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Basel Documents

From Basel Committee on Banking Supervision:

R1: Consultative Document, May 2012,
Fundamental review of the trading book

R2: Consultative Document, October 2013,
Fundamental review of the trading book: A revised market
risk framework.
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Basel Question

R1, Page 41, Question 8:

”What are the likely constraints with moving from VaR to ES,
including any challenges in delivering robust backtesting, and
how might these be best overcome?”

Cont, Deguest and Scandolo (2010): ES is not robust, while
VaR is.

Gneiting (2011): ES is not elicitable, while VaR is.

A feast for financial mathematicians and financial statisticians!
Review paper: Embrechts et al (2014).

more details
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VaR and ES

In this talk, X > 0 is interpreted as a loss.

Definition
VaRp(X), for p ∈ (0, 1),

VaRp(X) = F−1
X (p) = inf{x ∈ R : FX(x) ≥ α}.

Definition
ESp(X), for p ∈ (0, 1),

ESp(X) = 1
1− p

∫ 1

p
VaRδ(X)dδ =

(F cont.)
E
[
X|X > VaRp(X)

]
.
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VaR versus ES: Summary

Value-at-Risk

1 Always exists

2 Only frequency
3 Non-coherent risk measure

(diversification problem)

4 Backtesting
straightforward

5 Estimation: far in the tail
6 Model uncertainty:

sensitive to dependence

7 (Almost) robust with
respect to weak topology

Expected Shortfall

1 Needs first moment

2 Frequency and severity
3 Coherent risk measure

(diversification benefit)

4 Backtesting an issue
(non-elicitability)

5 Estimation: data limitation
6 Model uncertainty:

sensitive to tail modeling

7 Robust with respect to
Wasserstein distance
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The Holy Triangle of Risk Measures

A risk measure ρ : X → [−∞,∞]. X ⊃ L∞ is a set which is
closed under addition and scaler multiplication.

There are many desired properties of a good risk measure.
Some properties are without debate:

cash-invariance: ρ(X + c) = ρ(X) + c, c ∈ R;
monotonicity: ρ(X) ≤ ρ(Y) if X ≤ Y;
zero-normalization: ρ(0) = 0;
law-invariance: ρ(X) = ρ(Y) if X =d Y.

(A standard risk measure; those properties are not restrictive)

Another one is listed here as debatable:
positive homogeneity: ρ(λX) = λρ(X), λ ≥ 0.
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The Holy Triangle of Risk Measures

In my opinion, in addition to being standard, the three key
elements of being a good risk measure are

(C) Coherence (subadditivity): ρ(X + Y) ≤ ρ(X) + ρ(Y).
[aggregate regulation/capturing the tail/capital
allocation/convex optimization]

(A) Comonotonic additivity: ρ(X + Y) = ρ(X) + ρ(Y) if X and
Y are comonotonic. [economical interpretation/distortion
representation/non-diversification identity]

(E) Elicitability [statistical advantage/backtesting
straightforward].
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The War of the Two Kingdoms

Financial mathematicians
appreciate coherence (subadditivity);
favor ES in general.

Financial statisticians
appreciate backtesting and statistical advantages;
favor VaR in general.

A natural question is to find a standard risk measure which is
both coherent (subadditive) and elicitable.
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Expectiles

Expectiles

For 0 < p < 1 and X ∈ L2, the p-expectile is

ep(X) = argmin
x∈R

E[p(X − x)2
+ + (1− p)(x− X)2

+].

ep(X) is the unique solution x of the equation for X ∈ L1:

pE[(X − x)+] = (1− p)E[(x− X)+].

e1/2(X) = E[X].
If we allow p = 1: e1(X) = ess-sup(X).
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Expectiles

The risk measure ep has the following properties:

1 positive homogeneous and standard;

2 subadditive for 1/2 ≤ p < 1, superadditive for 0 < p ≤ 1/2;
3 elicitable;

4 coherent for 1/2 ≤ p < 1;
5 not comonotonic additive in general.

Bellini et al. (2014), Ziegel (2014), Delbaen (2014).
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The War of the Three Kingdoms

In summary:

VaR has (A) and (E): often criticized for not being
subadditive: diversification/aggregation problems and
inability to capture the tail!

ES has (C) and (A): criticized for estimation, backtesting
and robustness problems!

Expectile has (C) and (E): criticized for lack of economical
meaning, difficulty to conceptualize, distributional
computation and over-diversification benefits!
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The War of the Three Kingdoms

The following hold:
if ρ is coherent, comonotonic additive and elicitable, then ρ
is the mean (Ziegel, 2014);

if ρ is coherent, and elicitable with a convex scoring
function, then ρ is an expectile (Bellini and Bignozzi, 2014);

if ρ is comonotonic additive, and elicitable, then ρ is a VaR
or the mean (Kou and Peng, 2014, W. and Ziegel, 2014).
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The War of the Three Kingdoms

In summary:

The only standard risk measure that has (C), (A) and (E) is the
mean, which is not a tail risk measure, and does not have a risk
loading.

Remark: the very old-school risk measure/pricing
principle ρ(X) = (1 + θ)E[X], θ > 0 has (C-subadditivity),
(A) and (E), although it is not standard.
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The Holy Triangle of Risk Measures

comonotonic
additivity

elicitability

coherence

ES Expectile

VaR

mean
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Subadditivity

Subadditivity has to do with

diversification benefit - ”a merger does not create extra risk”.

aggregation - manipulation of risk: X→ Y + Z;

capturing the tail;

convex optimization and capital allocation.

It is questioned from different aspects:

aggregation penalty - convex risk measures;

robustness and backtesting;

financial practice - ”a merger creates extra risk”.
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How Superadditive Can a Risk Measure be?

Question: given an non-subadditive risk measure,

How superadditive can it be?

Motivation:

Measure model uncertainty.
Quantify worst-scenarios.
Trade subadditivity for statistical advantages such as
robustness or elicitability.
Understand better about subadditivity.
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Diversification ratio

For a law-invariant (always assumed) risk measure ρ, and risks
X = (X1, · · · ,Xn), the diversification ratio is defined as

∆X(ρ) = ρ(X1 + · · ·+ Xn)
ρ(X1) + · · ·+ ρ(Xn) .

For the moment, the denominator is assumed positive.

∆X(ρ) is important in modeling portfolios.

We want to know how large ∆X(ρ) can be.

∆X(ρ) ≤ 1 for subadditive risk measures.

We cannot take a supremum over all possible X, which
often explodes for any non-superadditive risk measure.
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Diversification ratio

We define a law-invariant version of the diversification ratio:

∆F
n(ρ) = sup

{
ρ(X1 + · · ·+ Xn)
ρ(X1) + · · ·+ ρ(Xn) : X1, . . . ,Xn ∼ F

}
.

Here we assumed homogeneity in Fi for:

mathematical tractability;

that it makes sense to let n vary;

that it also catches superadditivity of ρ for inhomogeneous
portfolio.
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Diversification ratio

Define

Sn(F) = {X1 + · · ·+ Xn : X1, . . . ,Xn ∼ F}.

Let XF ∼ F. Then

∆F
n(ρ) = 1

nρ(XF) sup {ρ(S) : S ∈ Sn(F)} .

Known to be a difficult problem; explicit solution for
∆F

n(VaRp) (under some strong conditions) given in W.,
Peng and Yang (2013).
Numerical calculation for ∆F

n(VaRp) given in Embrechts,
Puccetti and Rüschendorf (2013).
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Extreme-aggregation measure

We are interested in the global superadditivity ratio

∆F(ρ) = sup
n∈N

∆F
n(ρ) = sup

n∈N

1
nρ(XF) sup {ρ(S) : S ∈ Sn(F)} .

∆F(ρ) characterizes how superadditive ρ can be for a fixed F.

The real mathematical target:

sup
n∈N

1
n

sup {ρ(S) : S ∈ Sn(F)} .

A closely related quantity:

lim sup
n→∞

1
n

sup {ρ(S) : S ∈ Sn(F)} .
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Extreme-aggregation measure

Definition
An extreme-aggregation measure induced by a law-invariant
risk measure ρ is defined as

Γρ : X → [−∞,∞], Γρ(XF) = lim sup
n→∞

1
n

sup {ρ(S) : S ∈ Sn(F)} .

Γρ quantifies the limit of ρ for worst-case aggregation
under dependence uncertainty.

Γρ is a law-invariant risk measure.
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Extreme-aggregation measure

Proposition

If ρ is (i) comonotonic additive, or (ii) convex and
zero-normalized, then

Γρ(XF) = sup
n∈N

1
n

sup {ρ(S) : S ∈ Sn(F)} ≥ ρ(XF)

If ρ is subadditive then Γρ ≤ ρ. If it also satisfies (i), or (ii), then
Γρ = ρ.

Remark
Γρ inherits monotonicity, cash-invariance, positive
homogeneity, subadditivity, convexity, or zero-normalization
from ρ if ρ has the corresponding properties.
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Extreme-aggregation measure

Question: given a non-subadditive risk measure ρ,

What is Γρ?

Known motivating result (Wang and W., 2014): as n→∞,

sup{VaRp(S) : S ∈ Sn(F)}
sup{ESp(S) : S ∈ Sn(F)} → 1.

Note that

sup{ESp(S) : S ∈ Sn(F)} = nESp(XF),

leading to ΓVaRp = ΓESp = ESp.
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Distortion risk measures

Distortion risk measures:

ρ(XF) =
∫ 1

0
F−1(t)dh(t).

h: probability measure on (0, 1). A distortion function.

We assume random variables are bounded from below:
F−1(0) > −∞.
Standard risk measures are comonotonic additive if and
only if it is a distortion risk measure (a property of
Choquet integral; see Yaari, 1987).
ES, VaR are special cases of distortion risk measures.
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Distortion risk measures

Theorem (Extreme-aggregation for distortion risk measures)

Suppose ρ is a distortion risk measure with distortion function h,
then Γρ is
(a) the smallest coherent risk measure dominating ρ;
(b) a coherent distortion risk measure with a distortion function as

the largest convex distortion function dominated by h.

Example: ΓVaRp = ESp.
A proof quite complicated.
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Main result for distortion risk measures

For distortion risk measures,

∆F(ρ) = Γρ(XF)
ρ(XF) .

Theorem (Coherence and extreme-aggregation)

Suppose ρ is distortion risk measure. The following are equivalent:
(a) ρ is coherent.
(b) Γρ(XF) = ρ(XF) for all distributions F.
(c) Γρ(XF) = ρ(XF) for some continuous distribution F,

ρ(XF) <∞.
(d) ∆F(ρ) = 1 for all distributions F, ρ(XF) ∈ (0,∞).
(e) ∆F(ρ) = 1 for some continuous distribution F, ρ(XF) ∈ (0,∞).
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Shortfall risk measures

Shortfall risk measures:

ρ(X) = inf{y ∈ R : E[`(X − y)] ≤ l(0)}.

`: convex and increasing function. A loss function.

Motivation from indifference pricing theory.
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Shortfall risk measures

Theorem (Extreme-aggregation for shortfall risk measures)

Suppose ρ is a shortfall risk measure with loss function `, then Γρ is
(a) the smallest coherent risk measure dominating ρ;
(b) a coherent p-expectile, where

p = lim
x→∞

`′(x)/( lim
x→∞

`′(x) + lim
x→−∞

`′(x))

Example: ΓERβ
= e1 = ess-sup, where ERβ is the entropy

risk measure: with loss function `(x) = exp(βx)− 1.
A proof of one page.
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Convex risk measures

A convex risk measure is standard and convex:

ρ(λX + (1− λ)Y) ≤ λρ(X) + (1− λ)ρ(Y), λ ∈ (0, 1).

Theorem (Extreme-aggregation for convex risk measures)

Suppose ρ is a convex risk measure, then Γρ is a coherent risk
measure.
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Convex risk measures

A law-invariant convex risk measure has the following
representation

ρ = sup
h∈P[0,1]

{∫
ESpdh(p)− v(h)

}
,

where
P[0, 1] is the set of all probability measures on [0, 1];
v : P[0, 1]→ R ∪ {+∞} is a convex function;
ρ(0) = 0 is equivalent to infh∈P[0,1] v(h) = 0.
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Extreme-aggregation for convex risk measures

Extreme-aggregation for convex risk measures

Γρ is a coherent risk measure with representation

Γρ = sup
h∈Q

{∫
ESpdh(p)

}
,

where Q = {h ∈ P[0, 1] : v(h) > −∞}.

Γρ is the smallest coherent risk measure dominating ρ.
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Extreme-division

We define the extreme-division measure (W., 2014) for a risk
measure ρ:

Ψρ(X) = inf

{ n∑
i=1

ρ(Xi) : n ∈ N, Xi ∈ X , i = 1, . . . ,n,
n∑

i=1

Xi = X

}
.

Ψρ(X) is the least amount of capital requirement according
to ρ if the risk X can be divided arbitrarily.

Ψρ ≤ ρ.

Ψρ = ρ for subadditive risk measures.

Not relevant to this topic, just wanted to show an
interesting duality.
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Extreme-division for convex risk measures

Extreme-division for convex risk measures
Ψρ is a coherent risk measure with representation

Ψρ = sup
h∈Q

{∫
ESpdh(p)

}
,

where Q = {h ∈ P[0, 1] : v(h) = 0}.

Ψρ is the largest coherent risk measure dominated by ρ.
When ρ is a distortion risk measure, Ψρ is a coherent risk
measure, but not necessarily a distortion.
ΨVaRp = −∞ for all p ∈ (0, 1).
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Discussion

Γρ is very often a coherent risk measure for all commonly
used standard risk measures. However, counter-example
can be built.

Γρ often gains positive homogeneity, convexity, and
subadditivity even if ρ does not have these properties.

A universal axiomatic proof of this phenomenon is not
available yet.

Characterize the class of risk measures which induce
coherent extreme-aggregation measures?

What happens to shortfall risk measures with non-convex
loss functions?
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Discussion

Some take-home message:

Coherence is indeed a natural property desired by a good risk
measure. Even when a non-coherent risk measure is applied to
a portfolio, its extreme behavior under dependence uncertainty
leads to coherence.

When we allow arbitrary division of a risk, the extreme
behavior also leads to coherence.

This contributes to the Basel question and partly supports the
use of coherent risk measures.
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More

Basel Question

R1, Page 20, Choice of risk metric:

”... However, a number of weaknesses have been identified
with VaR, including its inability to capture ”tail risk”. The
Committee therefore believes it is necessary to consider
alternative risk metrics that may overcome these weaknesses.”



More

Basel Question

We focus on the mathematical and statistical aspects, avoiding
discussion on practicalities and operational issues.

R1, Page 3:

”The Committee recognises that moving to ES could entail
certain operational challenges; nonetheless it believes that these
are outweighed by the benefits of replacing VaR with a
measure that better captures tail risk.”



More

Basel Question

R2, Page 3, Approach to risk management:

”the Committee has its intention to pursue two key confirmed
reforms outlined in the first consultative paper [May 2012]:
Stressed calibration . . . Move from Value-at-Risk (VaR) to
Expected Shortfall (ES).”
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