How Superadditive Can a Risk Measure Be?

Ruodu Wang

(wang@uwaterloo.ca)

Department of Statistics and Actuarial Science University of Waterloo, Canada

Seminar on Probability and Statistics University of Bern Bern, Switzerland May 9th, 2014

Joint work with Valeria Bignozzi and Andreas Tsanakas

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ショー シック ()

0000	000000000	000000000000000000000000000000000000000	00	00000
Outline				

1 VaR and ES

- 2 The Holy Triangle of Risk Measures
- 3 How Superadditive Can a Risk Measure Be?

4 Discussion

5 References

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
●0○○	000000000		00	00000
Basel D	ocuments			

From Basel Committee on Banking Supervision:

- R1: Consultative Document, May 2012, Fundamental review of the trading book
- R2: Consultative Document, October 2013, Fundamental review of the trading book: A revised market risk framework.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
o●○○	00000000		00	00000
Basel Q	uestion			

R1, Page 41, Question 8:

"What are the likely constraints with moving from VaR to ES, including any challenges in delivering robust backtesting, and how might these be best overcome?"

• Cont, Deguest and Scandolo (2010): ES is not robust, while VaR is.

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

• Gneiting (2011): ES is not elicitable, while VaR is.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
○●○○	00000000	00000000000000000000	00	00000
Basel Q	uestion			

R1, Page 41, Question 8:

"What are the likely constraints with moving from VaR to ES, including any challenges in delivering robust backtesting, and how might these be best overcome?"

- Cont, Deguest and Scandolo (2010): ES is not robust, while VaR is.
- Gneiting (2011): ES is not elicitable, while VaR is.

A feast for financial mathematicians and financial statisticians! Review paper: Embrechts et al (2014).

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
○○●○	000000000		00	00000
VaR and	dES			

In this talk, X > 0 is interpreted as a loss.

Definition

 $\operatorname{VaR}_p(X)$, for $p \in (0, 1)$,

$$\operatorname{VaR}_p(X) = F_X^{-1}(p) = \inf\{x \in \mathbb{R} : F_X(x) \ge \alpha\}.$$

Definition

 $ES_{p}(X)$, for $p \in (0, 1)$,

$$\mathrm{ES}_p(X) = \frac{1}{1-p} \int_p^1 \mathrm{VaR}_{\delta}(X) \mathrm{d}\delta \underset{(F \text{ cont.})}{=} \mathbb{E}\left[X|X > \mathrm{VaR}_p(X)\right].$$

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000				

VaR versus ES: Summary

Value-at-Risk

- Always exists
- Only frequency
- Non-coherent risk measure (diversification problem)
- Backtesting straightforward
- Stimation: far in the tail
- Model uncertainty: sensitive to dependence
- (Almost) robust with respect to weak topology

Expected Shortfall

- Needs first moment
- Prequency and severity
- Coherent risk measure (diversification benefit)
- Backtesting an issue (non-elicitability)
- Sestimation: data limitation
- Model uncertainty: sensitive to tail modeling
- Robust with respect to Wasserstein distance

The Ho	ly Triangle	of Risk Measures		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	•00000000		00	00000

A risk measure $\rho : \mathcal{X} \to [-\infty, \infty]$. $\mathcal{X} \supset L^{\infty}$ is a set which is closed under addition and scaler multiplication.

There are many desired properties of a good risk measure. Some properties are without debate:

- cash-invariance: $\rho(X + c) = \rho(X) + c, c \in \mathbb{R}$;
- monotonicity: $\rho(X) \le \rho(Y)$ if $X \le Y$;
- zero-normalization: $\rho(0) = 0$;
- law-invariance: $\rho(X) = \rho(Y)$ if $X =_d Y$.

(A standard risk measure; those properties are not restrictive)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Another one is listed here as debatable:

• positive homogeneity: $\rho(\lambda X) = \lambda \rho(X)$, $\lambda \ge 0$.

Tho Ho	ly Triangla	of Risk Measures		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000	0000000000000000000000	00	00000

In my opinion, in addition to being standard, the three key elements of being a good risk measure are

(C) Coherence (subadditivity): $\rho(X + Y) \le \rho(X) + \rho(Y)$. [aggregate regulation/capturing the tail/capital allocation/convex optimization]

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

The Hol	v Trianole	of Risk Measures		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	o●ooooooo		00	00000

In my opinion, in addition to being standard, the three key elements of being a good risk measure are

- (C) Coherence (subadditivity): $\rho(X + Y) \le \rho(X) + \rho(Y)$. [aggregate regulation/capturing the tail/capital allocation/convex optimization]
- (A) Comonotonic additivity: $\rho(X + Y) = \rho(X) + \rho(Y)$ if X and Y are comonotonic. [economical interpretation/distortion representation/non-diversification identity]

The Hol	v Trianole	of Risk Measures		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	o●ooooooo		00	00000

In my opinion, in addition to being standard, the three key elements of being a good risk measure are

- (C) Coherence (subadditivity): $\rho(X + Y) \le \rho(X) + \rho(Y)$. [aggregate regulation/capturing the tail/capital allocation/convex optimization]
- (A) Comonotonic additivity: $\rho(X + Y) = \rho(X) + \rho(Y)$ if X and Y are comonotonic. [economical interpretation/distortion representation/non-diversification identity]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(E) Elicitability [statistical advantage/backtesting straightforward].

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000		00	00000
		T () 1		

The War of the Two Kingdoms

• Financial mathematicians

- appreciate coherence (subadditivity);
- favor ES in general.
- Financial statisticians
 - appreciate backtesting and statistical advantages;
 - favor VaR in general.

A natural question is to find a standard risk measure which is both coherent (subadditive) and elicitable.

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000●00000		00	00000
Expecti	les			

Expectiles

For $0 and <math>X \in L^2$, the *p*-expectile is

$$e_p(X) = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E}[p(X - x)_+^2 + (1 - p)(x - X)_+^2].$$

• $e_p(X)$ is the unique solution *x* of the equation for $X \in L^1$:

$$p\mathbb{E}[(X-x)_+] = (1-p)\mathbb{E}[(x-X)_+].$$

*e*_{1/2}(*X*) = E[*X*].
If we allow *p* = 1: *e*₁(*X*) = ess-sup(*X*).

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	0000●0000		00	00000
Expecti	les			

The risk measure e_p has the following properties:

- positive homogeneous and standard;
- Subadditive for $1/2 \le p < 1$, superadditive for 0 ;

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

- elicitable;
- coherent for $1/2 \le p < 1$;
- not comonotonic additive in general.

Bellini et al. (2014), Ziegel (2014), Delbaen (2014).

The War o	of the Thre	ee Kingdoms		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000●000		00	00000

In summary:

• VaR has (A) and (E): often criticized for not being subadditive: diversification/aggregation problems and inability to capture the tail!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

The War	of the Thr	ee Kingdoms		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000●000		00	00000

 \mathbf{O}

In summary:

- VaR has (A) and (E): often criticized for not being subadditive: diversification/aggregation problems and inability to capture the tail!
- ES has (C) and (A): criticized for estimation, backtesting and robustness problems!

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

The War	of the Thre	ee Kingdoms		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000●000	00000000000000000000000	00	00000

 \mathbf{O}

In summary:

- VaR has (A) and (E): often criticized for not being subadditive: diversification/aggregation problems and inability to capture the tail!
- ES has (C) and (A): criticized for estimation, backtesting and robustness problems!
- Expectile has (C) and (E): criticized for lack of economical meaning, difficulty to conceptualize, distributional computation and over-diversification benefits!

The Wa	r of the Thr	ee Kingdoms		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000●00		00	00000

O

The following hold:

- if *ρ* is coherent, comonotonic additive and elicitable, then *ρ* is the mean (Ziegel, 2014);
- if *ρ* is coherent, and elicitable with a convex scoring function, then *ρ* is an expectile (Bellini and Bignozzi, 2014);
- if *ρ* is comonotonic additive, and elicitable, then *ρ* is a VaR or the mean (Kou and Peng, 2014, W. and Ziegel, 2014).

The Wa	r of the Thr	ee Kingdoms		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	0000000●0		00	00000

O

In summary:

The only standard risk measure that has (C), (A) and (E) is the mean, which is not a tail risk measure, and does not have a risk loading.

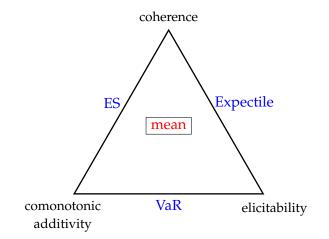
▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

The War	The War of the Three Kingdoms							
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References				
0000	000000000		00	00000				

In summary:

The only standard risk measure that has (C), (A) and (E) is the mean, which is not a tail risk measure, and does not have a risk loading.

Remark: the very old-school risk measure/pricing principle ρ(X) = (1 + θ)E[X], θ > 0 has (C-subadditivity), (A) and (E), although it is not standard.



VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000	•0000000000000000000000	00	00000
Subadd	itivity			

Subadditivity has to do with

• diversification benefit - "a merger does not create extra risk".

- aggregation manipulation of risk: $X \rightarrow Y + Z$;
- capturing the tail;
- convex optimization and capital allocation.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000	••••••	00	00000
Subadd	itivity			

Subadditivity has to do with

- diversification benefit "a merger does not create extra risk".
- aggregation manipulation of risk: $X \rightarrow Y + Z$;
- capturing the tail;
- convex optimization and capital allocation.

It is questioned from different aspects:

- aggregation penalty convex risk measures;
- robustness and backtesting;
- financial practice "a merger creates extra risk".

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References		
0000	000000000		00	00000		
How Superadditive Can a Risk Measure be?						

Question: given an non-subadditive risk measure,

How superadditive can it be?

How Superadditive Can a Risk Measure be?

Question: given an non-subadditive risk measure,

How superadditive can it be?

Motivation:

- Measure model uncertainty.
- Quantify worst-scenarios.
- Trade subadditivity for statistical advantages such as robustness or elicitability.

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

• Understand better about subadditivity.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000
Diversifi	cation ratio)		

For a law-invariant (always assumed) risk measure ρ , and risks $\mathbf{X} = (X_1, \dots, X_n)$, the diversification ratio is defined as

$$\Delta^{\mathbf{X}}(\rho) = \frac{\rho(X_1 + \dots + X_n)}{\rho(X_1) + \dots + \rho(X_n)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For the moment, the denominator is assumed positive.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000
Diversific	cation ratio			

For a law-invariant (always assumed) risk measure ρ , and risks $\mathbf{X} = (X_1, \dots, X_n)$, the diversification ratio is defined as

$$\Delta^{\mathbf{X}}(\rho) = \frac{\rho(X_1 + \dots + X_n)}{\rho(X_1) + \dots + \rho(X_n)}.$$

For the moment, the denominator is assumed positive.

- $\Delta^{\mathbf{X}}(\rho)$ is important in modeling portfolios.
- We want to know how large $\Delta^{\mathbf{X}}(\rho)$ can be.
- $\Delta^{\mathbf{X}}(\rho) \leq 1$ for subadditive risk measures.
- We cannot take a supremum over all possible **X**, which often explodes for any non-superadditive risk measure.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000		00	00000
Diversi	fication ration	0		

We define a law-invariant version of the diversification ratio:

$$\Delta_n^F(\rho) = \sup\left\{\frac{\rho(X_1 + \dots + X_n)}{\rho(X_1) + \dots + \rho(X_n)} : X_1, \dots, X_n \sim F\right\}.$$

Here we assumed homogeneity in F_i for:

- mathematical tractability;
- that it makes sense to let *n* vary;
- that it also catches superadditivity of *ρ* for inhomogeneous portfolio.

Diversi	fication ration	0		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000		00	00000

Define

$$\mathfrak{S}_n(F) = \{X_1 + \cdots + X_n : X_1, \ldots, X_n \sim F\}.$$

Let $X_F \sim F$. Then

$$\Delta_n^F(\rho) = \frac{1}{n\rho(X_F)} \sup \left\{ \rho(S) : S \in \mathfrak{S}_n(F) \right\}.$$

- Known to be a difficult problem; explicit solution for $\Delta_n^F(\text{VaR}_p)$ (under some strong conditions) given in W., Peng and Yang (2013).
- Numerical calculation for $\Delta_n^F(VaR_p)$ given in Embrechts, Puccetti and Rüschendorf (2013).

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000
Extreme	e-aggregatio	on measure		

We are interested in the global superadditivity ratio

$$\Delta^{F}(\rho) = \sup_{n \in \mathbb{N}} \Delta_{n}^{F}(\rho) = \sup_{n \in \mathbb{N}} \frac{1}{n\rho(X_{F})} \sup \left\{ \rho(S) : S \in \mathfrak{S}_{n}(F) \right\}.$$

 $\Delta^{F}(\rho)$ characterizes how superadditive ρ can be for a fixed *F*.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000
Extreme	e-aggregatio	on measure		

We are interested in the global superadditivity ratio

$$\Delta^{F}(\rho) = \sup_{n \in \mathbb{N}} \Delta_{n}^{F}(\rho) = \sup_{n \in \mathbb{N}} \frac{1}{n\rho(X_{F})} \sup \left\{ \rho(S) : S \in \mathfrak{S}_{n}(F) \right\}.$$

 $\Delta^{F}(\rho)$ characterizes how superadditive ρ can be for a fixed *F*.

The real mathematical target:

$$\sup_{n\in\mathbb{N}}\frac{1}{n}\sup\left\{\rho(S):S\in\mathfrak{S}_n(F)\right\}.$$

A closely related quantity:

$$\limsup_{n\to\infty}\frac{1}{n}\sup\left\{\rho(S):S\in\mathfrak{S}_n(F)\right\}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000

Extreme-aggregation measure

Definition

An extreme-aggregation measure induced by a law-invariant risk measure ρ is defined as

$$\Gamma_{\rho}: \mathcal{X} \to [-\infty, \infty], \ \ \Gamma_{\rho}(X_F) = \limsup_{n \to \infty} \frac{1}{n} \sup \left\{ \rho(S) : S \in \mathfrak{S}_n(F) \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000

Extreme-aggregation measure

Definition

An extreme-aggregation measure induced by a law-invariant risk measure ρ is defined as

$$\Gamma_{\rho}: \mathcal{X} \to [-\infty, \infty], \ \ \Gamma_{\rho}(X_F) = \limsup_{n \to \infty} \frac{1}{n} \sup \left\{ \rho(S) : S \in \mathfrak{S}_n(F) \right\}.$$

 Γ_ρ quantifies the limit of ρ for worst-case aggregation under dependence uncertainty.

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

• Γ_{ρ} is a law-invariant risk measure.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000
Extreme	-aggregatio	on measure		

Proposition

If ρ is (i) comonotonic additive, or (ii) convex and zero-normalized, then

$$\Gamma_{\rho}(X_F) = \sup_{n \in \mathbb{N}} \frac{1}{n} \sup \left\{ \rho(S) : S \in \mathfrak{S}_n(F) \right\} \ge \rho(X_F)$$

If ρ is subadditive then $\Gamma_{\rho} \leq \rho$. If it also satisfies (i), or (ii), then $\Gamma_{\rho} = \rho$.

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000		00	00000
Extreme	-aggregatic	on measure		

Proposition

If ρ is (i) comonotonic additive, or (ii) convex and zero-normalized, then

$$\Gamma_{\rho}(X_F) = \sup_{n \in \mathbb{N}} \frac{1}{n} \sup \left\{ \rho(S) : S \in \mathfrak{S}_n(F) \right\} \ge \rho(X_F)$$

If ρ is subadditive then $\Gamma_{\rho} \leq \rho$. If it also satisfies (i), or (ii), then $\Gamma_{\rho} = \rho$.

Remark

 Γ_{ρ} inherits monotonicity, cash-invariance, positive homogeneity, subadditivity, convexity, or zero-normalization from ρ if ρ has the corresponding properties.

VaR and ES Holy Triangle How Superadditive Can It Be? Discussi 0000 00000000 000000000 00	ion References 00000

Extreme-aggregation measure

Question: given a non-subadditive risk measure ρ ,

What is Γ_{ρ} ?

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000
Extreme	e-aggregatio	on measure		

Question: given a non-subadditive risk measure ρ ,

What is Γ_{ρ} ?

• Known motivating result (Wang and W., 2014): as $n \to \infty$,

$$\frac{\sup\{\operatorname{VaR}_p(S): S \in \mathfrak{S}_n(F)\}}{\sup\{\operatorname{ES}_p(S): S \in \mathfrak{S}_n(F)\}} \to 1.$$

Note that

$$\sup\{\mathrm{ES}_p(S): S \in \mathfrak{S}_n(F)\} = n\mathrm{ES}_p(X_F),$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

leading to $\Gamma_{\text{VaR}_p} = \Gamma_{\text{ES}_p} = \text{ES}_p$.

Distorti	on risk mea	0011700		
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000

Distortion risk measures:

$$\rho(X_F) = \int_0^1 F^{-1}(t) \mathrm{d}h(t).$$

<□> <@> < E> < E> El= のQ@

h: probability measure on (0, 1). A distortion function.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References			
0000	00000000		00	00000			
Distortion risk measures							

Distortion risk measures:

$$\rho(X_F) = \int_0^1 F^{-1}(t) \mathrm{d}h(t).$$

- *h*: probability measure on (0, 1). A distortion function.
 - We assume random variables are bounded from below: $F^{-1}(0) > -\infty$.
 - Standard risk measures are comonotonic additive if and only if it is a distortion risk measure (a property of Choquet integral; see Yaari, 1987).
 - ES, VaR are special cases of distortion risk measures.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	00000
D				

Distortion risk measures

Theorem (Extreme-aggregation for distortion risk measures)

Suppose ρ is a distortion risk measure with distortion function h, then Γ_{ρ} is

- (a) the smallest coherent risk measure dominating ρ ;
- (b) a coherent distortion risk measure with a distortion function as the largest convex distortion function dominated by h.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ショー シック ()

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000		00	00000

Distortion risk measures

Theorem (Extreme-aggregation for distortion risk measures)

Suppose ρ is a distortion risk measure with distortion function h, then Γ_{ρ} is

- (a) the smallest coherent risk measure dominating ρ ;
- (b) a coherent distortion risk measure with a distortion function as the largest convex distortion function dominated by h.

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

- Example: $\Gamma_{VaR_p} = ES_p$.
- A proof quite complicated.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000	000000000000000000000000000000000000	00	00000

Main result for distortion risk measures

For distortion risk measures,

$$\Delta^F(
ho) = rac{\Gamma_
ho(X_F)}{
ho(X_F)}.$$

・ロト・(個)・(目)・(日)・(日)・

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000		00	00000
	1. 6 1			

Main result for distortion risk measures

For distortion risk measures,

$$\Delta^F(
ho) = rac{\Gamma_
ho(X_F)}{
ho(X_F)}.$$

Theorem (Coherence and extreme-aggregation)

Suppose ρ is distortion risk measure. The following are equivalent:

- (a) ρ is coherent.
- (b) $\Gamma_{\rho}(X_F) = \rho(X_F)$ for all distributions *F*.
- (c) $\Gamma_{\rho}(X_F) = \rho(X_F)$ for some continuous distribution F, $\rho(X_F) < \infty$.
- (d) $\Delta^F(\rho) = 1$ for all distributions $F, \rho(X_F) \in (0, \infty)$.

(e) $\Delta^F(\rho) = 1$ for some continuous distribution F, $\rho(X_F) \in (0, \infty)$.

Chartfall rick magazines						
		000000000000000000000000000000000000000				
VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References		

Shortfall risk measures

Shortfall risk measures:

$$\rho(X) = \inf\{y \in \mathbb{R} : \mathbb{E}[\ell(X - y)] \le l(0)\}.$$

ℓ : convex and increasing function. A loss function.

• Motivation from indifference pricing theory.

0000	00000000	000000000000000000000000000000000000000	00	00000
Shortfal	ll risk meas	ures		

Theorem (Extreme-aggregation for shortfall risk measures)

Suppose ρ is a shortfall risk measure with loss function ℓ , then Γ_{ρ} is

(a) the smallest coherent risk measure dominating ρ ;

(b) a coherent *p*-expectile, where

$$p = \lim_{x \to \infty} \ell'(x) / (\lim_{x \to \infty} \ell'(x) + \lim_{x \to -\infty} \ell'(x))$$

0000	00000000	000000000000000000000000000000000000000	00	00000
Shortfal	ll risk meas	ures		

Theorem (Extreme-aggregation for shortfall risk measures)

Suppose ρ is a shortfall risk measure with loss function ℓ , then Γ_{ρ} is

(a) the smallest coherent risk measure dominating ρ ;

(b) a coherent *p*-expectile, where

$$p = \lim_{x \to \infty} \ell'(x) / (\lim_{x \to \infty} \ell'(x) + \lim_{x \to -\infty} \ell'(x))$$

- Example: $\Gamma_{\text{ER}_{\beta}} = e_1 = \text{ess-sup}$, where ER_{β} is the entropy risk measure: with loss function $\ell(x) = \exp(\beta x) 1$.
- A proof of one page.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000	000000000000000000000000000000000000	00	00000
Convex	risk measu	res		

A convex risk measure is standard and convex:

 $\rho(\lambda X + (1-\lambda)Y) \le \lambda \rho(X) + (1-\lambda)\rho(Y), \ \lambda \in (0,1).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Extreme-aggregation for convex risk measures)

Suppose ρ is a convex risk measure, then Γ_{ρ} is a coherent risk measure.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References			
0000	00000000		00	00000			
Convex	Convex risk measures						

A law-invariant convex risk measure has the following representation

$$\rho = \sup_{h \in \mathcal{P}[0,1]} \left\{ \int \mathrm{ES}_p \mathrm{d}h(p) - v(h) \right\},\,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where

- $\mathcal{P}[0,1]$ is the set of all probability measures on [0,1];
- $v: \mathcal{P}[0,1] \to \mathbb{R} \cup \{+\infty\}$ is a convex function;
- $\rho(0) = 0$ is equivalent to $\inf_{h \in \mathcal{P}[0,1]} v(h) = 0$.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000		00	00000

Extreme-aggregation for convex risk measures

Extreme-aggregation for convex risk measures

 Γ_ρ is a coherent risk measure with representation

$$\Gamma_{\rho} = \sup_{h \in \mathcal{Q}} \left\{ \int \mathrm{ES}_{p} \mathrm{d}h(p) \right\},\,$$

where $\mathcal{Q} = \{h \in \mathcal{P}[0,1] : v(h) > -\infty\}.$

• Γ_{ρ} is the smallest coherent risk measure dominating ρ .

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000	00000000000000000000000	00	00000
Extrem	e-division			

We define the extreme-division measure (W., 2014) for a risk measure ρ :

$$\Psi_{\rho}(X) = \inf\left\{\sum_{i=1}^{n} \rho(X_i) : n \in \mathbb{N}, \ X_i \in \mathcal{X}, i = 1, \dots, n, \ \sum_{i=1}^{n} X_i = X\right\}.$$

• $\Psi_{\rho}(X)$ is the least amount of capital requirement according to ρ if the risk *X* can be divided arbitrarily.

- $\Psi_{\rho} \leq \rho$.
- $\Psi_{\rho} = \rho$ for subadditive risk measures.
- Not relevant to this topic, just wanted to show an interesting duality.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
		000000000000000000000		

Extreme-division for convex risk measures

Extreme-division for convex risk measures

 $\Psi_{
ho}$ is a coherent risk measure with representation

$$\Psi_{\rho} = \sup_{h \in \mathcal{Q}} \left\{ \int \mathrm{ES}_{p} \mathrm{d}h(p) \right\},\,$$

where $Q = \{h \in P[0,1] : v(h) = 0\}.$

- Ψ_{ρ} is the largest coherent risk measure dominated by ρ .
- When *ρ* is a distortion risk measure, Ψ_ρ is a coherent risk measure, but not necessarily a distortion.

•
$$\Psi_{\operatorname{VaR}_p} = -\infty$$
 for all $p \in (0, 1)$.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		•o	00000
Discussio	on			

- Γ_{ρ} is very often a coherent risk measure for all commonly used standard risk measures. However, counter-example can be built.
- Γ_ρ often gains positive homogeneity, convexity, and subadditivity even if ρ does not have these properties.
- A universal axiomatic proof of this phenomenon is not available yet.
- Characterize the class of risk measures which induce coherent extreme-aggregation measures?
- What happens to shortfall risk measures with non-convex loss functions?

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		O•	00000
Discuss	ion			

Some take-home message:

Coherence is indeed a natural property desired by a good risk measure. Even when a non-coherent risk measure is applied to a portfolio, its extreme behavior under dependence uncertainty leads to coherence.

When we allow arbitrary division of a risk, the extreme behavior also leads to coherence.

This contributes to the Basel question and partly supports the use of coherent risk measures.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	●●●●○
Referen	ices I			

- BCBS (2012). Consultative Document, May 2012. Fundamental review of the trading book. Bank for International Settlements, Basel.
- BCBS (2013). Consultative Document, October 2013. Fundamental review of the trading book: A revised market risk framework. Bank for International Settlements, Basel.
- Bellini, F. and V. Bignozzi (2014). Elicitable Risk Measures. Available at SSRN: http://ssrn.com/abstract=2334746
- Bellini, F., B. Klar, A. Müller and E. Rosazza Gianin (2014). Generalized quantiles as risk measures. *Insurance: Mathematics and Economics*, **54**(1), 41-48.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	●●●●○
Referen	ces II			

- Cont, R., R. Deguest, and G. Scandolo (2010). Robustness and sensitivity analysis of risk measurement procedures. *Quantitative Finance*, 10(6), 593–606.
- Delbaen, F. (2014). A remark on the structure of expectiles. *Preprint, ETH Zurich.*
- Embrechts, P., G. Puccetti, and L. Rüschendorf (2013). Model uncertainty and VaR aggregation. *Journal of Banking and Finance*, 37(8), 2750–2764.
- Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An academic response to Basel 3.5. Risks 2(1), 25–48.
- Gneiting, T. (2011). Making and evaluating point forecasts. *Journal of the American Statistical Association*, 106, 746–762.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	000000000		00	●●●●○
Referen	ces III			

- Kou, S. and Peng, X. (2014). On the measurement of economic tail risk. *Preprint*, Hong Kong University of Science and Technology.
- Wang, R. (2014). Subadditivity and indivisibility. *Preprint*, University of Waterloo.
- Wang, B. and Wang, R. (2014). Extreme negative dependence and risk aggregation. *Preprint*, University of Waterloo.
- Wang, R., V. Bignozzi, and A. Tsakanas (2014). How superadditive can a risk measure be? *Preprint*, *University of Waterloo*.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
0000	00000000		00	●●●●○
Referen	ces IV			

- Wang, R., L. Peng, and J. Yang (2013). Bounds for the sum of dependent risks and worst value-at-risk with monotone marginal densities. *Finance Stoch.* 17(2), 395–417.
- Wang, R. and Ziegel, J. (2014). Elicitability of distortion risk measures. *Preprint, University of Bern*.
- Yaari, M. E. (1987). The dual theory of choice under risk. *Econometrica*, **55**(1), 95–115.
- Ziegel, J. (2014). Coherence and elicitability. *Mathematical Finance*, to appear.

VaR and ES	Holy Triangle	How Superadditive Can It Be?	Discussion	References
	000000000	000000000000000000000000000000000000000		00000

Thank you for your kind attendance!

Basel Question

R1, Page 20, Choice of risk metric:

"... However, a number of weaknesses have been identified with VaR, including its inability to capture "tail risk". The Committee therefore believes it is necessary to consider alternative risk metrics that may overcome these weaknesses."

We focus on the mathematical and statistical aspects, avoiding discussion on practicalities and operational issues.

R1, Page 3:

"The Committee recognises that moving to ES could entail certain operational challenges; nonetheless it believes that these are outweighed by the benefits of replacing VaR with a measure that better captures tail risk."

R2, Page 3, Approach to risk management:

"the Committee has its intention to pursue two key confirmed reforms outlined in the first consultative paper [May 2012]: Stressed calibration . . . Move from Value-at-Risk (VaR) to Expected Shortfall (ES)."

