] \\
& \text { or } X_{i}^{*}=Y_{i}-\mathbb{E}^{\mathbb{Q}}\left[Y_{i}\right]+\mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right] \text {, where }
\end{aligned}
$$

$$
Y_{i} \in \underset{Y \in C(X)}{\arg \max }\left\{V_{i}\left(Y-\mathbb{E}^{\mathbb{Q}}[Y]+\mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]\right)\right\} .
$$

RDU-comonotone market

Individual optimization:

$$
\begin{aligned}
& \max _{X_{i} \in C(X)} V_{i}\left(X_{i}\right)=R_{u_{i}, g_{i}}\left(X_{i}\right)=\int_{\Omega} u_{i}\left(X_{i}\right) \mathrm{d}\left(g_{i} \circ \mathbb{P}\right) \\
& \text { s.t. } \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]
\end{aligned}
$$

or $X_{i}^{*}=Y_{i}-\mathbb{E}^{\mathbb{Q}}\left[Y_{i}\right]+\mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]$, where

$$
Y_{i} \in \underset{Y \in C(X)}{\arg \max }\left\{V_{i}\left(Y-\mathbb{E}^{\mathbb{Q}}[Y]+\mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]\right)\right\} .
$$

Recall: Constrained competitive equilibrium (CCE) $\left(\left(X_{i}^{*}, \ldots, X_{n}^{*}\right), \mathbb{Q}\right) \in \mathbb{A}_{n}^{c} \times \mathcal{P}$ is a CCE if $\mathbb{E}^{\mathbb{Q}}\left[X_{i}^{*}\right]=\mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]$ and

$$
V_{i}\left(X_{i}^{*}\right)=\max \left\{V_{i}\left(Y_{i}\right): Y_{i} \in C(X), \mathbb{E}^{\mathbb{Q}}\left[Y_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]\right\}
$$

Existence \& FTWE

Assumptions. In a RDU-comonotone market or an RDU-complete market with given $\xi_{1}, \ldots, \xi_{n}, X \in \mathcal{X}$,

- u_{1}, \ldots, u_{n} are strictly increasing, strictly concave and continuously differentiable functions and $u_{i}>-\infty$ on $\left(d_{i}, \infty\right), i \in N$.
- $g_{1}, \ldots, g_{n} \in \mathcal{G}$ are continuously differentiable.

Existence \& FTWE

Assumptions. In a RDU-comonotone market or an RDU-complete market with given $\xi_{1}, \ldots, \xi_{n}, X \in \mathcal{X}$,

- u_{1}, \ldots, u_{n} are strictly increasing, strictly concave and continuously differentiable functions and $u_{i}>-\infty$ on $\left(d_{i}, \infty\right), i \in N$.
- $g_{1}, \ldots, g_{n} \in \mathcal{G}$ are continuously differentiable.

Theorem (3)

Consider the RDU-comonotone market.

1. (Existence.) If $\xi_{i} \geq d_{i}$ and ξ_{i} is a continuos function of $X, i \in N$, then a competitive equilibrium exists.
2. (1st FTWE.) An equilibrium allocation satisfying $V_{i}\left(X_{i}\right)>-\infty$ for all $i \in N$ is necessarily Pareto-optimal.

Expected-utility with heterogeneous beliefs

Observation.

$$
V_{i}(Y)=R_{g_{i}, u_{i}}(Y)=\mathbb{E}^{Q_{i}}\left[u_{i}(Y)\right], \quad \text { for all } \quad Y \in C(X),
$$

where $Q_{i} \in \mathcal{P}, i \in N$ such that $Q_{i}(X>t)=g_{i} \circ \mathbb{P}(X>t)$ for all $t \in \mathbb{R}$.

Expected-utility with heterogeneous beliefs

Observation.

$$
V_{i}(Y)=R_{g_{i}, u_{i}}(Y)=\mathbb{E}^{Q_{i}}\left[u_{i}(Y)\right], \quad \text { for all } \quad Y \in C(X)
$$

where $Q_{i} \in \mathcal{P}, i \in N$ such that $Q_{i}(X>t)=g_{i} \circ \mathbb{P}(X>t)$ for all $t \in \mathbb{R}$.
In a comonotone market, the individual RDU optimization problem translates to a EU problem with heterogeneous beliefs $Q_{i}, i \in N$:

$$
\max _{X_{i} \in C(X)} \mathbb{E}^{Q_{i}}\left[u_{i}\left(X_{i}\right)\right] \text { s.t. } \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right] .
$$

Expected-utility with heterogeneous beliefs

Observation.

$$
V_{i}(Y)=R_{g_{i}, u_{i}}(Y)=\mathbb{E}^{Q_{i}}\left[u_{i}(Y)\right], \quad \text { for all } \quad Y \in C(X)
$$

where $Q_{i} \in \mathcal{P}, i \in N$ such that $Q_{i}(X>t)=g_{i} \circ \mathbb{P}(X>t)$ for all $t \in \mathbb{R}$.
In a comonotone market, the individual RDU optimization problem translates to a EU problem with heterogeneous beliefs $Q_{i}, i \in N$:

$$
\max _{X_{i} \in C(X)} \mathbb{E}^{Q_{i}}\left[u_{i}\left(X_{i}\right)\right] \text { s.t. } \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]
$$

- $V_{i}(Y)=\mathbb{E}^{Q_{i}}\left[u_{i}(Y)\right]$ relies on the fact that (Y, X) is comonotonic, and it does not necessarily hold on \mathcal{X}.

RDU markets \& EU markets

RDU-comonotone market CCE	\LongleftrightarrowEU-comonotone market CCE
\Uparrow (generally)	
RDU-complete market (if comonotonic) UCE	\approxEU-complete market UCE
(relatively well studied)	

Individual objectives:

- EU-comonotone market

$$
\max _{X_{i} \in C(X)} \mathbb{E}^{Q_{i}}\left[u_{i}\left(X_{i}\right)\right] \text { s.t. } \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]
$$

- EU-complete market

$$
\max _{X_{i} \in \mathcal{X}} \mathbb{E}^{Q_{i}}\left[u_{i}\left(X_{i}\right)\right] \text { s.t. } \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]
$$

Competitive equilibria in an EU-complete market

Optimization problems in the EU-complete market with heterogeneous beliefs $Q_{i}, i \in N$:

$$
\max _{X_{i} \in \mathcal{X}} \mathbb{E}^{Q_{i}}\left[u_{i}\left(X_{i}\right)\right] \text { s.t. } \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right] \leq \mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right], \quad i \in N .
$$

- Individual optimization has a unique solution (e.g. Föllmer-Schied'16)

$$
X_{i}=\left(u_{i}^{\prime}\right)^{-1}\left(\frac{\mathrm{~d} \mathbb{Q}}{\mathrm{~d} Q_{i}} \lambda_{i}\right), \quad \mathbb{E}^{\mathbb{Q}}\left[X_{i}\right]=\mathbb{E}^{\mathbb{Q}}\left[\xi_{i}\right]
$$

- The market clearing condition

$$
\sum_{i=1}^{n}\left(u_{i}^{\prime}\right)^{-1}\left(\frac{\mathrm{~d} \mathbb{Q}}{\mathrm{~d} Q_{i}} \lambda_{i}\right)=X
$$

Theorem (4)
Suppose that $\left(\left(X_{1}, \ldots, X_{n}\right), \mathbb{Q}\right)$ is an UCE in the EU-complete market. If

$$
\left(\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} Q_{1}}, \ldots, \frac{\mathrm{~d} \mathbb{Q}}{\mathrm{~d} Q_{n}}\right) \text { is comonotonic },
$$

then it is a CCE in the RDU-comonotone market.

Theorem (4)
Suppose that $\left(\left(X_{1}, \ldots, X_{n}\right), \mathbb{Q}\right)$ is an UCE in the EU-complete market.
If

$$
\left(\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} Q_{1}}, \ldots, \frac{\mathrm{~d} \mathbb{Q}}{\mathrm{~d} Q_{n}}\right) \text { is comonotonic }
$$

then it is a CCE in the RDU-comonotone market.
Sharp contrast III:

- In a CCE, the pricing kernel

$$
\eta=\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} \mathbb{P}}=\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} Q_{i}} g_{i}^{\prime}\left(S_{X}(X)\right)
$$

is not necessarily a decreasing function of X when g_{i} is not convex.

- Our model could accommodate the pricing kernel puzzle that pricing kernel is not necessarily counter-monotonic with X by empirical observations (e.g. Hens-Reichlin'13).

Exponential utilities

For $i \in N$, assume

$$
u_{i}(x)=-e^{-\frac{x}{\theta_{i}}}, \quad x \in \mathbb{R}
$$

where $\theta_{1}, \ldots, \theta_{n}>0$ are parameters representing risk tolerance.
Proposition
With exponential utilities, if the following condition holds,

$$
\inf _{x \in \mathbb{R}} \inf _{j=1, \ldots, n}\left\{\bar{\theta}^{-1}+\frac{q_{j}^{\prime}(x)}{q_{j}(x)}-\sum_{i=1}^{n} \frac{\theta_{i}}{\bar{\theta}} \frac{q^{\prime}(x)}{q_{i}(x)}\right\} \geq 0,
$$

where $\bar{\theta}=\sum_{i=1}^{n} \theta_{i}$ and $q_{i}(x)=\frac{\mathrm{d} Q_{i}(x \leq x)}{\mathrm{d} x}$, then a CCE is given by

$$
\begin{aligned}
& \frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}}=\exp \left\{\frac{1}{\bar{\theta}}\left(\sum_{i=1}^{n} \theta_{i} \ln \left(\frac{\mathrm{~d} Q_{i}}{\mathrm{dP}}\right)+\bar{c}-X\right)\right\}, \\
& X_{j}=\frac{\theta_{j}}{\bar{\theta}}\left(X-\sum_{i=1}^{n} \theta_{i} \ln \left(\frac{\mathrm{~d} Q_{i}}{\mathrm{~d} Q_{j}}\right)-\bar{c}\right)+c_{j} .
\end{aligned}
$$

- Competitive equilibria with rank dependent utilities

々 RDU-exponential-comonotone market

(b) Equilibrium pricing kernal

- An algorithm for computing competitive equilibria

Introduction

Competitive equilibria with dual utilities

Competitive equilibria with rank dependent utilities

An algorithm for computing competitive equilibria

Conclusion

Idea of the algorithm

Discretization.

- Take $\hat{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ such that $\varepsilon=x_{i+1}-x_{i}$ is small enough.
- The initial wealth of agent i is $\psi_{0}^{i}=\sum_{k=1}^{m} \delta_{0, k}^{i} \mathbb{I}\left(x \geq x_{k}\right)$.
- The initial guess of the price is $q_{0, k}=\hat{Q}_{0}\left(\hat{X} \geq x_{k}\right), k=1, \ldots, m$. Initial input.
- $\hat{X}, \hat{Q}_{0}=\hat{\mathbb{P}}, \psi_{0}^{i}=\hat{\xi}_{i}$ if $\xi_{i} \in C(X)$, otherwise $\psi_{0}^{i}=\frac{\mathbb{E}^{\hat{Q}_{0}}\left[\hat{\xi}_{1}\right]}{\mathbb{E}_{0}^{\hat{Q}_{0}}[\hat{X}]} \hat{X}$.

Updating process.

- In each step, we update $\delta_{0, k}^{i} \in[0, \varepsilon]$ and $q_{0, k}$ consequently such that each ε is optimal allocated and the market is cleared.
-An algorithm for computing competitive equilibria
- Algorithm

-An algorithm for computing competitive equilibria

The initial wealth.

After the first step:

Examples

Simple setup.

- $N=\{1,2,3\}$
- $X \sim U[0,10], \varepsilon=0.01, m=1000$
- $\xi_{i}=X / 3, i=1,2,3$

Example 1 - Dual utility

Assumptions.

- Distortion functions, for $s \in[0,1]$

$$
g\left(s ; \gamma_{i}\right)=\frac{s^{\gamma_{i}}}{\left(s^{\gamma_{i}}+(1-s)^{\gamma_{i}}\right)^{1 / \gamma_{i}}},
$$

where $\gamma_{1}=0.4, \gamma_{2}=0.6$, and
$\gamma_{3}=0.8$ (Tversky-Kahneman'92).

(c) Distortion functions

Example 1 - Dual utility

- For the inverse-S shape distortion functions, UCE may not exist, but CCE exists.
- Certainty equivalents (CEQ). For $i \in N$, let $\mathrm{CEQ}_{i}^{\text {prior }}$ and $\mathrm{CEQ}_{i}^{\text {post }}$ be constants s.t.

$$
V_{i}\left(\mathrm{CEQ}_{i}^{\text {prior }}\right)=V_{i}\left(\xi_{i}\right) \text { and } V_{i}\left(\mathrm{CEQ}_{i}^{\text {post }}\right)=V_{i}\left(X_{i}\right)
$$

	$\mathrm{CEQ}_{i}^{\text {prior }}$	$\mathrm{CEQ}_{i}^{\text {post }}$ (theoretical/algorithm)	\% increase
Agent 1	0.99	$1.56 / 1.56$	58.0
Agent 2	1.44	$1.56 / 1.56$	8.3
Agent 3	1.63	$1.86 / 1.86$	14.7

Example 1 - Dual utility

(d) Distortion functions and equilibrium price (exact)

(e) Distortion functions and equilibrium price (algorithm)

Example 1 - Dual utility

(f) Equilibrium allocation (exact)

(g) Equilibrium allocation (algorithm)

Example 2 - RDU with explicit solutions

Assumptions.

- Distortion functions, for $s \in[0,1]$

$$
g_{i}(s)=a g\left(\frac{s+0.05}{1+2 \delta} ; \gamma_{i}\right)+b,
$$

where $\gamma_{1}=0.55, \gamma_{2}=0.6$, and $\gamma_{3}=0.65$.

- Exponential utilities
$u_{i}(x)=-e^{-x / \theta_{i}}$ with $\theta_{1}=2$,
$\theta_{2}=1.5$ and $\theta_{3}=1$.

(h) Distortion functions

Example 2 - RDU with explicit solutions

The certainty equivalents before and after risk sharing

	$\mathrm{CEQ}_{i}^{\text {pror }}$	$\mathrm{CEQ}_{i}^{\text {post }}$ (theoretical/algorithm)	\% increase
Agent 1	1.156	$1.167 / 1.167$	0.9
Agent 2	1.138	$1.138 / 1.138$	0
Agent 3	1.049	$1.070 / 1.069$	2.0

Example 2 - RDU with explicit solutions

(i) Equilibrium price (exact)

(j) Equilibrium price (algorithm)

Example 2 - RDU with explicit solutions

(k) Equilibrium allocation (exact)

(I) Equilibrium allocation (algorithm)

Example 3 - RDU without explicit solutions

Assumptions.

- The three agents use distortion functions

$$
g\left(s ; \gamma_{i}\right)=\frac{s^{\gamma_{i}}}{\left(s^{\gamma_{i}}+(1-s)^{\gamma_{i}}\right)^{1 / \gamma_{i}}}, \quad s \in[0,1] \text {, }
$$

where $\gamma_{1}=0.4, \gamma_{2}=0.6$, and $\gamma_{3}=0.8$.

- Exponential utility $u_{i}(x)=-e^{-x / \theta_{i}}$ with risk tolerant $\theta_{1}=3, \theta_{2}=2$ and $\theta_{3}=1$.

Example 3 - RDU without explicit solutions

- The equilibrium is most attractive for the agent with the most distorted probability measure (Agent 1) and for the most risk averse agent (Agent 3).

	$\mathrm{CEQ}_{i}^{\text {prior }}$	$\mathrm{CEQ}_{i}^{\text {post }}$ (algorithm)	\% increase
Agent 1	0.75	0.90	19.3
Agent 2	1.10	1.14	3.0
Agent 3	1.11	1.19	6.8

Example 3 - RDU without explicit solutions

Summary of our work

- Introducing the comonotome market.
- Solving competitive equilibrium problem in a DU-comonotone market.
- Existence and closed form.
- Fundamental theorems of welfare economics.
- Partially solving competitive equilibrium problem in a RDU-comonotone market by a EU approach.
- Existence.
- Obtaining CCE under exponential utilities (and power utilities).
- Proposing an algorithm on determining CCE in general cases.

Open questions in RDU-comonotone market

- Existence of competitive equilibrium under more general assumptions.
- Uniqueness of competitive equilibrium.
- The second fundamental theorem of welfare economics for the RDU market.
- If $Q_{1}=\cdots=Q_{n}$, that is a EU market with the same belief. Then a CCE in EU market is also a CCE in RDU market. Is it the only equilibrium for the comonotone market?
- Whether the EU-comonotone market and the EU-complete market have the same equilibria?
- More ...

Reference

K.J. Arrow and G. Debreu (1954) Existence of an equilibrium for a competitive economy. Econometrica 22(3):265-290.
K. Borch (1962) Equilibrium in a Reinsurance Market. Econometrica 30:424-444.
T.J. Boonen (2015) Competitive equilibria with distortion risk measures, ASTIN Bulletin 45(3):703-728.
G. Carlier and R.-A. Dana (2008) Two-person efficient risk-sharing and equilibria for concave law-invariant utilities, Economic Theory 36:169-201.
R.-A. Dana (2011) Comonotonicity, efficient risk-sharing and equilibria in markets with short-selling for concave law-invariant utilities, Journal of Mathematical Economics 47:328-335.
D. Denneberg (1994) Non-additive Mesure and Integral. Springer Science \& Business Meida.
H. Föllmer and A. Schied. (2016) Stochastic Finance. An introduction in Discrete Time. Walter de Gruyter, Berlin, Fourth Edition.
E. De Gorgi, T. Hens and M.O. Rieger (2010) Financial market equilibria with cumulative prospect theory, Journal of Mathematical Economics 46:633-651.

Reference

P. Embrechts, H. Liu and R. Wang (2018) Quantile-based risk sharing. Forthcoming in Operations Research.
T. Hens and C. Reichlin (2013). Three solutions to the pricing kernel puzzle. Review of Finance 17:1065-1098.
H. Jin, J. Xia and X. Zhou (2018) Arrow-Debreu equilib. Forthcoming in Mathematical Finance.
A. Tversky and D. Kahneman (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty 5(4): 297-323.
S. Wang, V.R. Young and H.H. Panjer (1997). Axiomatic characterization of insurance prices. Insurance: Mathematics and Economics 21(2):173-183.
J. Xia and X. Zhou (2016) Arrow-Debreu equilibria for rank-dependent utilities, Mathematical Finance 26(3):558-588.
M.E. Yaari (1987) The dual theory of choice under risk, Econometrica 55(1):95-115.

Thank you

Thank you for your kind attention

