Extreme Scenarios

Asymptotic Behavior

Challenges 000000000

Risk Aggregation with Dependence Uncertainty

Ruodu Wang

Department of Statistics and Actuarial Science University of Waterloo, Canada

> Seminar at ETH Zurich November 5, 2013

Based on a series of joint work

Introduction

ependence Uncertainty 00000 Extreme Scenarios

Asymptotic Behavior

Challenges 000000000

Contents

1 Introduction

- 2 Dependence Uncertainty
- 3 Extreme Scenarios
- 4 Asymptotic Behavior
- 5 Challenges

Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Part I - Introduction

Risk and uncertainty:

- **Risk**: familiar; able to quantify; under control; quick response.
- **Uncertainty**: unfamiliar; difficult or impossible to quantify; beyond control; delayed response.

Part I - Introduction

Risk and uncertainty:

- **Risk**: familiar; able to quantify; under control; quick response.
- **Uncertainty**: unfamiliar; difficult or impossible to quantify; beyond control; delayed response.

Model risk: the risk of inappropriate modelling and misused quantitative tools.

• You think it is a risk but it is actually an uncertainty!

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Beha
0000			

Risk aggregation

- *X*₁, · · · , *X_n* are random variables representing individual risks (one-period losses or profits).
- Aggregate position S(X) associated with a risk vector
 X = (X₁, · · · , X_n).
- The most commonly used aggregation function is $S = X_1 + \cdots + X_n$.

→ @ → → 注 → → 注 →

Asymptotic Behavior

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges 000000000

Challenges in dependence

• There is never perfect information. Statistical modelling and inference are needed.

	data	accuracy	modelling	calculation
marginal	rich	good	mature	easy
dependence	limited	poor	limited	heavy

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges in dependence

• There is never perfect information. Statistical modelling and inference are needed.

	data	accuracy	modelling	calculation
marginal	rich	good	mature	easy
dependence	limited	poor	limited	heavy

• Marginal \rightarrow risk; dependence \rightarrow uncertainty.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Challenges in dependence

• There is never perfect information. Statistical modelling and inference are needed.

	data	accuracy	modelling	calculation
marginal	rich	good	mature	easy
dependence	limited	poor	limited	heavy

- Marginal \rightarrow risk; dependence \rightarrow uncertainty.
- The logic of using parameters, such as covariance matrices, Spearman's rho and tail dependence coefficients, to model dependence in risk management is questionable.

Extreme Scenarios

Asymptotic Behavior

くぼ トイヨト イヨト

Challenges 000000000

Examples of model risk of dependence

Possibly misused modeling tools:

- Gaussian model.
- Conditional independence.
- Micro correlation.
- Independent increments.
- Behavior modeling.

Introd	uction
0000	•

Extreme Scenarios

Asymptotic Behavior

<ロト < 四ト < 回ト < 回ト

э

Challenges 000000000

April 23, 2013, S&P 500 index

What happend during those 10 minutes (1:07pm-1:16pm)?

Source: Yahoo finance

Dependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

<ロト < 四ト < 回ト < 回ト

Challenges 000000000

Part II - Dependence Uncertainty

We seek a more general and mathematically tractable framework.

Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Part II - Dependence Uncertainty

We seek a more general and mathematically tractable framework.

- $S = X_1 + \dots + X_n$.
- The marginal distributions of X_1, \dots, X_n : known.
- The joint structure of X_1, \dots, X_n : unknown.
- This setting is very practical.

<ロト < 四ト < 回ト < 回ト

Part II - Dependence Uncertainty

We seek a more general and mathematically tractable framework.

- $S = X_1 + \dots + X_n$.
- The marginal distributions of X_1, \dots, X_n : known.
- The joint structure of X_1, \dots, X_n : unknown.
- This setting is very practical.

Target: probabilistic behavior of *S* and/or risk measures of *S*.

Dependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Admissible risk class

Admissible risk class with uncertainty

For given univariate distributions F_1, \dots, F_n , the admissible risk class (of marginals F_1, \dots, F_n) is defined as

$$\mathfrak{S}_n(F_1,\cdots,F_n)=\{X_1+\cdots+X_n:\ X_i\sim F_i,\ i=1,\cdots,n\}.$$

Each $S \in \mathfrak{S}_n(F_1, \dots, F_n)$ is called an admissible risk (of marginals F_1, \dots, F_n).

Introduction 00000	Dependence Uncertainty ○0●000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000
Δ form	romarke			

• $\mathfrak{S}_n(\mathbf{F})$ is the set of all possible aggregate risks when the marginal distributions are accurately obtained but the joint distribution is unknown.

< **∂** > < ∃ >

Introduction 00000	Dependence Uncertainty ○0●000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000
A few 1	remarks			

- $\mathfrak{S}_n(\mathbf{F})$ is the set of all possible aggregate risks when the marginal distributions are accurately obtained but the joint distribution is unknown.
- The distribution of $S \in \mathfrak{S}_n(\mathbf{F})$ is determined by the copula of X_1, \dots, X_n .

★掃♪ ★ 注♪ ★ 注♪

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
00000	000000		0000000	000000000
A few 1	remarks			

- $\mathfrak{S}_n(\mathbf{F})$ is the set of all possible aggregate risks when the marginal distributions are accurately obtained but the joint distribution is unknown.
- The distribution of $S \in \mathfrak{S}_n(\mathbf{F})$ is determined by the copula of X_1, \dots, X_n .
- This admissible risk class has some nice theoretical properties, such as convexity w.r.t. distribution, permutation/affine/law-invariance, completeness, robustness.

不得下 イヨト イヨ

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
00000	000000	00000000000000000000000000	0000000	000000000

A few remarks

- In practice, people may have partial information about the joint structure, such as
 - individual risks are positively quadratic dependent;
 - individual risks are conditional independent;
 - some information on the copula of **X**;
 - the covariance matrix is estimated accurately.

In those cases, the possible aggregate risks are in a subset of $\mathfrak{S}_n(\mathbf{F})$.

Dependence Uncertainty

xtreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Remark on Fréchet classes

A Fréchet class:

$$\mathfrak{F}_n(\mathbf{F}):=\{(X_1,\cdots,X_n):\ X_i\sim F_i,\ i=1,\cdots,n\}.$$

The difference between $\mathfrak{S}_n(\mathbf{F})$ and $\mathfrak{F}_n(\mathbf{F})$:

- The structure of \$\vec{F}_n(F)\$ is marginal-independent, but \$\vec{S}_n(F)\$ is marginal-dependent.
- The information contained in $\mathfrak{F}_n(\mathbf{F})$ is redundant.

Dependence Uncertainty

Extreme Scenarios 0000000000000000000000000000 Asymptotic Behavior

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges 000000000

Questions on admissible risk classes

- Probabilistically, what exactly are in the set $\mathfrak{S}_n(\mathbf{F})$?
 - For S with a given distribution F, is S in G_n(F)? Is there a viable characterization?
 - What is the boundary (in some sense) of $\mathfrak{S}_n(\mathbf{F})$?

Dependence Uncertainty ○○○○○● Extreme Scenarios 000000000000000000000000000 Asymptotic Behavior

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Challenges 000000000

Questions on admissible risk classes

- Probabilistically, what exactly are in the set $\mathfrak{S}_n(\mathbf{F})$?
 - For S with a given distribution F, is S in G_n(F)? Is there a viable characterization?
 - What is the boundary (in some sense) of $\mathfrak{S}_n(\mathbf{F})$?
- Statistically, how can we conduct inference from data?
 - Traditional method: copula estimation inaccurate, costly, provides information that are of no interest.
 - Direct estimation techniques: waste of marginal information.

Dependence Uncertainty ○○○○○● Extreme Scenarios 000000000000000000000000000 Asymptotic Behavior

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Challenges 000000000

Questions on admissible risk classes

- Probabilistically, what exactly are in the set $\mathfrak{S}_n(\mathbf{F})$?
 - For S with a given distribution F, is S in G_n(F)? Is there a viable characterization?
 - What is the boundary (in some sense) of $\mathfrak{S}_n(\mathbf{F})$?
- Statistically, how can we conduct inference from data?
 - Traditional method: copula estimation inaccurate, costly, provides information that are of no interest.
 - Direct estimation techniques: waste of marginal information.
- How can we use $\mathfrak{S}_n(\mathbf{F})$ to manage risks?
 - Assign a measure on $\mathfrak{S}_n(\mathbf{F})$? Risk \Leftrightarrow uncertainty.
 - Extreme scenarios analysis?
 - Limited data regulation principles?

Dependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Part III - Extreme Scenarios

Extreme scenario questions for dependence uncertainty:

- Is a constant admissible?
- Convex ordering on admissible risks?
- Bounds for the distribution function of an admissible risk?

Dependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

A (10) × A (10) × A (10)

Challenges 000000000

Part III - Extreme Scenarios

Extreme scenario questions for dependence uncertainty:

- Is a constant admissible?
- Convex ordering on admissible risks?
- Bounds for the distribution function of an admissible risk?

These three questions turn out to be closely connected, via the concept of completely mixable distributions.

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000

 Extreme scenarios → coherent measure of model uncertainty defined in Cont (2006):

A few remarks

$$\mu_{\mathcal{Q}}(\rho) = \sup_{Q \in \mathcal{Q}} \rho^{Q}(S) - \inf_{Q \in \mathcal{Q}} \rho^{Q}(S).$$

- Research from the point of theoretical probability via a connection to mass-transportation can be found since early 80s, e.g. Rüschendorf (1982).
- A comprehensive overview on those topics can be found in the recent book Rüschendorf (2013).

Pependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Is a constant admissible?

- Basic observation: $\mathbb{E}[S]$ is a constant if F_1, \dots, F_n are L_1 .
- Question: is a constant *K*, typically chosen as $\mathbb{E}[S]$, in $\mathfrak{S}_n(\mathbf{F})$?

ependence Uncertainty 00000 Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Joint Mixability

Joint mixable distributions (W., Peng and Yang, 2013)

We say the univariate distributions F_1, \dots, F_n are jointly mixable (JM) if there exists $X_i \sim F_i$, $i = 1, \dots, n$ such that $X_1 + \dots + X_n$ is a constant. Equivalently,

 $\mathfrak{S}_n(F_1,\cdots,F_n)\cap\mathbb{R}\neq\emptyset.$

ependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Completely mixability

Completely mixable distributions (Wang and W., 2011)

We say the univariate distribution *F* is *n*-completely mixabe (CM) if there exists $X_1, \dots, X_n \sim F$ such that $X_1 + \dots + X_n$ is a constant. Equivalently,

 $\mathfrak{S}_n(F,\cdots,F)\cap\mathbb{R}\neq\emptyset.$

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000

Interpretation of CM and JM:

- CM or JM scenarios represent a perfectly hedged portfolio.
- It is an ideal case of negative correlation. It is a natural generalization of the counter-comonotonicity (*n* = 2).

伺下 イヨト イヨ

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000

Interpretation of CM and JM:

- CM or JM scenarios represent a perfectly hedged portfolio.
- It is an ideal case of negative correlation. It is a natural generalization of the counter-comonotonicity (n = 2).

An open research area:

what distributions are CM/JM?

AB > < B > < B

ntroduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

Most relevant results for CM:

If *F* supported on [*a*, *b*] with mean μ is *n*-CM, then the mean condition is necessary:

$$a + (b-a)/n \le \mu \le b - (b-a)/n.$$

A (1) > A (2) > A

э

ntroduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

Most relevant results for CM:

If *F* supported on [*a*, *b*] with mean μ is *n*-CM, then the mean condition is necessary:

$$a + (b-a)/n \le \mu \le b - (b-a)/n.$$

- The mean condition is **sufficient** for monotone densities.
- U[0,1] is *n*-CM for *n* ≥ 2.

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

Some fully characterized families:

- Analytical proofs:
 - Rüschendorf and Uckelmann (2002): unimodal-symmetric densities.
 - Knott and Smith (2006) and Puccetti, Wang and W. (2012): radially symmetric distributions.
- Combinatorial proofs:
 - Wang and W. (2011): monotone densities.
 - Puccetti, Wang and W. (2012, 2013): concave densities; strictly positive densities.

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

Existing results for JM:

- Generalized mean condition.
- Second order condition: If F_1, \dots, F_n are JM with finite variance $\sigma_1^2, \dots, \sigma_n^2$, then

$$\max_{i\in\{1,\cdots,n\}}\sigma_i\leq \frac{1}{2}\sum_{i=1}^n\sigma_i.$$

- W., Peng and Yang (2013): the variance condition is sufficient for normal.
- Wang and W. (2013a, preprint): the variance condition is sufficient for uniform; elliptical; and unimodal-symmetric densities.

伺 ト イヨ ト イヨ ト

Pependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges 000000000

Mysteries of CM (JM)

- Uniqueness of the center?
- Unimodal densities and other types?
- Characterization?
- Asymptotic behavior $(n \to \infty)$?

ependence Uncertainty 00000 Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Convex ordering bounds

- We assume the individual risks are on \mathbb{R}_+ and are L_1 (finite mean).
- Since E[S] is fixed, the most interesting property is the convex order of 𝔅_n(F):

For $X, Y \in L_1$, if $\mathbb{E}[g(X)] \leq \mathbb{E}[g(Y)]$ holds for all convex functions $g : \mathbb{R} \to \mathbb{R}$, then we say $X \prec_{cx} Y$.

• In economics, the term second order stochastic dominance is more often used.
ヘロト 人間 とくほ とくほとう

Ξ.

Extreme Scenarios Asymptotic Behavior

ヘロト 人間 とくほと くほど

Ξ.

Challenges

Why consider convex order?

• Risk preference.

Ruodu Wang Dependence Uncertainty

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000 0000000 0000000		

- Risk preference.
- Coherent and convex risk measures.

-

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

- Risk preference.
- Coherent and convex risk measures.
- $\mathbb{E}[g(S)]$:
 - expected utility;
 - the variance of aggregation, European basket option prices, realized variance options;
 - stop-loss premiums, losses with limits/deductibles.

→ < ∃→

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

- Risk preference.
- Coherent and convex risk measures.
- $\mathbb{E}[g(S)]$:
 - expected utility;
 - the variance of aggregation, European basket option prices, realized variance options;
 - stop-loss premiums, losses with limits/deductibles.
- Directly connects to bounds on the Value-at-Risk and optimal mass transportation problems.

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

- Risk preference.
- Coherent and convex risk measures.
- $\mathbb{E}[g(S)]$:
 - expected utility;
 - the variance of aggregation, European basket option prices, realized variance options;
 - stop-loss premiums, losses with limits/deductibles.
- Directly connects to bounds on the Value-at-Risk and optimal mass transportation problems.
- Mathematically nice and tractable.

ntroduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

The convex order upper bound is obtained by the comonotonic scenario: for S ∈ 𝔅_n(F),

$$S \prec_{\mathrm{cx}} F_1^{-1}(U) + \dots + F_n^{-1}(U)$$

where *U* has a uniform distribution on [0, 1].

► < Ξ >

ntroduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

The convex order upper bound is obtained by the comonotonic scenario: for S ∈ 𝔅_n(F),

$$S \prec_{\mathrm{cx}} F_1^{-1}(U) + \dots + F_n^{-1}(U)$$

where *U* has a uniform distribution on [0, 1].

- The infimum:
 - Known for n = 2: counter-monotonic scenario for S ∈ 𝔅₂(F₁, F₂):

$$S \succ_{\mathrm{cx}} F_1^{-1}(U) + F_2^{-1}(1-U).$$

ntroduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

The convex order upper bound is obtained by the comonotonic scenario: for S ∈ 𝔅_n(F),

$$S \prec_{\mathrm{cx}} F_1^{-1}(U) + \dots + F_n^{-1}(U)$$

where U has a uniform distribution on [0, 1].

- The infimum:
 - Known for n = 2: counter-monotonic scenario for S ∈ 𝔅₂(F₁, F₂):

$$S \succ_{\mathrm{cx}} F_1^{-1}(U) + F_2^{-1}(1-U).$$

• Mysterious for $n \ge 3$ in general.

ntroduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

The convex order upper bound is obtained by the comonotonic scenario: for S ∈ 𝔅_n(F),

$$S \prec_{\mathrm{cx}} F_1^{-1}(U) + \dots + F_n^{-1}(U)$$

where U has a uniform distribution on [0, 1].

- The infimum:
 - Known for n = 2: counter-monotonic scenario for S ∈ 𝔅₂(F₁, F₂):

$$S \succ_{\mathrm{cx}} F_1^{-1}(U) + F_2^{-1}(1-U).$$

- Mysterious for $n \ge 3$ in general.
- All the above results are marginal-independent.

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

Connection between CM/JM distribution and convex ordering lower bound for $n \ge 3$:

- If F_1, \dots, F_n are JM, then $\mathbb{E}[S]$ is in $\mathfrak{S}_n(F_1, \dots, F_n)$, and thus it is the convex minimal element.
- CM/JM scenario is a natural generalization of the counter-comonotonicity.
- Please note that the optimal structure is marginal-dependent. (I believe it is the reason why major progresses on this problem were delayed till recently.)

くぼう くほう くほう

Introduction

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Existence

A surprising fact: for $n \ge 3$, the set $\mathfrak{S}_n(\mathbf{F})$ may not contain a convex ordering minimal element.

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

CM/JM is not possible for unbounded positive risks. We seek for more general results for the purpose of risk management:

• Identical and monotone marginal densities: analytical results obtained in Wang and W. (2011).

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

CM/JM is not possible for unbounded positive risks. We seek for more general results for the purpose of risk management:

- Identical and monotone marginal densities: analytical results obtained in Wang and W. (2011).
- General marginal densities on ℝ₊: Bernard, Jiang and W.
 (2013, preprint).

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

CM/JM is not possible for unbounded positive risks. We seek for more general results for the purpose of risk management:

- Identical and monotone marginal densities: analytical results obtained in Wang and W. (2011).
- General marginal densities on ℝ₊: Bernard, Jiang and W.
 (2013, preprint).
- To obtain a convex minimal element, we try to enhance a density concentration (make *S* as close to a constant as possible).

A (10) > A (10) > A

A few remarks for main results in Bernard, Jiang and W. (2013, preprint):

• Optimal structure for homogeneous marginals: tails - mutual exclusivity; body - complete mixability.

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000

- Analytical formulas for the lower bound on $TVaR_p(S)$ and $\mathbb{E}[g(S)]$ are available.
- Lower bounds for heterogeneous marginals are obtained:
 - not sharp in general, but quite accurate according to numerical results;
 - the fact $\mathfrak{S}_n(F_1, \dots, F_n) \subset \mathfrak{S}_n(F, \dots, F)$ is used, where $F = \frac{1}{n} \sum_{i=1}^n F_i$.

伺 ト イヨ ト イヨ ト

Dependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Bounds on the distribution function

• Given marginal distributions, what is the maximum possible distribution function of *S* (a special case of a question raised by A. N. Kolmogorov)?

Extreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges 000000000

Bounds on the distribution function

- Given marginal distributions, what is the maximum possible distribution function of *S* (a special case of a question raised by A. N. Kolmogorov)?
- The question: given F_1, \dots, F_n and $s \in \mathbb{R}$, find

$$\sup_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\mathbb{P}(S\leq s) \ \text{ and } \ \inf_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\mathbb{P}(S\leq s).$$

Introd	luctior	
0000		

ヘロト 人間 とくほ とくほとう

Ξ.

Equivalent question in risk management:

• Given
$$F_1, \dots, F_n$$
 and $\alpha \in (0, 1)$, find

$$\sup_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S) \text{ and } \inf_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S).$$

0000 000000 00000000000000000000000000	ntroduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
			000000000000000000000000000000000000000		

• Given F_1, \dots, F_n and $\alpha \in (0, 1)$, find

$$\sup_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S) \text{ and } \inf_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S).$$

• It is the best/worst scenario risk measure with confidence in marginal information.

troduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
0000		000000000000000000000000000000000000000		

• Given F_1, \dots, F_n and $\alpha \in (0, 1)$, find

$$\sup_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S) \text{ and } \inf_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S).$$

- It is the best/worst scenario risk measure with confidence in marginal information.
- The usage of VaR in risk management is debatable for incoherence (non-subadditivity in particular) but still quite widely used.

• Given F_1, \dots, F_n and $\alpha \in (0, 1)$, find

$$\sup_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S) \text{ and } \inf_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S).$$

- It is the best/worst scenario risk measure with confidence in marginal information.
- The usage of VaR in risk management is debatable for incoherence (non-subadditivity in particular) but still quite widely used.
- Very hard to solve analytically.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

• Given F_1, \dots, F_n and $\alpha \in (0, 1)$, find

$$\sup_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S) \text{ and } \inf_{S\in\mathfrak{S}_n(F_1,\cdots,F_n)}\operatorname{VaR}_{\alpha}(S).$$

- It is the best/worst scenario risk measure with confidence in marginal information.
- The usage of VaR in risk management is debatable for incoherence (non-subadditivity in particular) but still quite widely used.
- Very hard to solve analytically.
- What is done in the practice of operational risk: model marginal, add them up, and discount to 70%-90% due to *unjustified* diversification benefit.

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000

Some literature

- Makarov (1981): *n* = 2.
- Rüschendorf (1982): independently solved n = 2.
- Identical marginals:
 - Rüschendorf (1982): dual representation; uniform and binomial cases.
 - Denuit, Genest and Marceau (1999): non-sharp standard bound.
 - Embrechts and Puccetti (2006): dual bounds.
 - W., Peng and Yang (2013): sharp bounds for homogeneous tail monotone densities based on CM.
 - Puccetti and Rüschendorf (2013): sharpness of dual bounds, equivalent to a CM condition.
- Embrechts, Puccetti and Rüschendorf (2013): numerical algorithm and general discussion.

Between VaR and convex ordering bounds

Suppose F_1, \dots, F_n are continuous distributions.

- *F_{i,a}* for *a* ∈ (0, 1) is the conditional distribution of *F_i* on [*F_i*⁻¹(*a*),∞);
- *F*^a_i for *a* ∈ (0, 1) is the conditional distribution of *F*_i on (−∞, *F*⁻¹_i(*a*)).

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Convex ordering lower bound and bounds on VaR

Theorem 1 (Bernard, Jiang and W. (2013))

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
		000000000000000000000000000000000000000		

A few remarks:

- Finding convex ordering minimal element implies worst and best elements for VaR.
- The worst VaR only depends on the tail behavior, hence extra information on convariance/correlation may or may not affect its value.
- Bernard, Rüschendorf and Vanduffel (2013, preprint): VaR bounds with variance constraint on *S*.

Introduction	

Dependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges 000000000

Part IV - Asymptotic Behavior

- Look at $S_n \in \mathfrak{S}_n(\mathbf{F})$, $\mathbf{F} = (F, \dots, F)$, *F* having mean μ .
- When F has finite second moment, we have looked at

$$V_n = \operatorname{Var}(S_n) \text{ and } \underline{V_n} = \inf_{S_n \in \mathfrak{S}_n(\mathbf{F})} \operatorname{Var}(S_n).$$

• What if $n \to \infty$?

Pependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

イロト イ理ト イヨト イヨト

Challenges 000000000

Part IV - Asymptotic Behavior

- Look at $S_n \in \mathfrak{S}_n(\mathbf{F})$, $\mathbf{F} = (F, \dots, F)$, *F* having mean μ .
- When F has finite second moment, we have looked at

$$V_n = \operatorname{Var}(S_n) \text{ and } \underline{V_n} = \inf_{S_n \in \mathfrak{S}_n(\mathbf{F})} \operatorname{Var}(S_n).$$

- What if $n \to \infty$?
 - iid case: $V_n = O(n)$.
 - comonotonic case: $V_n = O(n^2)$.
 - what about most negative correlated case *V_n*?

Dependence Uncertainty

Extreme Scenarios

Asymptotic Behavior ○●○○○○○

イロト イポト イヨト イヨト

э

Challenges 000000000

Variance reduction

Theorem 2 (Wang and W. (2013b, preprint))

Suppose *F* has finite third moment then $V_n = O(1)$.

Dependence Uncertainty

Extreme Scenarios

Asymptotic Behavior ○●○○○○○

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges 000000000

Variance reduction

Theorem 2 (Wang and W. (2013b, preprint))

Suppose *F* has finite third moment then $V_n = O(1)$.

A stronger result: there exists a sequence X_i, i ∈ N from F such that |S_n − nµ| ≤ Z a.s. for some Z which does not depend on n.

Pependence Uncertainty

Extreme Scenarios

Asymptotic Behavior ○●○○○○○

イロト イポト イヨト イヨト

Challenges 000000000

Variance reduction

Theorem 2 (Wang and W. (2013b, preprint))

Suppose *F* has finite third moment then $V_n = O(1)$.

- A stronger result: there exists a sequence X_i, i ∈ N from F such that |S_n − nµ| ≤ Z a.s. for some Z which does not depend on n.
- For some *F* this O(1) is sharp, i.e. $\underline{V_n} \neq 0$.

ependence Uncertainty 00000 Extreme Scenarios

Asymptotic Behavior

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges 000000000

Asymptotic CM

Theorem 3 (Puccetti, Wang and W. (2013))

Suppose F is supported in a finite interval with a strictly positive density function, then there exists $N \in \mathbb{N}$ such that F is n-CM for all $n \geq N$.

Asymptotically every distribution is (almost) CM.

Pependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges 000000000

Asymptotic equivalence

Theorem 4

Under some conditions on F*, for all* $a \in (0, 1)$

$$\frac{\sup_{S\in\mathfrak{S}_n(F,\cdots,F)}\operatorname{VaR}_a(S)}{\sup_{S\in\mathfrak{S}_n(F,\cdots,F)}\operatorname{TVaR}_a(S)}\to 1.$$

Worst VaR and worst TVaR (ES) are asympototically equivalent.

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
			0000000	

- Puccetti and Rüschendorf (2013): *F* is continuous, satisfies a conditional CM condition.
- Puccetti, Wang and W. (2013): *F* is continuous and has strictly positive density based on CM.
- Wang and W. (2013b, preprint): *F* is arbitrary, and no CM involved.
| Introduction | Dependence Uncertainty | Extreme Scenarios | Asymptotic Behavior | Challenges |
|--------------|------------------------|-------------------|---------------------|------------|
| | | | 000000 | |

- Puccetti and Rüschendorf (2013): *F* is continuous, satisfies a conditional CM condition.
- Puccetti, Wang and W. (2013): *F* is continuous and has strictly positive density based on CM.
- Wang and W. (2013b, preprint): *F* is arbitrary, and no CM involved.
- The same asymptotic equivalence holds for inhomoegenous marginals with very weak conditions on the marginal distributions.

< 回 > < 三 > < 三

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
			000000	

Table : Values (rounded) for best- and worst VaR and ES for a homogeneous portfolio with *d* Pareto(2) risks; $\alpha = 0.999$.

$\theta = 2$	d = 8	d = 56
Best VaR	31	53
Best TVaR	145	472
Comonotonic VaR	245	1715
Worst VaR	465	3454
Worst TVaR	498	3486

In practice some people would use about $VaR_{\alpha}(S) \approx 200$ for d = 8 as the *conservative* capital reserve.

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000
Shape p	problem			

Question. Let *F*, *G* be any two univariate distributions. Can you find random variables X_i , $i \in \mathbb{N}$ from *F* such that $(S_n - a_n)/b_n \xrightarrow{d} G$ for some real sequences a_n , b_n ?

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
00000	000000		○○○○○●	000000000
Shape p	oroblem			

Question. Let *F*, *G* be any two univariate distributions. Can you find random variables X_i , $i \in \mathbb{N}$ from *F* such that $(S_n - a_n)/b_n \xrightarrow{d} G$ for some real sequences a_n , b_n ?

I think the answer is positive. The message is:

The marginal constraint is weak compared to the dependence uncertainty. If you only assume known marginals, you can end up with **anything**.

Introduction 00000 ependence Uncertainty 00000 xtreme Scenarios

Asymptotic Behavior

イロト イポト イヨト イヨト

Challenges ●○○○○○○○

Part V - Challenges

- Theoretical results are basically unavailable for heterogeneous marginal distributions.
- Many unsolved mathematical problems.
- Applications in quantitative risk management.

Mathematical challenges

- Develop more classes of CM/JM distributions.
- Find sharp convex bounds for non-identical marginal distributions.
- Sufficient conditions for the existence of convex ordering minimal element in an admissible risk class?
- Improve numerical algorithms such as the Rearrangement Algorithm in Embrechts, Puccetti and Rüschendorf (2013).

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges ○○●○○○○○○

Final remarks

- Practical risk management?
- Dynamic process?
- I expect connection with statistics and data science.
 - Modelling aggregate risks via estimating dependence structure may not be the best idea to study risk aggregation.
- Rather immature ideas; discussions are very much welcome.

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000
Referer	nces I			

- BERNARD, C., JIANG, X. AND WANG, R. (2013). Risk aggregation with dependence uncertainty. *Preprint*, University of Waterloo.
- BERNARD, C., RÜSCHENDORF, L. AND VANDUFFEL, S. (2013). Value-at-Risk bounds with variance constraints. *Preprint*, University of Waterloo.
- CONT, R. (2006). Model uncertainty and its impact on the pricing of derivative instruments. *Mathematical Finance*, **16**, 519-547.
- DENUIT, M., GENEST, C., MARCEAU, É. (1999). Stochastic bounds on sums of dependent risks. *Insurance: Mathematics and Economics*, **25**, 85-104.

► < Ξ >

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
00000	000000		0000000	000000000

References II

- **EMBRECHTS**, P AND PUCCETTI, G. (2006). Bounds for functions of dependent risks. *Finance and Stochastics* **10**, 341–352.
- EMBRECHTS, P., PUCCETTI, G. AND RÜSCHENDORF, L. (2013). Model uncertainty and VaR aggregation. *Journal of Banking and Finance*, 37(8), 2750-2764.
- KNOTT, M. AND SMITH, C.S. (2006). Choosing joint distributions so that the variance of the sum is small. *Journal of Multivariate Analysis* **97**, 1757–1765.
- MAKAROV, G.D. (1981). Estimates for the distribution function of the sum of two random variables with given marginal distributions. *Theory of Probability and its Applications.* **26**, 803–806.

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000

- References III
 - PUCCETTI, G. AND RÜSCHENDORF, L. (2013). Asymptotic equivalence of conservative VaR- and ES-based capital charges. *Journal of Risk*, to appear.
 - PUCCETTI, G., WANG, B. AND WANG, R. (2013). Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates. *Insurance: Mathematics and Economics.* **53**(3), 821-828.
 - PUCCETTI, G., WANG, B. AND WANG, R. (2012). Advances in complete mixability. *Journal of Applied Probability*. **49**(2), 430–440.
 - **R**ÜSCHENDORF, L. (1982). Random variables with maximum sums. *Advances in Applied Probability* **14**, 623–632.

< ∃ >

Introduction	Dependence Uncertainty	Extreme Scenarios	Asymptotic Behavior	Challenges
00000	000000		0000000	000000000

References IV

- **R**ÜSCHENDORF, L. (2013). *Mathematical risk analysis: dependence, risk bounds, optimal allocations and portfolios.* Springer.
- RÜSCHENDORF, L. AND UCKELMANN, L. (2002). Variance minimization and random variables with constant sum, in: *Distributions with given marginals*. Cuadras, et al. (Eds.), Kluwer, 211–222.
- WANG, B. AND WANG, R. (2011). The complete mixability and convex minimization problems for monotone marginal distributions. *Journal of Multivariate Analysis*, **102** 1344-1360.
 - WANG, B. AND WANG, R. (2013a). Joint mixability. *Preprint*, University of Waterloo.

Introduction 00000	Dependence Uncertainty 000000	Extreme Scenarios	Asymptotic Behavior	Challenges 000000000

References V

- WANG, B. AND WANG, R. (2013b). Extreme negative dependence and risk aggregation. *Preprint*, University of Waterloo.
- WANG, R., PENG, L. AND YANG, J. (2013). Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. *Finance and Stochastics*, **17**(2), 395–417.

Introduction

Extreme Scenarios

Asymptotic Behavior

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges

Thank you for your attention

Ruodu Wang Dependence Uncertainty

Extreme Scenarios

Asymptotic Behavior

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Challenges

Thank you for your attention

or pretending

Ruodu Wang Dependence Uncertainty