Recent Advances in Risk Aggregation and Dependence Uncertainty

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo, Canada

Vienna Seminar in Mathematical Finance and Probability

Vienna, Austria November 26, 2015

The Question	Mixability	Risk Aggregation	Challenges	References

Mainly based on some joint work with

- Valeria Bignozzi (Rome)
- Paul Embrechts (Zurich)
- Andreas Tsanakas (London)
- Bin Wang (Beijing)

2/55

The Question

Mixability 00000000000 Risk Aggregation

Challenges 000 References 00000

Outline

- The Question
- Mixability
- 8 Risk Aggregation under Uncertainty
- 4 Challenges
- 5 References

The Question	Mixability	Risk Aggregation	Challenges	References
•000000000000000000000000000000000000	0000000000		000	00000
Risk aggregation				

Two aspects of modeling and inference of a multivariate model: **marginal distribution** and **dependence structure**.

"copula thinking"

- Assumption: certain margins, uncertain dependence.
- A common setup in operational risk

For example,

$$S_n = X_1 + \cdots + X_n.$$

 X_i : individual risks; S_n : risk aggregation

The Question	Mixability	Risk Aggregation	Challenges	References
o●ooooooooooooooooooo	0000000000		000	00000
Simple example				

The simplest case: n = 2, $F_1 = F_2 = U[-1, 1]$. What is a possible distribution of $S_2 = X_1 + X_2$?

Obvious constraints

- $\mathbb{E}[S_2] = 0$
- range of S_2 in [-2,2]
- $Var(S_2) \le 4/3$

• In fact, $S_2 \prec_{cx} 2X_1$ i.e. $S_2 \stackrel{d}{=} 2\mathbb{E}[X_1|\mathcal{G}]$ (sufficient?)

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References 00000
Uniform example	1			

The Question	Mixability	Risk Aggregation	Challenges	References
000●000000000000000000000000000000000	0000000000		000	00000
Uniform example	Ш			

7/55

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References 00000
Uniform example	Ш			

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References 00000
Uniform example	IV			

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References 00000
Uniform example	V			

10/55

The Question	Mixability	Risk Aggregation	Challenges	References
000000000000000000000000000000000000	0000000000		000	00000
Uniform example	VI			

The Question	Mixability	Risk Aggregation	Challenges	References
00000000000000000000	0000000000		000	00000
Uniform example	VII			

This it not trivial any more¹.

¹the case [-1, 1] obtained in Rüschendorf (1982); general case [-a, a] obtained in Wang-W. (2015+ MOR)

The Question	Mixability	Risk Aggregation	Challenges	References
000000000000000000000000000000000000	0000000000		000	00000
Uniform example	VIII			

The Question	Mixability	Risk Aggregation	Challenges	References
00000000000000000000	0000000000		000	00000
Uniform example	IX			

The Question	Mixability	Risk Aggregation	Challenges	References
000000000000000000000000000000000000	0000000000		000	00000
Uniform example	Х			

Ruodu Wang (wang@uwaterloo.ca)	Risk aggregation and dependence uncertainty	15/55
Example 3.3 of Mao-W. (2015 JMVA)	▲□▶ ▲圖▶ ▲圖▶ ▲圖▶	∃<∩< <br< th=""></br<>

The Question	Mixability	Risk Aggregation	Challenges	References
000000000000000000000000000000000000	0000000000		000	00000
Uniform example	XI			

The Question	Mixability	Risk Aggregation	Challenges	References
000000000000000000000000000000000000	0000000000		000	00000
Aggregation set				

Denote the aggregation set

$$\mathcal{D}_n = \mathcal{D}_n(F_1, \ldots, F_n) = \{ \text{cdf of } S_n | X_i \sim F_i, i = 1, \ldots, n \}.$$

• \mathcal{D}_n is a convex set, and closed with respect to weak convergence.

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References 00000
Aggregation set				

Some questions to ask:

- (Compatibility) For a given F, is $F \in \mathcal{D}_n$?
- (Mimicking) What is the best approximation in D_n to F? That is, find G ∈ D_n such that d(F, G) is minimized for some metric d.
- (Extreme values) What is $\sup_{F \in D_n} \rho(F)$ for some functional ρ ? \leftarrow risk aggregation with dependence uncertainty

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References 00000
Other application	IS			

Many applications and related problems

- Simulation: variance reduction
- Model-independent option pricing
- (Multi-dimensional) Monge-Kantorovich optimal transportation
- Change of measure
- Decision making
- Assembly and scheduling²

Many natural questions are not related to statistical uncertainty

²traditional problem in OR: e.g. Coffman-Yannakakis (1984 MOR) = ≥ + (≥ +) ≥ → へへ Ruodu Wang (wang@uwaterloo.ca) Risk aggregation and dependence uncertainty 19/55

The Question	Mixability	Risk Aggregation	Challenges	References
	0000000000	0000000000000	000	00000
Aggregation of ri	sk measures			

Attention coming from Quantitative Risk Management

 Most research looks at extreme values of some quantities (e.g. risk measures, pricing function) on the aggregate position S_n:

$$\sup\{\rho(S_n): F_{S_n} \in \mathcal{D}\}$$
 and $\inf\{\rho(S_n): F_{S_n} \in \mathcal{D}\}$

where \mathcal{D} is typically a subset of \mathcal{D}_n .

Earlier research:

VaR: Embrechts-Puccetti (2006 F&S)
 Distribution functions: Makarov (1981 TPA), Rüschendorf (1982 JAP)

The Question	Mixability	Risk Aggregation	Challenges	References
000000000000000000000000000000000000000				

Risk aggregation and dependence uncertainty

An active field for the past few years:

- Some recent papers (many more not listed)
 - W.-Peng-Yang (2013 F&S)
 - Embrechts-Puccetti-Rüschendorf (2013 JBF)
 - Bernard-Jiang-W. (2014 IME)
 - Aas-Puccetti (2014 Extremes)
 - Embrechts-Wang-W. (2015 F&S)
 - W.-Bignozzi-Tsanakas (2015 SIFIN)
 - Bignozzi-Puccetti-Rüschendorf (2015 IME)
 - Bernard-Vanduffel (2015 JBF)
 - Bernard-Vanduffel-Rüschendorf (2015+ JRI)
 - Wang-W. (2015+ MOR)

Risk aggregation and dependence uncertainty

Books covering topics in this field:

Rüschendorf (2013)

McNeil-Frey-Embrechts (2015)

The Question	Mixability	Risk Aggregation	Challenges	References
000000000000000000000000000000000000000	0000000000			

1 The Question

2 Mixability

3 Risk Aggregation under Uncertainty

4 Challenges

5 References

э

Mixability				
The Question	Mixability o●ooooooooo	Risk Aggregation	Challenges 000	References 00000

Observe that

$$S = X_1 + \cdots + X_n \Leftrightarrow X_1 + \cdots + X_n - S = 0$$

Hence,

$$F_{\mathcal{S}} \in \mathcal{D}_n(F_1,\ldots,F_n) \Leftrightarrow \delta_0 \in \mathcal{D}_{n+1}(F_1,\ldots,F_n,F_{-\mathcal{S}}).$$

To answer

is a distribution in \mathcal{D}_n , $n \geq 2$?

We study

is a point-mass in \mathcal{D}_{n+1} , $n \geq 2$?

э

∃ → < ∃</p>

The Question	Mixability oo●oooooooo	Risk Aggregation	Challenges 000	References 00000
Joint mixability				

Joint mix

A random vector (X_1, \ldots, X_n) is a joint mix if $X_1 + \cdots + X_n$ is a constant.

• Example: a multinomial random vector

э

/□ ▶ < 글 ▶ < 글

The Question	Mixability 0000000000	Risk Aggregation	000	References 00000
loint mixability				

Joint mixability (W.-Peng-Yang, 2013 F&S)

An *n*-tuple of univariate distributions (F_1, \ldots, F_n) is jointly mixable (JM) if there exists a joint mix with marginal distributions (F_1, \ldots, F_n) .

- Equivalently, $\mathcal{D}_n(F_1, \ldots, F_n)$ contains a point-mass.
- This concerned point-mass can be chosen at the sum of the means of F₁,..., F_n whenever it is finite.
- We say a univariate distribution *F* is *n*-completely mixabe (*n*-CM) if exists an *n*-dimensional joint mix with identical marginal distributions *F*.

(4月) (1日) (日)

000000000000000000000000000000000000000	0000000000	0000000000000	000	00000
Mixability				

An open research area:

what distributions are CM/JM?

The research in this area is very much marginal-dependent - copula techniques do not help much!

• Recent summary paper: Puccetti-W. (2015 StS)

The Question	Mixability	Risk Aggregation	Challenges	References
	00000●00000	00000000000000	000	00000
Mean condition				

Let $\mu_i, a_i, b_i \in \mathbb{R}$ be respectively the mean, essential infimum, and essential supremum of the support of F_i ;

$$I = \max\{b_i - a_i : i = 1, \ldots, n\}.$$

Mean condition

If (F_1, \ldots, F_n) is JM, then

$$\sum_{i=1}^{n} a_i + l \le \sum_{i=1}^{n} \mu_i \le \sum_{i=1}^{n} b_i - l$$
 (1)

The Question	Mixability oooooo●oooo	Risk Aggregation	Challenges 000	References 00000

Sufficiency of mean condition

Sufficiency:

Theorem 1 (Wang-W., 2015+ MOR)

The mean condition (1) is sufficient for a tuple of distributions with increasing (decreasing) densities to be JM.

- The homogeneous case is shown in Wang-W. (2011 JMVA).
- Corollary: $(\mathrm{U}[0,a_1],\ldots,\mathrm{U}[0,a_n])$ is JM if and only if

$$\max_{i=1,\ldots,n}a_i\leq \frac{1}{2}\sum_{i=1}^na_i.$$

• In particular³: U[0, 1] is *n*-CM for $n \ge 2$.

³ known in Rüschendorf (1982 JAP)	▲□▶ ▲圖▶ ▲厘▶ ▲厘▶	æ	9 Q (?
Ruodu Wang (wang@uwaterloo.ca)	Risk aggregation and dependence uncertainty		29/55

The Question	Mixability oooooooooooo	Risk Aggregation	Challenges 000	References 00000
Variance conditi	ion			

Another necessary condition:

Variance condition

If (F_1, \ldots, F_n) is JM with finite variance $\sigma_1^2, \ldots, \sigma_n^2$, then

$$\max_{i=1,\dots,n} \sigma_i \le \frac{1}{2} \sum_{i=1}^n \sigma_i.$$
(2)

(A polygon inequality⁴.)

⁴the standard deviation can be replaced by any law-based central norm \leftarrow \equiv \rightarrow \bigcirc \bigcirc \bigcirc \bigcirc

Sufficiency of variance condition

Theorem 2 (Wang-W., 2015+ MOR)

The variance condition (2) is sufficient for the joint mixability of

- (i) a tuple of uniform distributions,
- (ii) a tuple of marginal distributions of a multivariate elliptical distribution,
- (iii) a tuple of distributions with unimodal-symmetric densities in the same location-scale family.

- 4 同 ト 4 ヨ ト 4 ヨ ト

31/55

The Question	Mixability ooooooooo●o	Risk Aggregation	Challenges 000	References 00000
Joint mixability				

Theorem 3 (Wang-W., 2015+ MOR)

Suppose that F has a unimodal-symmetric density. For a > 0, (U[0, a], U[0, a], F) is JM if and only if F is supported in an interval of length at most 2a.

32/55

The Question	Mixability	Risk Aggregation	Challenges	References
	0000000000●	00000000000000	000	00000
Joint mixability				

Some remarks:

- Determination of JM is still open
- 12 open questions on mixability: W. (2015 PS)
- Determination of JM in discrete setting is NP-complete⁵.

The Question	Mixability	Risk Aggregation	Challenges	References
		000000000000		

1 The Question

Mixability

3 Risk Aggregation under Uncertainty

4 Challenges

5 References

э

The Question	Mixability	Risk Aggregation	Challenges	References
	00000000000	○●○○○○○○○○○○○○	000	00000

Risk Aggregation under Uncertainty

To study aggregation sets \mathcal{D}_n :

- To measure model uncertainty for quantities (e.g. risk measures, moments, etc) of *S*_n.
- Targets:

$$\sup_{F_{S}\in\mathcal{D}_{n}}\rho(S) \text{ and } \inf_{F_{S}\in\mathcal{D}_{n}}\rho(S)$$
(3)

where $\rho : \mathcal{X} \to \mathbb{R}$ is a risk measure⁶.

 ${}^6
ho$ is law-determined; \mathcal{X} is a set of random variables on $(\Omega, \mathcal{F}_{\mathcal{F}})$ $\exists \mathcal{F} \in \mathbb{R}$

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References 00000
VaR and ES				

Two regulatory risk measures

Value-at-Risk VaR_p

For $p \in (0,1)$,

$$\operatorname{VaR}_p(X) = F_X^{-1}(p) = \inf\{x \in \mathbb{R} : F_X(x) \ge p\}$$

Expected Shortfall ES_p

For $p \in (0,1)$,

$$\mathrm{ES}_p(X) = \frac{1}{1-p} \int_p^1 \mathrm{VaR}_q(X) \mathrm{d}q \underset{(F \text{ cont.})}{=} \mathbb{E}\left[X | X > \mathrm{VaR}_p(X)\right]$$

/⊒ > < ∃ >

Worst- and best-values of VaR and ES

The Fréchet (unconstrained) problems for VaR_p : For given F_1, \ldots, F_n with finite means, and $p \in (0, 1)$, let

$$\overline{\mathrm{VaR}}_{p}(n) = \sup\{\mathrm{VaR}_{p}(S) : F_{S} \in \mathcal{D}_{n}(F_{1}, \ldots, F_{d})\},\$$

$$\underline{\operatorname{VaR}}_p(n) = \inf \{ \operatorname{VaR}_p(S) : F_S \in \mathcal{D}_n(F_1, \ldots, F_d) \}.$$

Same notation for ES_p .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Worst- and best-values of VaR and ES

Uncertainty intervals

 $[\underline{\operatorname{VaR}}_p(n), \overline{\operatorname{VaR}}_p(n)], \ [\underline{\operatorname{ES}}_p(n), \overline{\operatorname{ES}}_p(n)]$

- ES is subadditive: $\overline{\mathrm{ES}}_p(n) = \sum_{i=1}^n \mathrm{ES}_p(X_i)$.
- $\overline{\text{VaR}}_p(n)$, $\underline{\text{VaR}}_p(n)$ and $\underline{\text{ES}}_p(n)$: generally open questions

Challenge for $\underline{\mathrm{ES}}_{p}(n)$

To calculate $\underline{\mathrm{ES}}_{p}(n)$ one naturally seeks a safest risk in \mathcal{D}_{n} .

・ロト ・同ト ・ヨト ・ヨト

38/55

000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000	00000
Mathematical dif	ficulty			

Common understanding of the most dangerous scenario:

 Comonotonicity - well accepted notion; even for a collection of random vectors

Understanding concerning the safest scenario:

- *n* = 2: counter-monotonicity
- $n \ge 3$: unclear
 - Calls for notions of extremal negative dependence.

000000000000000000000000000000000000000	00000000000		000	00000		
Summary of existing results						

- n = 2: (based on counter-comonotonicity)
 - fully solved analytically⁷
- $n \ge 3$: (based on joint mixability)
 - $\underline{\text{ES}}_{p}(n)$ solved analytically for decreasing densities, e.g. Pareto, Exponential
 - VaR_p(n) solved analytically for tail-decreasing densities, e.g.
 Pareto, Gamma, Log-normal⁸
 - $\underline{\operatorname{VaR}}_p(n)$ similar to $\overline{\operatorname{VaR}}_p(n)$

⁷Makarov (1981 TPA) and Rüschendorf (1982 JAP) ⁸homogeneous model: W.-Yang-Peng (2013 F&S); inhomogeneous model: Jakobsons-Han-W. (2015+ SAJ)

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References 00000
Remarks				

Remarks:

- For general marginal distributions the problem is still open
- Numerical methods: Rearrangement Algorithm⁹

⁹Puccetti-Rüschendorf (2012 JCAM); Embrechts-Puccetti-Rüschendorf (2013 JBF), Hofert-Memartoluie-Saunders-Wirjanto (2015+ arXiv)⇒ <♂⇒ < ≧⇒ < ≧⇒

э

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References 00000
Aggregation of ris	sk measures			

Let $\mathcal{D}_n(F) = \mathcal{D}_n(F, \dots, F)$ (homogeneous model). For a law-determined risk measure ρ , define

$$\Gamma_{\rho}(X) = \lim_{n \to \infty} \frac{1}{n} \sup \left\{ \rho(S) : F_S \in \mathcal{D}_n(F_X) \right\}.$$

 Γ_{ρ} is also a law-determined risk measure which inherits some properties of ρ .

The Question	Mixability	Risk Aggregation	Challenges	References
	0000000000	000000000000000	000	00000
Aggregation of ris	sk measures			

Distortion risk measures:

$$\rho_h(X) = \int_0^1 F_X^{-1}(t) \mathrm{d}h(t), \ X \in \mathcal{X} = L^\infty$$

h is the distortion function: a probability measure on (0, 1).

• ES and VaR are special cases

Theorem 4 (W.-Bignozzi-Tsanakas, 2015 SIFIN)

We have

$$\Gamma_{\rho_h}(X) = \rho_{h^*}(X), \ X \in \mathcal{X},$$

where h^* is the largest convex distortion function dominated by h.

000000000000000000000000000000000000000	00000000000	0000000000000000	000	00000
The Question	Mixability	Risk Aggregation	Challenges	References

Aggregation of risk measures

For distortion risk measures

- Example: $\Gamma_{\operatorname{VaR}_p} = \operatorname{ES}_p$
- ρ_h is coherent if and only if $h^* = h$
- Application: when arbitrary dependence is allowed, the worst-case VaR_p of a portfolio behaves like the worst-case ES_p

For law-determined convex risk measures.

- $\Gamma_{
 ho}$ is the smallest coherent risk measure dominating ho
- If ρ is a convex shortfall risk measure, then Γ_{ρ} is a coherent expectile

The Question	Mixability 0000000000	Risk Aggregation 000000000000000	Challenges 000	References

Dependence-uncertainty spread

Theorem 5 (Embrechts-Wang-W., 2015 F&S)

Take $1 > q \ge p > 0$. Under weak regularity conditions, for inhomogeneous models,

$$\liminf_{n\to\infty}\frac{\overline{\operatorname{VaR}}_q(n)-\underline{\operatorname{VaR}}_q(n)}{\overline{\operatorname{ES}}_p(n)-\underline{\operatorname{ES}}_p(n)}\geq 1.$$

- The uncertainty-spread of VaR is generally bigger than that of ES.
- In recent Consultative Documents of the Basel Committee, VaR_{0.99} is compared with ES_{0.975}: p = 0.975 and q = 0.99.

The Question	Mixability	Risk Aggregation	Challenges	References
		0000000000000000		

Dependence-uncertainty spread

ES and VaR of
$$S_n = X_1 + \cdots + X_n$$
, where

•
$$X_i \sim \text{Pareto}(2 + 0.1i), \ i = 1, \dots, 5;$$

•
$$X_i \sim \text{Exp}(i-5), i = 6, ..., 10;$$

•
$$X_i \sim \text{Log-Normal}(0, (0.1(i-10))^2), i = 11, \dots, 20.$$

		<i>n</i> = 5			<i>n</i> = 20	
	best	worst	spread	best	worst	spread
ES _{0.975}	22.48	44.88	22.40	29.15	102.35	73.20
$VaR_{0.975}$	9.79	41.46	31.67	21.44	100.65	79.21
$VaR_{0.99}$	12.96	62.01	49.05	22.29	136.30	114.01
$\frac{\overline{\mathrm{ES}}_{0.975}}{\overline{\mathrm{VaR}}_{0.975}}$		1.08			1.02	

э

The Question

Mixability 00000000000 Risk Aggregation

Challenge: 000

(日)

References 00000

Dependence-uncertainty spread

Features/Risk measure	VaR	Tail-VaR
Frequency captured?	Yes	Yes
Severity captured?	No	Yes
Sub-additive?	Not always	Always
Diversification captured?	Issues	Yes
Back-testing?	Straight-forward	Issues
Estimation?	Feasible	Issues with data limitation
Model uncertainty?	Sensitive to aggregation	Sensitive to tail modelling
Robustness I (with respect to "Lévy metric ³³ ")?	Almost, only minor issues	No
Robustness II (with respect to "Wasserstein metric ³⁴ ")?	Yes	Yes

From the International Association of Insurance Supervisors Consultation Document (December 2014).

47/55

The Question	Mixability	Risk Aggregation	Challenges	References
			•00	

1 The Question

2 Mixability

3 Risk Aggregation under Uncertainty

4 Challenges

5 References

э

Open questions				
The Question	Mixability	Risk Aggregation	Challenges	References
	0000000000	00000000000000	○●○	00000

Concerete mathematical questions:

- Full characterization of \mathcal{D}_n and mixability
- Existence and determination of smallest \prec_{cx} -element in \mathcal{D}_n
- General analytical formulas for $\overline{\mathrm{VaR}}_p$ ($\underline{\mathrm{VaR}}_p$) and $\underline{\mathrm{ES}}_p$
- Aggregation of random vectors

Practical questions:

- Capital calculation under uncertainty
- Robust decision making under uncertainty
- Regulation with uncertainty

000000000000000000000000000000000000000	0000000000	0000000000000	000	00000
Other directions				

Some on-going directions on RADU

- Partial information on dependence¹⁰
- Connection with Extreme Value Theory
- Connection with martingale optimal transportation
- Both marginal and dependence uncertainty
- Computational solutions
- Other aggregation functionals

¹⁰Bignozzi-Puccetti-Rüschendorf (2015 IME), Bernard-Rüschendorf-Vanduffel (2015+ JRI), Bernard-Denuit-Vanduffel (2014 SSRN), Bernard-Vanduffel (2015 JBF), many more

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References ●●●●○
References I				

- Aas, K. and G. Puccetti (2014). Bounds for total economic capital: the DNB case study. *Extremes*, **17**(4), 693–715.
- Bernard C., Denuit, M. and Vanduffel S.. (2013). Measuring portfolio risk under partial dependence information. *Preprint*, Free University of Brussels.
- Bernard, C., Jiang, X. and Wang, R. (2014). Risk aggregation with dependence uncertainty. *Insurance: Mathematics and Economics*, **54**, 93–108.
- Bernard C., Rüschendorf L., and Vanduffel S.. (2015+). Value-at-risk bounds with variance constraints. *Journal of Risk and Insurance*, forthcoming.

- Bernard, C. and Vanduffel, S. (2015). A new approach to assessing model risk in high dimensions. *Journal of Banking and Finance*, **58**, 166–178.

Bignozzi, V., Puccetti, G. and Rüschendorf, L. (2015). Reducing model risk via positive and negative dependence assumptions. *Insurance: Mathematics and Economics*, **61**, 17–26.

- 4 回 ト 4 ヨト 4 ヨト

References II				
The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References ●●●●○

- Coffman, E. G. and Yannakakis, M. (1984). Permuting elements within columns of a matrix in order to minimize maximum row sum. *Mathematics of Operations Research*, **9**(3), 384–390.
- Embrechts, P., Puccetti, G. and Rüschendorf, L. (2013). Model uncertainty and VaR aggregation. *Journal of Banking and Finance*, **37**(8), 2750-2764.
- Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014).
 An academic response to Basel 3.5. *Risks*, 2(1), 25–48.

Embrechts, P., Wang, B. and Wang, R. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures. *Finance and Stochastics*, forthcoming.

Haus, U. (2015). Bounding stochastic dependence, complete mixability of matrices, and multidimensional bottleneck assignment problems. *Operations Research Letters*, **43**(1), 74–79.

< 同 > < 回 > < 回 >

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References ●●●●○
References III				

- Hofert, M., Memartoluie, A., Saunders, D, and Wirjanto, T. (2015) Improved algorithms for computing worst Value-at-Risk: numerical challenges and the Adaptive Rearrangement Algorithm. *Preprint on arXiv*:1505.02281.
- Jakobsons, E., Han, X. and Wang, R. (2015+). General convex order on risk aggregation. *Scandinavian Actuarial Journal*, forthcoming.
- McNeil, A. J., Frey, R. and Embrechts, P. (2015). *Quantitative Risk Management: Concepts, Techniques and Tools.* Revised Edition. Princeton, NJ: Princeton University Press.

Puccetti, G. and Rüschendorf, L. (2012). Computation of sharp bounds on the distribution of a function of dependent risks. *Journal of Computational and Applied Mathematics*, **236**(7), 1833–1840.

Puccetti, G. and Wang, R. (2015). Extremal dependence concepts. *Statistical Science*, **30**(4), 485–517.

Rüschendorf, L. (2013). Mathematical risk analysis. Dependence, risk bounds, optimal allocations and portfolios. Springer, Heidelberg.

伺下 イヨト イヨト

The Question	Mixability 0000000000	Risk Aggregation	Challenges 000	References ●●●●○
References IV				

- Wang, B. and Wang, R. (2011). The complete mixability and convex minimization problems with monotone marginal densities. *Journal of Multivariate Analysis*, **102**, 1344–1360.
 - Wang, B. and Wang, R. (2015). Extreme negative dependence and risk aggregation. *Journal of Multivariate Analysis*, **136**, 12–25.
- Wang, B. and Wang, R. (2015+). Joint mixability. Mathematics of Operations Research, forthcoming.

- Wang, R. (2015). Current open questions in complete mixability. *Probability Surveys*, **12**, 13–32.
- Wang, R., Bignozzi, V. and Tsakanas, A. (2015). How superadditive can a risk measure be? *SIAM Journal on Financial Mathematics*, **6**(1), 776–803.

Wang, R., Peng, L. and Yang, J. (2013). Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. *Finance and Stochastics*, **17**(2), 395–417.

- 4 回 ト 4 ヨト 4 ヨト

The Question

Mixability 00000000000 Risk Aggregation

Challenges

References 0000●

Danke

Thank you for your kind attention