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Introduction

Key question in mind

A financial institution has a risk (random loss) X in a fixed

period. How much capital should this financial institution

reserve in order to undertake this risk?

X can be financial risks, credit risks, operational risks,

insurance risks, etc.

Regulator’s viewpoint

Risk manager’s viewpoint
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Risk Measures

First, a standard probability space (Ω,A,P).

P-a.s. equal random variables are treated as identical.

A risk measure is a functional ρ : X → [−∞,∞].

X ⊃ L∞ is a set which is closed under addition and

R+-multiplication.

Typically one requires ρ(L∞) ⊂ R for obvious reasons.
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Example: VaR

p ∈ (0, 1), X ∼ F.

Definition 1 (Value-at-Risk)

VaRp : L0 → R,

VaRp(X) = F−1(p) = inf{x ∈ R : F(x) ≥ p}.
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Example: ES

p ∈ (0, 1).

Definition 2 (Expected Shortfall (TVaR, CVaR, CTE, WCE))

ESp : L0 → (−∞,∞],

ESp(X) =
1

1− p

∫ 1

p
VaRq(X)dq =

(F cont.)
E
[
X|X > VaRp(X)

]
.

In addition, let VaR1(X) = ES1(X) = ess-sup(X), and

ES0(X) = E[X] (only well-defined on e.g. L1 or L0
+).
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Example: Standard Deviation Principle

b ≥ 0.

Definition 3 (Standard deviation principle)

SDb : L2 → R,

SDb(X) = E[X] + b
√

Var(X).

A small note: for normal risks, one can find p, q, b such that

VaRp(X) = ESq(X) = SDb(X). Example: p = 0.99, q = 0.975,

b = 2.33.
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Functionals: X → [−∞,∞]

Three major perspectives

Preference of risk: Economic Decision Theory

Pricing of risk: Insurance and Actuarial Science

Capital requirement: Mathematical Finance
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Preference of Risk

Preference of risk: Economic Decision Theory

Mathematical theory established since 1940s.

Expected utility: von Neumann and Morgenstern (1944).
Rank-dependent utility: Quiggin (1982, JEBO).
Dual utility: Yaari (1987, Econometrica); Schmeidler (1989,
Econometrica).
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Pricing of Risk

Pricing of risk: Insurance and Actuarial Science

Mathematical theory established since 1970s.

Additive principles: Geber (1974, ASTIN Bulletin).
Economic principles: Bühlmann (1980, ASTIN Bulletin).
Convex principles: Deprez and Gerber (1985, IME).
Axiomatic principles: Wang, Young and Panjer (1997, IME).
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Capital Requirement

Capital requirement: Mathematical Finance

Mathematical theory established around 1999.
Coherent measures of risk: Artzner, Delbaen, Eber and
Heath (1999, MF).

Citation: 5500+ (Google, Aug 2014)

Law-invariant risk measures: Kusuoka (2001, AME).
Convex measures of risk: Föllmer and Schied (2002, FS).
Spectral measures of risk: Acerbi (2002, JBF).

Mathematically very well developed, and fast expanding

in the past 15 years.

Value-at-Risk introduced earlier (around 1994): e.g. Duffie

and Pan (1997, J. Derivatives).
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Caution...

Different perspectives should lead to different principles of

desirability.

Preference of risk: only ordering matters (not precise

values), gain and loss matter

Pricing of risk: precise values matter, gain and loss matter

central limit theorem often kicks in (large number effect)
typically there is a market

Capital requirement: precise values matter, only loss
matters (← our focus)

typically there is no market; no large number effect

Of course, mathematically very much overlapping...
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Research of Risk Measures

Two major perspectives

What interesting mathematical/statistical problems arise

from this field?

What risk measures are practical in real life, and what are

the practicality issues?

Good research may address both questions, but it often only

addresses one of them.
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Monetary Risk Measures

Two basic properties

cash-invariance: ρ(X + c) = ρ(X) + c, c ∈ R;

monotonicity: ρ(X) ≤ ρ(Y) if X ≤ Y.

(A monetary risk measure)

Financial interpretations of the above properties are clear.

Here, risk-free interest rate is assumed to be 0 (everything

is discounted).

In particular: ρ(X − ρ(X)) = 0.
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Monetary Risk Measures

VaRp, p ∈ (0, 1) is monetary;

ESp, p ∈ (0, 1) is monetary;

SDb, b > 0 is cash-invariant, but not monotone.
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Acceptance Sets

The acceptance set of a risk measure ρ:

Aρ := {X ∈ X : ρ(X) ≤ 0}.

Example: AVaRp = {X ∈ L0 : P(X ≤ 0) ≥ p}.

Financial interpretation: the set of risks that are considered

acceptable by a regulator or manager.

A cash-invariant risk measure ρ is fully characterized by its

acceptance set.
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Acceptance Sets

Theorem: Duality

Let A be any lower-subset of X containing at least a constant.

Then

ρA(X) = inf{m : X −m ∈ A}

is a monetary risk measure. Moreover, for any monetary risk

measure ρ,

ρ(X) = ρAρ(X).

First version established in ADEH (1999).

Financial interpretation: ρA(X) is the amount of money

required to make X acceptable.
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Relation to Finance

Instead of a zero-interest bond, one may think about a general

security S with S0 = 1.

A risk measure can be defined as

ρA(X) = inf{m : X −mST ∈ A}.
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Relation to Finance

We may have multiple securities in a financial market.

A risk measure can be defined as

ρA(X) = inf{m : X − πT ∈ A, π ∈ Π, π0 = m}.

where Π is the set of admissible self-financing portfolios.

Example: A = {X ∈ X : X ≤ 0 P-a.s.}.
This means the regulator only accepts profit, not any loss.
ρA(X) is the superhedging price of X.
In a complete market, it is the arbitrage-free price of X.
If only a zero-interest bond is available (original setting),
then ρA(X) = ess-sup(X).
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Coherent and Convex Risk Measures

Two more properties in addition to being monetary

positive homogeneity: ρ(λX) = λρ(X), λ ∈ R+;

subadditivity: ρ(X + Y) ≤ ρ(X) + ρ(Y).

(A coherent risk measure; ADEH, 1999)

subadditivity can be replaced by convexity:

ρ(λX + (1− λ)Y) ≤ λρ(X) + (1− λ)ρ(Y), λ ∈ [0, 1].

(A monetary risk measure that is convex, is called a convex risk

measure; Föllmer and Schied, 2002)

One can easily check that ES is coherent but VaR is not; the

latter is not subadditive (or convex).
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Subadditivity

Subadditivity arguments:

diversification benefit - ”a merger does not create extra risk”;

regulatory arbitrage: divide X into Y + Z if

ρ(X) > ρ(Y) + ρ(Z);

capturing the tail risk;

consistency with risk preference;

convex optimization and capital allocation.
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Subadditivity

Subadditivity is contested from different perspectives:

aggregation penalty - convex risk measures;

statistical inference - estimation/robustness/elicitability;

financial practice - ”a merger creates extra risk”;

legal consideration - ”an institution has limited liability”.
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Coherent and Convex Risk Measures

Theorem: ADEH, 1999
A monetary risk measure is coherent if and only if its

acceptance set is a convex cone.

Theorem: Föllmer and Schied, 2002
A monetary risk measure is convex if and only if its acceptance

set is convex.
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Examples of Convex Risk Measures

Shortfall risk measures:

ρ(X) = inf{y ∈ R : E[`(X − y)] ≤ `(0)}.

`: convex and increasing function.

Motivated from indifference pricing: the acceptance set of

ρ is

Aρ = {X ∈ X : E[`(X)] ≤ `(0)}.

Example: `(x) = etx, t > 0, then ρ(X) = 1
t logE[etX], the

entropic risk measure.

Example: `(x) = px+ − (1− p)x−, p ∈ [1/2, 1), then ρ(X) is

the p-expectile (see Bellini, Klar, Müller and Rosazza

Gianin, 2014, IME).
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Main Theorem

Now suppose Ω is a finite set and X consists of all random

variables in this probability space.

Theorem: ADEH, 1999; Huber, 1980.
A coherent risk measure ρ has the following representation:

ρ(X) = sup
Q∈R

EQ[X], X ∈ X

whereR is a collection of probability measures absolutely

continuous w.r.t. P.
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Expected Shortfall

Representation of Expected Shortfall

For p ∈ (0, 1),

ESp(X) = sup
Q∈R

EQ[X], X ∈ X ,

whereR = {Q is a probability measure : dQ/dP ≤ 1/(1− p)}.
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Main Theorem

Now suppose Ω is general and X = L∞ (throughout the rest of

this talk).

Theorem: Delbaen, 2000
A coherent risk measure ρ has the following representation:

ρ(X) = sup
Q∈R

EQ[X], X ∈ X

whereR is a subset of Ba with Q(Ω) = 1, Q ∈ R, and Ba is the

dual space of L∞.

Ba is the set of bounded finitely additive measures

absolutely continuous w.r.t. P. Ba ⊃ L1.
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Continuity of Risk Measures

Fatou property

Fatou property: suppose X,X1,X2, · · · ∈ X = L∞,

supk∈N ||Xk||∞ <∞ and Xk → X a.s., then

lim inf
k→∞

ρ(Xk) ≥ ρ(X).

Fatou property

⇔ ρ is continuous from below (a.s. or P convergence)

⇔Aρ is closed under the weak* topology σ(L∞,L1).

Remark
There is no coherent/convex risk measure ρ that is continuous

w.r.t. a.s. convergence in L∞.
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Main Theorem

More results from Functional Analysis...

Theorem: Delbaen, 2000
A coherent risk measure ρ with the Fatou property has the

following representation:

ρ(X) = sup
Q∈R

EQ[X], X ∈ X

whereR is a collection of probability measures absolutely

continuous w.r.t. P.
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Law-invariant Coherent Risk Measures

One more important property from a statistical viewpoint...

law-invariance: ρ(X) = ρ(Y) if X d
= Y.

Theorem: Kusuoka, 2001
A law-invariant coherent risk measure with the Fatou property

has the following representation:

ρ(X) = sup
h∈QI

∫ 1

0
ESp(X)dh(p), X ∈ X

where QI is a collection of probability measures on [0, 1].
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Law-invariant Coherent Risk Measures

One more important property from an economic viewpoint...

comonotonic additivity: ρ(X + Y) = ρ(X) + ρ(Y) if X and Y
are comonotonic.

Theorem: Kusuoka, 2001; Yaari, 1987
A law-invariant and comonotonic additive coherent risk

measure has the following representation:

ρ(X) =

∫ 1

0
ESp(X)dh(p), X ∈ X

where h is a probability measure on [0, 1].
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Distortion Risk Measures

Theorem: Wang, Young and Panjer, 1997; Yaari, 1987

A law-invariant and comonotonic additive monetary risk

measure has the following representation:

ρ(X) =

∫
R

xdh(F(x)), X ∈ X , X ∼ F

where h is a probability measure on [0, 1].

ρ is called a distortion risk measure (DRM). h: its distortion

function.

ES and VaR are special cases of distortion risk measures.
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Convex Risk Measures

Theorem: Föllmer and Schied, 2002; Frittelli and Rosazza

Gianin, 2002, JBF
A convex risk measure ρ with the Fatou property has the

following representation:

ρ(X) = sup
Q∈P
{EQ[X]− a(Q)}, X ∈ X

where P is the set of probability measures absolutely

continuous w.r.t. P, and a : P → (−∞,∞] is called a penalty

function.
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Convex Risk Measures

Theorem: Frittelli and Rosazza Gianin, 2005, AME
A law-invariant convex risk measure with the Fatou property

has the following representation

ρ(X) = sup
h∈PI

{∫
ESp(X)dh(p)− a(h)

}
, X ∈ X

where PI is the set of probability measures on [0, 1], and

a : PI → (−∞,∞] is a penalty function.
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Convex Order

Convex order: X ≤cx Y if E[f (X)] ≤ E[f (Y)] for all convex

functions f such that the expectations exist.

Theorem: Bäuerle and Müller, 2006, IME
A law-invariant convex risk measure with the Fatou property

preserves convex order.
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Convex Order

Finally, some of my own work:

Theorem: W. and Mao (2014, Working paper)

A monetary risk measure ρ preserves convex order if and only

if it has the following representation:

ρ(X) = inf
τ∈C

τ(X)

where C is a collection of law-invariant convex risk measure

with the Fatou property.
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More Results

Extension to Lq, q ∈ [1,∞): see e.g. Kaina and Rüschendorf

(2009, MMOR) and Filipović and Svindland (2012, MF).

More mathematical results are available in the two major

books: Delbaen (2012) and Föllmer and Schied (2011); I

cannot exhaust them here.
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New Trends

Situation:

VaR has been dominating in industry for the past decade.

Many academics (mainly mathematicians) advocate ES for it is

coherent.
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Basel Documents

From the Basel Committee on Banking Supervision:

R1: Consultative Document, May 2012,

Fundamental review of the trading book

R2: Consultative Document, October 2013,

Fundamental review of the trading book: A revised market

risk framework.
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Basel Question

R1, Page 41, Question 8:

”What are the likely constraints with moving from VaR to ES,

including any challenges in delivering robust backtesting, and

how might these be best overcome?”

ES is not robust, whereas VaR is.

The backtesting of ES is difficult, whereas that of VaR is

straightforward.

Review paper: Embrechts, Puccetti, Rüschendorf, W. and

Beleraj (2014, Risks).
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Robustness

(Huber-Hampel’s) robustness (see Huber and Ronchetti, 2007)

usually refers to the continuity of a statistical functional

ρ : D → R where D is a set of distribution functions.

The strongest sense of continuity is w.r.t. weak topology.

VaRp is continuous if and only if D is chosen as the set of

distributions that is absolutely continuous at its p-th

quantile.

ESp is not continuous w.r.t. weak topology. It is continuous

w.r.t. some stronger metric, e.g. the Wasserstein metric; see

Stahl, Zheng, Kiesel and Rühlicke (2012).
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Robustness

Robustness - some quotes

Cont, Deguest and Scandolo (2010): ”Our results illustrate

in particular, that using recently proposed risk measures

such as CVaR/Expected Shortfall leads to a less robust risk

measurement procedure than Value-at-Risk.”

Kou, Peng and Heyde (2013, MOR): ”Coherent risk

measures are not robust”.

Emmer, Kratz and Tasche (2014): ”The fact that VaR does

not cover tail risks ’beyond’ VaR is a more serious

deficiency although ironically it makes VaR a risk measure

that is more robust than the other risk measures we have

considered.”
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Robustness

Example: different internal models
Same data set, two different parametric models (e.g.

normal vs student-t).

Estimation of parameters, and compare the VaR and ES for

two models.

VaR is more robust in this setting, since it does not take the

tail behavior into account (normal and student-t do not

make a big difference).

ES is less robust (heavy reliance on the model’s tail

behavior).

Capital requirements: heavily depends on the internal

models.
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Robustness

Opposite opinions

Cambou and Filipovic (2014): ”In contrast to value-at-risk,

expected shortfall is always robust with respect to

minimum Lp-divergence modifications of P.”

Krätschmer, Schied and Zähle (2014, FS): ”Hampel’s

classical notion of qualitative robustness is not suitable for

risk measurement ...” (introduced an index of qualitative

robustness; ES has an index of 1 which is the best-possible

index over all convex risk measures).
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Robustness

Opposite opinions

BCBS (2013, R4): ”This confidence level [97.5th ES] will

provide a broadly similar level of risk capture as the

existing 99th percentile VaR threshold, while providing a

number of benefits, including generally more stable model

output and often less sensitivity to extreme outlier

observations.”

Embrechts, Wang and W. (2014): ”coherent distortion risk

measures, including ES, are aggregation-robust while VaR

is not.” Also showed that VaRp has a larger

dependence-uncertainty spread compared to ESq, q ≤ p.
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Backtesting

Backtesting:

(i) estimate a risk measure from past observations;

(ii) test whether (i) is appropriate using future observations;

(iii) purpose: monitor, test or update risk measure forecasts.
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Backtesting

Example - VaR backtesting:

(1) suppose the estimated/modeled VaR is V at t = 0;

(2) consider At = I{Xt>V} based new iid observations Xt, t > 0;

(3) standard hypothesis testing methods for H0: At are iid

Bernoulli(1− α) random variables.

For ES such simple and intuitive backtesting techniques do not

exist!
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Backtesting

Elicitability

A new notion for comparing risk measure forecasts:

elicitability; Gneiting (2011).

Roughly speaking, a risk measure (statistical functional)

ρ : P → R is elicitable if ρ is the unique solution to the

following equation:

ρ(L) = argmin
x∈R

E[s(x,L)],

where

s : R2 → [0,∞) is a strictly consistent scoring function;
for example, the mean is elicitable with s = (x− L)2.
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Perspective of a Risk Analyst

Elicitability and comparison

The estimated/modeled value of ρ is ρ0 at t = 0;

based on new iid observations Xt, t > 0, consider the

statistics s(ρ0,Xt); for instance, test statistic can typically be

chosen as Tn(ρ0) = 1
n
∑n

t=1 s(ρ0,Xt);

Tn(ρ0): a statistic which indicates the goodness of forecasts.

updating ρ: look at a minimizer for Tn(ρ);

the above procedure is model-independent.

Elicitable statistics are straightforward to backtest.
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Perspective of a Regulator

Elicitability and regulation

A value of risk measure ρ0 is reported by a financial

institution based on internal models.

A regulator does not have access to the internal model, and

she does not know whether ρ0 is calculated honestly.

She applies s(ρ0,Xt) as a daily penalty function for the

financial insitution.

If the institution likes to minimize this penalty, it has to

report the true value of ρ and use the most realistic model.

the above procedure is model-independent.

Ruodu Wang Risk Measurement: History, Trends and Challenges 50/84



Introduction Monetary Risk Measures New Trends Risk Aggregation and Splitting Challenges

Elicitability

VaR vs ES: elicitability

Theorem: Gneiting, 2011, JASA

Under general conditions,

VaR is elicitable;

ES is not elicitable.
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Elicitability

Remarks:

under specific EVT-based conditions, backtesting of ES is

possible; see McNeil, Frey and Embrechts (2005);

the relevance of elicitability for risk management purposes
is heavily contested:

Emmer, Kratz and Tasche (2014): alternative method for
backtesting ES; favors ES.

Davis (2014): backtesting based on prequential principle;
favors quantile-based statistics (VaR-type).

Ruodu Wang Risk Measurement: History, Trends and Challenges 52/84



Introduction Monetary Risk Measures New Trends Risk Aggregation and Splitting Challenges

Elicitable Risk Measures

The following hold:

if ρ is coherent, comonotonic additive and elicitable, then ρ

is the mean (Ziegel, 2014, MF);

if ρ is coherent and elicitable with a convex scoring

function, then ρ is an expectile (Bellini and Bignozzi, 2014,

QF);

if ρ is comonotonic additive and elicitable, then ρ is a VaR

or the mean (Kou and Peng, 2014).
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Risk Aggregation and Splitting

Question: given a non-subadditive risk measure,

How superadditive can it be?

Motivation:

Measure model uncertainty

Quantify worst-scenarios

Trade subadditivity for statistical advantages

Understand better about subadditivity
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Two Perspectives

ρ

(
n∑

i=1

Xi

)
against

n∑
i=1

ρ(Xi)

Aggregation: fixed Xi ∼ Fi, what is the worst-case

aggregate value if arbitrary dependence is allowed in a

portfolio?

Division: fixed X =
∑n

i=1 Xi, what is the best-case

aggregate value if arbitrary division is allowed in a

position?

Ruodu Wang Risk Measurement: History, Trends and Challenges 55/84



Introduction Monetary Risk Measures New Trends Risk Aggregation and Splitting Challenges

Diversification Ratio

For a law-invariant risk measure ρ, and risks X = (X1, · · · ,Xn),

the diversification ratio is defined as

∆X(ρ) =
ρ(X1 + · · ·+ Xn)

ρ(X1) + · · ·+ ρ(Xn)
.

For the moment, the denominator is assumed to be positive.

∆X(ρ) is important in modeling portfolios.

∆X(ρ) ≤ 1 for subadditive risk measures.
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Diversification Ratio

Fix F, define

∆F
n(ρ) = sup

{
ρ(X1 + · · ·+ Xn)

ρ(X1) + · · ·+ ρ(Xn)
: X1, . . . ,Xn ∼ F

}
.

Here we assumed homogeneity in Fi:

mathematical tractability;

to let n vary;

∆
(·)
n (ρ) : D → R.

Question: ∆F
n(ρ) ≈ 1?
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Diversification Ratio

Define

Sn(F) = {X1 + · · ·+ Xn : X1, . . . ,Xn ∼ F}.

Let XF ∼ F. Then

∆F
n(ρ) =

1
nρ(XF)

sup {ρ(S) : S ∈ Sn(F)} .

A challenging problem: W., Peng and Yang (2013, FS);

Embrechts, Puccetti and Rüschendorf (2013, JBF).
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Extreme-aggregation Measure

We are interested in the global superadditivity ratio

∆F(ρ) = sup
n∈N

∆F
n(ρ) = sup

n∈N

1
nρ(XF)

sup {ρ(S) : S ∈ Sn(F)} .

The real mathematical target:

sup
n∈N

1
n

sup {ρ(S) : S ∈ Sn(F)} .
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Extreme-aggregation Measure

Definition 4 (Extreme-aggregation measure)

An extreme-aggregation measure induced by a law-invariant

risk measure ρ is defined as

Γρ : X → [−∞,∞], Γρ(XF) = sup
n∈N

1
n

sup {ρ(S) : S ∈ Sn(F)} .

Γρ quantifies the limit of ρ for worst-case aggregation

under dependence uncertainty.

Γρ is a law-invariant risk measure.

Γρ ≥ ρ.

If ρ is subadditive then Γρ = ρ.
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Extreme-aggregation Measure

If ρ is (i) comonotonic additive, or (ii) convex and ρ(0) = 0, then

Γρ(XF) = lim
n→∞

1
n

sup {ρ(S) : S ∈ Sn(F)} .

In the original definition of Γρ it is actually ”limsup”

instead of ”sup”.

Γρ inherits monotonicity, cash-invariance, positive

homogeneity, subadditivity, convexity, or

zero-normalization from ρ if ρ has the corresponding

properties.
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Extreme-aggregation Measure

Question: given a non-subadditive risk measure ρ,

Find Γρ

Motivating result (Wang and W., 2014):

sup{VaRp(S) : S ∈ Sn(F)}
sup{ESp(S) : S ∈ Sn(F)}

→ 1.

Note that

sup{ESp(S) : S ∈ Sn(F)} = nESp(XF),

leading to ΓVaRp = ΓESp = ESp.
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Distortion Risk Measures

Let h∗ be the largest convex distortion function dominated by h.

Theorem: W., Bignozzi and Tsanakas, 2014, Preprint

Suppose ρ is a DRM with distortion function h, then Γρ = ρ∗,

where ρ∗ is a coherent DRM with a distortion function h∗.

ρ∗ is the smallest coherent risk measure dominating ρ.

Example: VaR∗p = ESp.

For DRM, if ρ(XF) > 0, then

∆F(ρ) =
ρ∗(XF)

ρ(XF)
.
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Convex Risk Measures

Theorem: W., Bignozzi and Tsanakas, 2014

Suppose ρ is a law-invariant convex risk measure, then

Γρ is a coherent risk measure.

If ρ has the Fatou’s property, then Γρ is a coherent risk

measure with representation

Γρ = sup
h∈Q

{∫
ESpdh(p)

}
,

where Q = {h ∈ PI : a(h) > −∞}, and a is the penalty

function of ρ.

Γρ is the smallest coherent risk measure dominating ρ.
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Shortfall Risk Measures

Theorem: W., Bignozzi and Tsanakas, 2014

Suppose ρ is a shortfall risk measure with loss function `, then

Γρ is a coherent p-expectile, where

p = lim
x→∞

`′(x)

`′(x) + `′(−x)
.
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Regulatory Arbitrage

Regulatory arbitrage

Write X =
∑n

i=1 Xi and measure each Xi with ρ

Compare ρ(X) and
∑n

i=1 ρ(Xi)

Make
∑n

i=1 ρ(Xi) small: manipulation of risk

Regulatory arbitrage: ρ(X)−
∑n

i=1 ρ(Xi)
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Example of VaR

An example of VaRp: for any risk X > 0, we can build

Xi = XIAi , i = 1, · · · ,n

where {Ai} is a partition of Ω and P(Ai) < 1− p. Then

ρ(Xi) = 0. Therefore:
n∑

i=1

Xi = X

and
n∑

i=1

ρ(Xi) = 0.
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Mathematical Treatment

Define

Ψρ(X) = inf

{
n∑

i=1

ρ(Xi) : n ∈ N, Xi ∈ X , i = 1, . . . ,n,
n∑

i=1

Xi = X

}
.

Ψρ(X) is the least amount of capital requirement according

to ρ if the risk X can be divided arbitrarily.

Ψρ ≤ ρ.

Ψρ = ρ for subadditive risk measures.

Regulatory arbitrage of ρ: ρ(X)−Ψρ(X).
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Regulatory Arbitrage for VaR

Theorem: W., 2014, Working paper

For p ∈ (0, 1), ΨVaRp = −∞.

VaR is vulnerable to manipulation of risks.

If ρ is a distortion risk measure, then Ψρ is a coherent risk

measure, but not necessarily a distortion.

The regulatory arbitrage of VaRp is infinity.
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Regulatory Arbitrage for Convex Risk Measures

Theorem: W., 2014
If ρ is a law-invariant convex risk measure on L∞ with penalty

function v, then Ψρ is a coherent risk measure with

representation

Ψρ = sup
h∈Q

{∫
ESpdh(p)

}
,

where Q = {h ∈ P[0, 1] : v(h) = 0}.

Ψρ is the largest coherent risk measure dominated by ρ.

Ruodu Wang Risk Measurement: History, Trends and Challenges 70/84



Introduction Monetary Risk Measures New Trends Risk Aggregation and Splitting Challenges

Discussion

Coherence is indeed a natural property desired by a good risk

measure. Even when a non-coherent risk measure is applied to

a portfolio, its extreme behavior under dependence uncertainty

leads to coherence.

When we allow arbitrary division of a risk, the extreme

behavior also leads to coherence.

This contributes to the Basel question on ES versus VaR and

partially supports the use of coherent risk measures.
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Challenges

Some challenges and research directions:

Discover new robustness properties for risk measures in

practice; find risk measures that are more robust.

New ways of backtesting ES and other coherent risk

measures

Quantifying model uncertainty for risk measures

New statistical inference and computational methods for

risk measures

Extreme (catastrophic) events in risk management

Risk measures in the presence of multiple securities
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Challenges

Some mathematical research topics:

Multi-period and continuous-time risk measures

Set-valued, functional-valued, multi-dimensional risk

measures

Risk measures defined on stochastic processes

Risk measures defined on data
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Thank you
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