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Abstract

We analyze the question of whether the inf-convolution of law-invariant risk functionals (pref-

erences) is still law-invariant. In other words, we try to understand whether the representative

economic agent (after risk redistribution) only cares about the distribution of the total risk,

assuming all individual agents do so. Although the answer to the above question seems to be

affirmative for many examples of commonly used risk functionals in the literature, the situation

becomes delicate without assuming specific forms and properties of the individual functionals.

We illustrate with examples the surprising fact that the answer to the main question is gen-

erally negative, even in an atomless probability space. Furthermore, we establish a few very

weak conditions under which the answer becomes positive. These conditions do not require any

specific forms or convexity of the risk functionals, and they are the richness of the underlying

probability space, and monotonicity or continuity of one of the risk functionals. We provide

several examples and counter-examples to discuss the subtlety of the question on law-invariance.

Key-words: law-invariance, inf-convolution, preferences, risk functionals, risk sharing

1 Introduction

The concept of inf-convolution is closely related to the problem of risk sharing and general equi-

librium (see e.g. Starr (2011), Delbaen (2012), Rüschendorf (2013) and Embrechts et al. (2018)).

In particular, solving for the inf-convolution (or max-convolution) leads to Pareto-optimal alloca-

tions in a risk sharing problem with monetary risk measures or utility maximization (see Section

2 for a precise description). In such cases, the inf-convolution serves as the preference functional
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of a representative agent in a risk sharing problem with multiple agents. We shall call these pref-

erence functionals risk functionals in this paper since we work under the setting that the agents

prefer a smaller value of its preference functional over a larger one. In the actuarial literature,

inf-convolution serves as a useful tool for solving optimal risk transfer problems in insurance (see

e.g. Tsanakas (2009) and Weber (2018)).

We focus on the inf-convolution of law-invariant preference functionals. The property of law-

invariance allows one to reduce the domain of a risk functional from a space of random variables to

a corresponding set of distribution functions, providing huge convenience for analysis. Examples of

law-invariant functionals include (up to a sign change) mean-variance functionals, expected utilit-

ies, rank-dependent utility functionals (Quiggin (1982)), subjective utilities in cumulative prospect

theory (Tversky and Kahneman (1992)), and various risk measures and deviation measures as dis-

cussed in Artzner et al. (1999), Rockafellar et al. (2006) and Föllmer and Schied (2016). Moreover,

many important results or concepts are obtained or defined only for law-invariant functionals, such

as the classic notions of risk aversion (Arrow (1974)), the axiomatic characterization of insurance

prices (Wang et al. (1997)), the Kusuoka representation (Kusuoka (2001)), the Fatou continuity

(Jouini et al. (2006)),1 robustness (e.g. Cont et al. (2010)), model uncertainty (e.g. Embrechts et

al. (2015)), elicitability (e.g. Ziegel (2016)), and convex level sets (e.g. Weber (2006)).

Given the importance of both law-invariance and inf-convolution, it is natural to ask whether

law-invariance is preserved under inf-convolution, the key question we address in this paper. In

other words, if all agents in a risk sharing system only care about the distributions of risks, whether

the resulting (after risk redistribution) representative agent also only cares about the distribution

of the total risk, regardless of how the total risk is defined as a random variable.

In the risk measures literature, the inf-convolution of law-invariant risk measures can sometimes

be described analytically, either in an explicitly form or in a dual representation (if convex). In

such cases, the explicit form is almost always law-invariant. This includes convex and coherent

risk measures (e.g. Jouini et al. (2008), Filipović and Svindland (2008) and Rüschendorf (2013)),

quasi-convex risk measures (e.g. Chen et al. (2018)), quantile-type functionals such as the Value-

at-Risk (e.g. Embrechts et al. (2018) and Weber (2018)), distortion risk measures (Wang and Wei

(2018)), and convex-order consistent risk measures (e.g. Mao and Wang (2016)). These examples

are collected in Section 3.3. It is however unclear whether the specific forms and properties of

1Although the Fatou continuity is well defined for general functionals, it is implied by law-invariance in the case

of convex risk measures on L∞, shown by Jouini et al. (2006). Similar results hold on general Orlicz spaces as shown

by Gao et al. (2018).
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the risk functionals in the above results are essential for such a conclusion to hold with generality.

In other words, we aim to study the question of law-invariance with minimal assumptions on the

individual risk functionals; in particular, we avoid assuming convexity or additivity in any sense.

The main contributions of the paper are summarized as follows. First, we show the rather

surprising fact that, generally, the inf-convolution of law-invariant risk functionals may not be law-

invariant. In an atomless probability space, the construction of a counter-example becomes quite

delicate, which we provide in Section 3. In our main results, Theorems 1 and 2 in Section 5, we

provide a few weak conditions under which law-invariance of inf-convolution holds in the setting

of bounded random variables. Roughly speaking, these conditions require either the underlying

probability space to be rich enough in some sense, or the individual risk functionals to satisfy some

continuity or monotonicity. Similar results are obtained for Lp spaces in Section 7.

As a general message of our main results, in practically relevant cases, one can safely assume

law-invariance for the inf-convolution of law-invariant risk functionals. For a concrete example, if

one of the risk functionals is a law-invariant monetary risk measure, and the rest are law-invariant,

then their inf-convolution is law-invariant (see Example 10). This result generalizes the existing

results in the literature on convex risk measures and distortion risk measures, which are all monetary.

Furthermore, in all our examples in Section 6, we only require some continuity on one of the risk

functionals, rather than on all of them as typically assumed in the literature.

2 Law-invariance and inf-convolution

Let (Ω,F ,P) be a probability space and X be the set of bounded random variables on this

probability space. Throughout the paper, except for the motivating example, Example 1, we assume

(Ω,F ,P) to be an atomless probability space, following the standard setup in the mathematical

finance and risk management literature. Recall that a probability space (Ω,F ,P) is atomless if

for all B ∈ F with P(B) > 0, there exists A ∈ F with A ⊂ B such that 0 < P(A) < P(B).

Equivalently, there exists a continuously distributed random variable defined on this probability

space. For a random variable X, we write X ∼ F if X has the distribution function F . We

use FX for the cdf of a random variable X and F−1X for its left quantile function, defined as

F−1X (t) = inf{x ∈ R : FX(x) > t}, t ∈ (0, 1] and F−1X (0) = inf{x ∈ R : FX(x) > 0} = ess-inf(X).

A risk functional is a mapping from X to [−∞,∞).2 A risk functional ρ is law-invariant if for

2It is common to require ρ(X) <∞ for a bounded risk X. We include −∞ in the range because the inf-convolution

of finite functionals may be −∞, e.g. the case of two VaRs (see Example 4). Therefore, to discuss properties of an
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all X,Y ∈ X ,

X
d
= Y ⇒ ρ(X) = ρ(Y ), (1)

where
d
= stands for equality in distribution. We say that ρ is law-invariant on Y ⊂ X if (1) holds

for all X,Y ∈ Y.

For a random variable X ∈ X , define the set of allocations of X as

An(X) =

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi = X

}
. (2)

The inf-convolution of risk functionals ρ1, . . . , ρn is the mapping �ni=1 ρi : X → [−∞,∞), defined

as
n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X)

}
. (3)

In particular, the inf-convolution of two risk functionals ρ1 and ρ2 is

ρ1�ρ2(X) = inf {ρ1(Y ) + ρ2(X − Y ) : Y ∈ X} , X ∈ X . (4)

The concept of inf-convolution is closely related to many problems in risk sharing and general

equilibrium. For instance, in general equilibrium theory, to obtain all Pareto-optimal allocations

(see e.g. Starr (2011, Chapter 19)), one often needs to solve

sup

{
n∑
i=1

λiui(Xi) : (X1, . . . , Xn) ∈ An(X)

}
(5)

for some risk X ∈ X , utility functionals u1, . . . , un : X → R and constants λ1, . . . , λn > 0. Clearly,

by taking ρi = −λiui, i = 1, . . . , n, (5) becomes a special case of (3). Moreover, if ρ1, . . . , ρn are

monetary risk measures,3 then the solutions to (3) are precisely all the Pareto-optimal allocations;

see e.g. Barrieu and El Karoui (2005) and Jouini et al. (2008) for the case of convex functionals,

and Embrechts et al. (2018) for the non-convex case.

In this paper, agents prefer a smaller value of their preference functional over a larger value

(e.g. the case of risk measures or disutilities), and that is why we call them risk functionals. Precisely,

if the binary relation ≺ on X represents the preference of an agent, and ρ is its (negative) numerical

representation, then

X ≺ Y ⇔ ρ(X) > ρ(Y ), X, Y ∈ X .

inf-convolution (as a risk functional), one has to allow the range of a risk functional to include −∞.
3A functional ρ : X → R is a monetary risk measure if it satisfies (i) monotonicity: ρ(X) 6 ρ(Y ) for all X,Y ∈ X

with X 6 Y and (ii) cash-additivity: ρ(X + c) = ρ(X) + c for all X ∈ X and c ∈ R.
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In the alternative setup where agents maximize utility functionals, we can simply put a negative

sign in front of ρ, and switch from inf-convolution to max-convolution; see e.g. (5) above. Obviously,

these two settings are mathematically equivalent.

The main question of this paper is whether �ni=1 ρi is law-invariant, if each of ρ1, . . . , ρn is

law-invariant. Below we collect some useful properties of a risk functional ρ.

(i) ρ is monotone if ρ(X) 6 ρ(Y ) for all X,Y ∈ X with X 6 Y .

(ii) ρ is �cx-monotone, if ρ(X) 6 ρ(Y ) for all X,Y ∈ X with X �cx Y , where X �cx Y means

that X ∈ X is smaller than Y ∈ X in convex order, i.e. E[f(X)] 6 E[f(Y )] for all convex

functions f : R→ R.

(iii) Continuity of ρ is defined with respect to sup-norm (with respect to P), i.e. ||X|| = ess-sup(|X|)

for X ∈ X . Recall that ρ is uniformly continuous if for all ε > 0 there exists δ > 0 such that for

all X,Y ∈ X , ||X−Y || 6 δ implies |ρ(X)−ρ(Y )| 6 ε with the convention (−∞)− (−∞) = 0.

(iv) ρ is continuous from above if Xn ↓ X point-wise implies ρ(Xn) → ρ(X), and it is continuous

from below if Xn ↑ X point-wise implies ρ(Xn)→ ρ(X).

Commonly used risk functionals are monotone and uniformly continuous. In fact, all monetary risk

measures are monotone and uniformly continuous. All law-invariant convex risk measures in the

sense of Föllmer and Schied (2016) on X are �cx-monotone.

A popular risk measure that will appear in some of our examples is the Value-at-Risk (VaR),

which is the most popular risk measure used in banking and insurance, such as in Basel III/IV and

Solvency II (see e.g. Embrechts et al. (2014)). We define the VaR at confidence level α ∈ (0, 1) as

the right (1− α)-quantile of X, namely

VaRα(X) = inf{x ∈ R : FX(x) > 1− α}, X ∈ X . (6)

It is well known that for α ∈ (0, 1), VaRα is law-invariant, monotone, and uniformly continuous,

but it is not �cx-monotone.

3 Motivating (counter-)examples

3.1 A counter-example in a finite probability space

We first present a motivating example explaining why law-invariance may fail to hold for the

inf-convolution, and we discuss its economic implication. For a better interpretation, this example
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is constructed for a finite probability space, different from the setting in the rest of the paper.

Example 1 (Counter-example in a finite probability space). Define a probability space (Ω,F ,P)

where Ω = {ω1, ω2, ω3}, F is the power set of Ω, and P is such that P({ω1}) = P({ω2}) = 1
4 ,

P({ω3}) = 1
2 . Suppose that two agents have the risk functionals given by

ρ1(X) = ρ2(X) = (VaR1/3(X))+, X ∈ X .

That means, each agent has a disutility which is the 2/3-quantile of the loss, and the minimal

disutility for the agent is 0. Such agents are similar to the quantile-based agents in Embrechts et

al. (2018). Clearly, the risk functionals ρ1 and ρ2 are law-invariant.

Define two random variables X = 1{ω1,ω2}, and Y = 1{ω3}. Clearly, X
d
= Y . It is easy to see

that ρ1(1{ω1}) = VaR1/3(1{ω1}) = 0 and ρ2(1{ω2}) = VaR1/3(1{ω2}) = 0, and hence ρ1�ρ2(X) = 0

noting that ρ1 and ρ2 are non-negative.

On the other hand, write Y = Z + W for some Z,W ∈ X . Set z = Z(ω3) and w = W (ω3).

Clearly, z + w = 1. Since P(Z = z) > 1/2 > 1/3, we know that VaR1/3(Z) > z, and similarly

VaR1/3(W ) > w. Therefore,

ρ1(Z) + ρ2(W ) > VaR1/3(Z) + VaR1/3(W ) > z + w = 1.

This shows that ρ1�ρ2(Y ) 6= 0 = ρ1�ρ2(X), and thus ρ1�ρ2 is not law-invariant.

Example 1 has an intuitive economic explanation. Both the two agents in Example 1 are

quantile-based, and hence they are not risk-averse in the classic sense (see e.g. discussions in Em-

brechts et al. (2019)). As non-risk-averse agents, they may prefer gambling against each other

over a proportional sharing arrangement of the total loss. For the total loss X = 1{ω1,ω2}, such

gambling is possible. One can decompose X into two non-negative components 1{ω1} and 1{ω2};

thus the two agents can bet on which event between {ω1} and {ω2} happens. On the other hand,

for the total loss Y = 1{ω3}, the above arrangement is not possible; the only way to decompose Y

into non-negative components is proportional, that is, to decompose Y into zY and (1 − z)Y for

some z ∈ [0, 1]. Since the two agents prefer gambling, the proportional loss sharing arrangement

(zY, (1− z)Y ) is not as favourable as the arrangement (1{ω1},1{ω2}) which is only available for the

total risk X.

The above example shows that, as compared to Y , the random variable X allows for extra

randomness that improves the overall quality of the risk minimization problem, and hence the

resulting inf-convolution is not the same for X and Y , although they are identically distributed.
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3.2 A counter-example for an atomless probability space

We next discuss the general case of an atomless probability space, which is the standard setup

for risk management. In such a probability space, there are infinitely many iid random variables,

and the problem of law-invariance is much more delicate. Below we construct an example in which

ρ1�ρ2 is not law-invariant although ρ1 and ρ2 are both law-invariant, although this example appears

to be less intuitive than Example 1.

Example 2 (Counter-example in an atomless probability space). Take (Ω,F ,P) = ([0, 1],B([0, 1]), λ)

where λ is the Lebesgue measure. Define three distributions FB = Bernoulli(12), FU = U[−1, 1],

and F = U[0, 1], and two risk measures

ρ1(X) = 1− 1{X∼FB} and ρ2(X) = 1− 1{X∼FU}, X ∈ X .

Obviously, ρ1 and ρ2 are law-invariant risk measures. We will show that there are random variables

X ∼ F and Z ∼ F such that ρ1�ρ2(X) < ρ1�ρ2(Z).

Since the probability space is atomless, there exist two independent random variables X and

Y such that X ∼ F and Y ∼ FB. Note that X − Y ∼ FU . By (4), it is easy to see that

ρ1�ρ2(X) 6 ρ1(Y ) + ρ2(X − Y ) = 0.

Hence, ρ1�ρ2(X) = 0 since ρ1 and ρ2 are non-negative. Next, let Z(ω) = ω, ω ∈ [0, 1]. It is

clear that Z ∼ F . We will show that for any W ∼ FB, the distribution of Z −W cannot be FU .

Suppose for the purpose of contradiction that Z−W ∼ FU for some W ∼ FB. For 0 6 x 6 1, since

Z −W ∼ FU and {Z − 1 6 x} = Ω, we have

1

2
+
x

2
= P (Z −W 6 x)

= P (Z −W 6 x, W = 0) + P (Z −W 6 x, W = 1)

=
1

2
+ P (Z 6 x, W = 0)

=
1

2
+ λ([0, x] ∩A),

where A = {W = 0} ⊂ [0, 1], which satisfies λ(A) = 1
2 . Hence

λ([0, x] ∩A) =
x

2
, 0 6 x 6 1. (7)

Define a probability measure on ([0, 1],B([0, 1])) by

λA(B) = 2λ(B ∩A).

7



It follows form (7) that

λA([0, x]) = λ([0, x]), 0 6 x 6 1.

By Theorem 3.3 in Billingsley (1995), two measures that agree on {[0, x] : x ∈ [0, 1]} also agree

on B([0, 1]). Therefore, λA = λ. Note that λ(A) = 1
2 , and by definition λA(A) = 2λ(A) = 1,

contradicting λA = λ. Therefore, there does not exist W ∼ FB such that Z −W ∼ FU . As a

consequence,

ρ1�ρ2(Z) = 1 6= ρ1�ρ2(X).

In other words, ρ1�ρ2 is not law-invariant.

The two risk functionals ρ1 and ρ2 in Example 2 are rather artificial. They are not monotone or

continuous, and hence they are not suitable for typical decision models. Nevertheless, we can modify

them slightly, so that they are monotone and continuous from below, and after the modification

the inf-convolution is still not law-invariant; see Example 15 in Section 6.

Remark 1. As a direct consequence of Example 2, for given distributions F1, . . . , Fn, the aggregation

set of Bernard et al. (2014),

Sn = {X1 + · · ·+Xn : Xi ∼ Fi, i = 1, . . . , n},

is not necessarily law-invariant, i.e. S ∈ Sn does not necessarily imply T ∈ Sn for identically

distributed risks S and T . The aggregation set Sn represents all possible aggregate models with

specified marginal distributions, and it is a key concept in the study of risk aggregation with

dependence uncertainty; see Embrechts et al. (2013, 2015).

3.3 Affirmative examples

In Examples 1 and 2, we have seen that the inf-convolution of law-invariant risk functionals is

not necessarily law-invariant. Nevertheless, in almost all cases studied in the literature, we observe

that the inf-convolution is law-invariant. Below we give some popular examples. First, if all of

ρ1, . . . , ρn are �cx-monotone, then their inf-convolution is law-invariant.

Example 3 (�cx-monotone functionals). We claim that �ni=1 ρi is law-invariant if ρ1, . . . , ρn are

�cx-monotone. To show this assertion, we rely on the comonotonic improvement (Theorems 10.47

and 10.52 of Rüschendorf (2013)), which suggests that for all X ∈ X , there exists a comonotonic op-

timal allocation (X∗1 , . . . , X
∗
n) minimizing

∑n
i=1 ρi(Xi) over (X1, . . . , Xn) ∈ An(X). By Denneberg’s

lemma (Proposition 4.5 of Denneberg (1994)), X∗1 , . . . , X
∗
n are increasing functions of X, and we
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denote this by (X∗1 , . . . , X
∗
n) = (f1(X), . . . , fn(X)). For any random variable Y with X

d
= Y , we

have
n
�
i=1

ρi(Y ) 6
n∑
i=1

ρi(fi(Y )) =

n∑
i=1

ρi(fi(X)) =
n
�
i=1

ρi(X).

By symmetry, �ni=1 ρi is law-invariant.

All law-invariant quasi-convex risk functionals which are continuous with respect to the sup-

norm are �cx-monotone (see e.g. Delbaen (2012)). As a special case, Example 3 suggests that the

inf-convolution of law-invariant convex risk measures in the sense of Föllmer and Schied (2016) is

law-invariant. This particular case is known in the literature of cash-additive risk measures;4 see

Mao and Wang (2016, Theorem 4.1), Filipović and Svindland (2008, Corollary 2.7) and Chen et al.

(2018, Proposition 3.1). Note that the assertion in Example 3 does not require quasi-convexity or

cash-additivity, which are assumed in the literature.

Next, we see that without �cx-monotonicity, the inf-convolution can still be law-invariant, as

shown in the following two examples.

Example 4 (Inf-convolution of VaRs). By Corollary 2 of Embrechts et al. (2018), for α, β ∈ (0, 1),

if α+ β < 1, it holds that

VaRα�VaRβ = VaRα+β.

Here, the inf-convolution VaRα�VaRβ is law-invariant, although VaRα and VaRβ are not quasi-

convex or �cx-monotone. If α + β > 1, then using Corollary 2 of Embrechts et al. (2018), we

have

VaRα�VaRβ(X) = −∞ for all X ∈ X .

In this case, VaRα�VaRβ is also (trivially) law-invariant. The inf-convolution of more than two

VaRs is similar.

Example 5 (Inf-convolution of a VaR and a distortion risk measure). Example 4 can be generalized

to include a broader class of non-convex risk measures. Let G be the set of non-decreasing functions

g on [0, 1] with g(0) = 0 and g(1) = 1. A distortion risk measure ρg on X with distortion function

g ∈ G is defined as the Choquet integral

ρg(X) =

∫
X d(g ◦ P) =

∫ 0

−∞
(g ◦ P(X > x)− 1) dx+

∫ ∞
0

g ◦ P(X > x) dx, X ∈ X .

4ρ is cash-additive if ρ(X +m) = ρ(X) +m for all X ∈ X and m ∈ R.
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Theorem 5.3 of Wang and Wei (2018) suggests that for g ∈ G and α ∈ (0, 1),

VaRα�ρg =

 ρgα if g(1− α) = 1,

−∞ if g(1− α) < 1,

where gα(t) = g((t−α)+), t ∈ [0, 1]. Here, the inf-convolution VaRα�ρg is again law-invariant.

The above examples suggest that for commonly used law-invariant risk functionals, their inf-

convolution is often law-invariant. It remains unclear to what generality the above statement

holds, and we focus on deriving some sufficient conditions in the rest of the paper with minimal

assumptions on the form of the risk functionals.

4 Properties of inf-convolution

As an important tool in convex analysis, properties of inf-convolution are extensively studied

for convex or quasi-convex functionals (e.g. Barrieu and El Karoui (2005), Jouini et al. (2008),

Delbaen (2012)) in the risk measure literature. Inf-convolution of non-convex risk functionals such

as the VaR is studied recently by Embrechts et al. (2018, 2019), Weber (2018) and Wang and Wei

(2018). To establish results with minimal assumptions on the risk functionals, we need some simple

properties of inf-convolution without the conditions assumed in the literature. These properties

will be useful for the main results of this paper in Section 5.

First, we show that some of the properties in Section 2 can be naturally passed on from ρ1

and ρ2 to ρ1�ρ2.

Lemma 1. Let ρ1 and ρ2 be two risk functionals.

(i) If ρ1 or ρ2 is monotone, then so is ρ1�ρ2.

(ii) If ρ1 or ρ2 is uniformly continuous, then so is ρ1�ρ2.

(iii) If ρ1 or ρ2 is monotone and continuous from above, then so is ρ1�ρ2.

Proof. Without loss of generality, we assume in each case of (i)-(iii), ρ2 has the specified property.

(i) For X,Y ∈ X with X 6 Y , let δ = Y −X > 0. By (4), we have

ρ1�ρ2(Y ) = ρ1�ρ2(X + δ) = inf {ρ1(Z) + ρ2(X + δ − Z) : Z ∈ X}

> inf {ρ1(Z) + ρ2(X − Z) : Z ∈ X} = ρ1�ρ2(X).

Hence, ρ1�ρ2 is monotone.

10



(ii) Since ρ2 is uniformly continuous, for any ε > 0, there exists δ > 0 such that for all X,Y ∈ X ,

||X − Y || 6 δ implies |ρ2(X)− ρ2(Y )| 6 ε. For any X,Y ∈ X with ||X − Y || 6 δ, by (4), we

have

|ρ1�ρ2(Y )− ρ1�ρ2(X)|

= | inf {ρ1(Z) + ρ2(Y − Z) : Z ∈ X} − inf {ρ1(Z) + ρ2(X − Z) : Z ∈ X} |

6 sup {|(ρ1(Z) + ρ2(Y − Z))− (ρ1(Z) + ρ2(X − Z))| : Z ∈ X}

= sup {|ρ2(Y − Z)− ρ2(X − Z)| : Z ∈ X} 6 ε.

Hence, ρ1�ρ2 is uniformly continuous.

(iii) By part (i), we know that ρ1�ρ2 is monotone. Let {Xn}n∈N be a sequence in X such that

Xn ↓ X as n→∞. We can calculate

lim sup
n→∞

ρ1�ρ2(Xn) = lim sup
n→∞

(inf {ρ1(Z) + ρ2(Xn − Z) : Z ∈ X})

6 inf {ρ1(Z) + ρ2(X − Z) : Z ∈ X} = ρ1�ρ2(X).

On the other hand, since ρ1�ρ2 is monotone, we have ρ1�ρ2(Xn) > ρ1�ρ2(X). This implies

lim
n→∞

ρ1�ρ2(Xn) = ρ1�ρ2(X).

Hence, ρ1�ρ2 is continuous from above.

Unlike uniform continuity or monotonicity in Lemma 1, continuity cannot be passed from ρ1

and ρ2, as illustrated in the following example.

Example 6 (ρ1�ρ2 is not continuous for continuous ρ1 and ρ2). Let ρ1(X) = E[X2] = −ρ2(X), X ∈

X . Clearly, both ρ1 and ρ2 are continuous. We can calculate

ρ1�ρ2(0) = inf{ρ1(Y ) + ρ2(−Y ) : Y ∈ X} = 0,

and for ε 6= 0,

ρ1�ρ2(ε) = inf{ρ1(Y + ε) + ρ2(−Y ) : Y ∈ X} 6 inf{(y + ε)2 − y2 : y ∈ R}

= inf{2yε+ ε2 : y ∈ R} = −∞.

Therefore, ρ1�ρ2 is not continuous at 0.
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The next lemma justifies the simple facts that the inf-convolution of two risk functionals is

exchangeable, and the inf-convolution of n risk functionals can be seen as the repeated application

of inf-convolutions of two risk functionals. In the expression ρ1�ρ2� . . .�ρn below, the convention

is to perform the operations � from left to right.

Lemma 2. For any risk functionals ρ1, . . . , ρn, we have ρ1�ρ2 = ρ2�ρ1 and

n
�
i=1

ρi = ρ1�ρ2� . . .�ρn. (8)

Proof. The exchangeability ρ1�ρ2 = ρ2�ρ1 follows directly from the formulation (4). To show

(8), we use induction. The statement (8) trivially holds for n = 2. Next, suppose that �ki=1 ρi =

ρ1�ρ2� . . .�ρk holds for k 6 n− 1. For X ∈ X and any allocation (X1, . . . , Xn) ∈ An(X), we have

ρ1(X1) + · · ·+ ρn(Xn) >
n−1
�
i=1

ρi

(
n−1∑
i=1

Xi

)
+ ρn(Xn)

= ρ1�ρ2� . . .�ρn−1

(
n−1∑
i=1

Xi

)
+ ρn(Xn)

> (ρ1� . . .�ρn−1)�ρn(X).

Hence, �ni=1 ρi > ρ1�ρ2� . . .�ρn. To show the converse direction, fix ε > 0. By definition of

inf-convolution, there exists (Y,Xn) ∈ A2(X) be such that

ρ1�ρ2� . . .�ρn−1(Y ) + ρn(Xn) 6 ρ1�ρ2� . . .�ρn(X) +
ε

2
. (9)

Similarly, there exists (X1, . . . , Xn−1) ∈ An−1(Y ) such that

ρ1(X1) + · · ·+ ρn−1(Xn−1) 6
n−1
�
i=1

ρi (Y ) +
ε

2
= ρ1�ρ2� . . .�ρn−1(Y ) +

ε

2
. (10)

Putting (9) and (10) together, there exists (X1, . . . , Xn) ∈ An(X) such that

ρ1(X1) + · · ·+ ρn(Xn) 6 ρ1�ρ2� . . .�ρn(X) + ε.

Since ε > 0 is arbitrary, we obtain (8). The proof is complete by induction over n ∈ N.

Remark 2. As a direct consequence of Lemma 2, the operation � is both commutative and associ-

ative.
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5 Sufficient conditions for law-invariance

In this section, we provide three conditions under which law-invariance is preserved under inf-

convolution. The three conditions are: (i) the underlying probability space is very rich; (ii) one of

the risk functionals is continuous; (iii) one of the risk functionals is monotone and continuous from

above. Among these conditions, (i) is not very realistic as the probability space will be extremely

rich; nevertheless, (i) assumes nothing on the risk functionals but only the underlying probability

space. On the other hand, conditions (ii)-(iii) are very weak and they are satisfied by commonly

used risk functionals; see Section 6 for examples. The main results are summarized in Theorems 1

and 2.

5.1 A sufficient condition on the underlying probability space

We start this section by showing that if there is sufficient sources of randomness for constructing

the allocation in An(X), then the inf-convolution preserves law-invariance. For this purpose, define

the following set

X⊥ = {X ∈ X : there exists a U[0,1] random variable independent of X}. (11)

Theorem 1. If ρ1, . . . , ρn are law-invariant risk functionals, then �ni=1ρi is law-invariant on X⊥.

In particular, if X = X⊥, then �ni=1ρi is law-invariant.

Proof. Take X,Y ∈ X⊥ with X
d
= Y and an arbitrary (X1, . . . , Xn) ∈ An(X). Since Y ∈ X⊥, there

exist iid U[0, 1] random variables U1, . . . , Un independent of Y , noting that one can easily generate

a (countable) sequence of iid random variables from one uniform random variable (see e.g. Theorem

1 of Delbaen (2012)).

Let Y1 = F−1X1|X(U1|Y ) where F−1X1|X(·|y) is the quantile function of X1 given X = y ∈ R. It is

easy to check (Y, Y1)
d
= (X,X1). Repeating the above procedure, for j = 2, . . . , n, let

Yj = F−1Xj |Xj−1,...,X1,X
(Uj |Yj−1, . . . , Y1, Y ),

where F−1Xj |Xj−1,...,X1,X
(·|yj−1, . . . , y1, y) is the quantile function of Xj given (Xj−1, . . . , X1, X) =

(yj−1, . . . , y1, y) ∈ Rj . By construction, we have (Y, Y1, . . . , Yn)
d
= (X,X1, . . . , Xn), and as a con-

sequence, (Y1, . . . , Yn) ∈ An(Y ). Hence,

�ni=1ρi(Y ) 6
n∑
i=1

ρi(Yi) =

n∑
i=1

ρi(Xi).
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Taking an infimum over (X1, . . . , Xn) ∈ An(X) in the above equation, we obtain �ni=1ρi(Y ) 6

�ni=1ρi(X). By symmetry, �ni=1ρi(Y ) = �ni=1ρi(X).

By Theorem 1, X⊥ = X is a sufficient condition for law-invariance to be preserved by inf-

convolution. The next few examples discuss properties related to the set X⊥, and in particular,

whether X⊥ = X . First, we see that typically X⊥ is a subset of X which does not coincide with X .

Example 7 (X⊥ 6= X ). Suppose that (Ω,F ,P) = ([0, 1],B([0, 1]), λ) where λ is the Lebesgue

measure. Define the random variable X ∈ X by the identity mapping X(ω) = ω, ω ∈ [0, 1]. Since

there is no non-degenerate random variable in X independent of X, we know that X 6∈ X⊥. Hence

X⊥ ( X .

Probability spaces that are isomorphic to ([0, 1],B([0, 1]), λ) in Example 7 are called standard

probability spaces, and they are the typical choice in risk management (see e.g. Delbaen (2002)

and Jouini et al. (2006)). A standard probability space allows for the existence of countably many

Brownian motions, and thus it is enough for most relevant problems in the field. Note that all

standard probability spaces lead to X⊥ 6= X due to their isomorphism to ([0, 1],B([0, 1]), λ).

The next example shows that X⊥ is not necessarily a convex set. This suggests that law-

invariance on X⊥ may not be a very convenient property, since it is not closed under addition or

convex combination.

Example 8 (X⊥ is not convex). Again, suppose that (Ω,F ,P) = ([0, 1],B([0, 1]), λ) where λ is the

Lebesgue measure, and X ∈ X is the identity mapping X(ω) = ω, ω ∈ [0, 1]. We write X in its

binary form

X =
∑
k∈N

2−kZk,

where {Zk}k∈N is a sequence of iid Bernoulli random variables with mean 1/2. Define four random

variables

X1 =
∑
k∈N

2−(2k−1)Z2k−1, X2 =
∑
k∈N

2−2kZ2k.

and

Y1 =
∑
k∈N

2−kZ2k−1, Y2 =
∑
k∈N

2−kZ2k.

It is easy to see that both Y1 and Y2 are uniformly distributed over [0, 1], X1, Y2 are independent,

and X2, Y1 are independent. Hence, X1, X2 ∈ X⊥. However, 1
2(X1 + X2) = 1

2X 6∈ X
⊥, showing

that X⊥ is not convex.
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On the other hand, there exist some (non-standard) probability spaces which allow for X⊥ = X .

Such probability spaces are very large and they involve uncountably many iid random variables, as

shown in the following example.

Example 9 (X⊥ = X ). Let (Ω,F ,P) be a probability space on which a class of iid N(0, 1) random

variables Xt, t ∈ [0, 1] are defined. The existence of a such probability space is guaranteed by

the Kolmogorov consistency Theorem (see, e.g., Theorem 2.2 in Karatzas and Shreve (1991)). For

I ⊂ [0, 1], FI denotes the σ-algebra generated by the random variables Xt, t ∈ I. Let

F∗ =
⋃

I⊂[0,1] and I is countable

FI . (12)

Clearly, F∗ is a σ-algebra and Xt, t ∈ [0, 1] is well defined on (Ω,F∗,P). For any random variable

Y on (Ω,F∗,P) and q ∈ Q, where Q is the set of all rational numbers, due to (12), there exists a

countable set Iq ⊂ [0, 1] such that {Y < q} ∈ FIq . Denote by J =
⋃
q∈Q Iq. It follows that

σ(Y ) = σ({Y < q}, q ∈ Q) ⊂ σ

Xt, t ∈
⋃
q∈Q

Iq

 = FJ .

Note that [0, 1] \ J 6= ∅ since J is countable. Then there exists t0 ∈ [0, 1] \ J such that Xt0 is

independent of Xt, t ∈ J . Therefore, Xt0 is independent of Y and Φ(Xt0) is a uniform random

variable where Φ is the standard normal cdf. Hence (Ω,F∗,P) satisfies X⊥ = X .

Below we present a useful lemma showing that discrete random variables are always elements

of X⊥. This lemma will be useful to establish Theorem 2.

Lemma 3. If X ∈ X takes values in a countable set, then X ∈ X⊥.

Proof. Suppose that X takes values in a countable set M . Let UX be a U[0, 1] random variable

such that X = F−1X (UX) a.s.; such a random variable always exists (e.g. Lemma A.32 of Föllmer

and Schied (2016)). Define a random variable U as

U =
FX(X)− UX

FX(X)− FX(X−)
,

where FX(x−) = limy↑x FX(y) for x ∈ R. Note that U is well defined since FX(X) > FX(X−)

a.s. for the discrete random variable X. We can calculate, for u ∈ [0, 1], and x ∈M ,

P(U 6 u|X = x) = P
(

FX(x)− UX
FX(x)− FX(x−)

6 u
∣∣∣F−1X (UX) = x

)
= P

(
FX(x)− UX

FX(x)− FX(x−)
6 u

∣∣∣FX(x−) < UX 6 FX(x)

)
.
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Note that conditionally on FX(x−) < UX 6 FX(x), FX(x)−UX
FX(x)−FX(x−) is a U[0, 1] random variable.

Hence, P(U 6 u|X = x) = u, u ∈ [0, 1]. This implies that U is U[0, 1]-distributed, and it is

independent of X.

Putting Lemma 3 and Theorem 1 together, we know that if ρ1, . . . , ρn are law-invariant, then

�ni=1ρi(X) = �ni=1ρi(Y ) for all identically distributed discrete random variables X and Y .

5.2 Sufficient conditions on the risk functionals

As we have seen from Lemma 3, law-invariance is generally preserved on discrete random

variables. Inspired by this observation, for any random variable X ∈ X , we define two sequences of

discrete approximations {Xn}n∈N and {Xn}n∈N by

Xn =
1

n
dnXe and Xn =

1

n
bnXc,

where for x ∈ R, dxe is the smallest integer greater than or equal to x and bxc is the greatest

integer smaller than or equal to x. Note that Xn 6 X 6 Xn and Xn−Xn 6 1/n. Using the above

approximations, we obtain the law-invariance of �ni=1ρi under an assumption of continuity.

Proposition 1. If ρ1, . . . , ρn are law-invariant risk functionals, and �ni=1ρi is either continuous

from above or below in sup-norm, then �ni=1ρi is law-invariant.

Proof. Take X,Y with X
d
= Y . Note that Xn, Xn, Y n and Y n all take finitely many values, and

hence they belong to X⊥ by Lemma 3. Further, it is easy to see that Xn
d
= Y n and Xn

d
= Y n.

Applying Theorem 1, we obtain that for each n ∈ N, �ni=1ρi(Xn) = �ni=1ρi(Y n) and �ni=1ρi(Xn) =

�ni=1ρi(Y n). Moreover, note that X2n ↓ X and Y 2n ↓ Y in sup-norm as n→∞, and X2n ↑ X and

Y 2n ↑ Y in sup-norm as n→∞. If �ni=1ρi is continuous from above, we have

�ni=1ρi(Y ) = lim
n→∞

�ni=1ρi(Y 2n) = lim
n→∞

�ni=1ρi(X2n) = �ni=1ρi(X). (13)

Therefore, �ni=1ρi is law-invariant. If �ni=1ρi is continuous from below, it suffices to replace X2n

and Y 2n by X2n and Y 2n in (13).

The continuity of �ni=1ρi in Proposition 1 may sometimes be inconvenient to check, if one does

not know the form of �ni=1ρi or its properties. The following theorem, which is the main result

of this paper, shows that some continuity of one of the individual law-invariant risk functionals is

sufficient for the inf-convolution to be law-invariant, and this conclusion holds under three different

conditions.
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Theorem 2. Suppose that ρ1, . . . , ρn are law-invariant risk functionals.

(i) If one of ρ1, . . . , ρn is uniformly continuous, then �ni=1ρi is law-invariant and uniformly con-

tinuous.

(ii) If one of ρ1, . . . , ρn is monotone and continuous from above, then �ni=1ρi is law-invariant,

monotone and continuous from above.

(iii) If one of ρ1, . . . , ρn is continuous, then �ni=1ρi is law-invariant.

Proof. We first consider cases (i) and (ii). Without loss of generality, assume that ρ1 has the

specified properties (uniform continuity, or monotonicity and continuity from above). By Lemma

1, ρ1�ρ2 has the specified properties, and hence it is law-invariant due to Proposition 1. Repeating

the above procedure n − 1 times, we know that ρ1� . . .�ρn has the specified properties and is

law-invariant. By Lemma 2, �ni=1ρi = ρ1� . . .�ρn.

We next focus on case (iii). Without loss of generality, we assume that ρn is continuous. Take X,Y ∈

X with X
d
= Y . To show law-invariance of �ni=1ρi, it suffices to show that for any Z1, . . . , Zn−1 ∈ X ,

there exist sequences {Wi,k}k∈N ⊂ X , i = 1, . . . , n− 1 such that

Wi,k
d
= Zi for all i, k and lim

k→∞
ρn

(
Y −

n−1∑
i=1

Wi,k

)
= ρn

(
X −

n−1∑
i=1

Zi

)
. (14)

This is because (14) implies

�ni=1ρi(Y ) 6 inf
k∈N

{
n−1∑
i=1

ρi(Wi,k) + ρn

(
Y −

n−1∑
i=1

Wi,k

)}

6
n−1∑
i=1

ρi(Zi) + ρn

(
X −

n−1∑
i=1

Zi

)
.

Since Z1, . . . , Zn−1 are arbitrary, this implies �ni=1ρi(Y ) 6 �ni=1ρi(X), and by symmetry, it is

�ni=1ρi(Y ) = �ni=1ρi(X). Therefore, it is sufficient to show that for any choice of (Z1, . . . , Zn−1),

there exist sequences {Wi,k}k∈N ⊂ X , i = 1, . . . , n− 1 such that (14) holds.

Write Z =
∑n−1

i=1 Zi and since X and Z are bounded random variables, we can assume without

loss of generality that |X| < 1 and |Z| < 1. Fix k ∈ N. Since the probability space is atomless and

X
d
= Y , there exist disjoint sets A`, ` ∈ [−k, k − 1] ∩ N such that for all integers j ∈ [−k, k],

P
({

Y 6
j

k

}
∩A`

)
= P

({
X 6

j

k

}
∩
{
`

k
< Z 6

`+ 1

k

})
.

Note that P(A`) = P( `k < Z 6 `+1
k ) by taking j = k, and by Lemma 3, 1A` ∈ X⊥. Hence, for

` ∈ [−k, k − 1] ∩ N, there exists a random vector (W
(`)
1,k , . . . ,W

(`)
n−1,k) independent of A` such that

P
(

(W
(`)
1,k , . . . ,W

(`)
n−1,k) 6 w

)
= P

(
(Z1, . . . , Zn−1) 6 w

∣∣∣ `
k
< Z 6

`+ 1

k

)
for all w ∈ Rn−1,
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where we set (W
(`)
1,k , . . . ,W

(`)
n−1,k) = 0 if P( `k < Z 6 `+1

k ) = 0. Define random variables Wi,k,

i = 1, . . . , n− 1, and Wk by

Wi,k =
k−1∑
`=−k

1A`W
(`)
i,k and Wk =

n−1∑
i=1

Wi,k.

By construction, we have Wi,k
d
= Zi, i = 1, . . . , n− 1. For any x ∈ R,

P (Wk 6 x) =

k−1∑
`=−k

P

(
n−1∑
i=1

Wi,k 6 x,A`

)

=
k−1∑
`=−k

P

(
n−1∑
i=1

W
(`)
i,k 6 x,A`

)

=

k−1∑
`=−k

P

(
n−1∑
i=1

Zi 6 x,
`

k
< Z 6

`+ 1

k

)
= P (Z 6 x) . (15)

Moreover, for all integers ` ∈ [−k, k − 1],

P
(
`

k
< Wk 6

`+ 1

k

)
= P

({
`

k
< Wk 6

`+ 1

k

}
∩A`

)
= P(A`),

which implies {
`

k
< Wk 6

`+ 1

k

}
= A` a.s.

Observe that for any x ∈ [j/k, (j + 1)/k], −2k 6 j 6 2k − 1 and −k 6 ` 6 k − 1,

P
(
Y −Wk 6 x,

`

k
< Wk 6

`+ 1

k

)
6 P

(
Y 6

j + `+ 2

k
,
`

k
< Wk 6

`+ 1

k

)
= P

(
X 6

j + `+ 2

k
,
`

k
< Z 6

`+ 1

k

)
6 P

(
X − Z 6 j + 2

k
,
`

k
< Z 6

`+ 1

k

)
6 P

(
X − Z 6 x+

2

k
,
`

k
< Z 6

`+ 1

k

)
. (16)

The above inequality is obviously also valid for |x| > 2. Hence

P
(
Y −Wk 6 x,

`

k
< Wk 6

`+ 1

k

)
6 P

(
X − Z 6 x+

2

k
,
`

k
< Z 6

`+ 1

k

)
, x ∈ R.

Analogously,

P
(
Y −Wk 6 x,

`

k
< Wk 6

`+ 1

k

)
> P

(
X − Z 6 x− 2

k
,
`

k
< Z 6

`+ 1

k

)
, x ∈ R.

Noting that

P (X − Z 6 x) =

k−1∑
`=−k

P
(
X − Z 6 x, `

k
< Z 6

`+ 1

k

)
,
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and

P (Y −Wk 6 x) =

k−1∑
`=−k

P
(
X −Wk 6 x,

`

k
< Wk 6

`+ 1

k

)
,

we have

FX−Z

(
x− 2

k

)
6 FY−Wk

(x) 6 FX−Z

(
x+

2

k

)
, x ∈ R.

Consequently,

F−1X−Z(t)− 2

k
6 F−1Y−Wk

(t) 6 F−1X−Z(t) +
2

k
, t ∈ (0, 1), (17)

which implies that, for a uniform random variable U taking values on [0, 1],

lim
k→∞

ess-sup
∣∣∣F−1Y−Wk

(U)− F−1X−Z(U)
∣∣∣ = 0.

By continuity and law-invariance of ρn, we have

lim
k→∞

ρn(Y −Wk) = lim
k→∞

ρn(F−1Y−Wk
(U)) = ρn(F−1X−Z(U)) = ρn(X − Z).

This completes the proof.

The conditions in Theorem 2 are very weak and satisfied by almost all commonly used risk

functionals; some examples are collected in Section 6. Not that in case (iii) of Theorem 2, �ni=1ρi

is not necessarily continuous, even if all of ρ1, . . . , ρn are continuous; see Example 6. On the other

hand, Example 15 below shows that monotonicity plus continuity from below is not sufficient for

the inf-convolution of law-invariant risk functionals to be law-invariant.

Remark 3. Theorem 2 does not apply to atomic probability spaces such as a finite one. In Example

1, the law-invariant risk functionals ρ1 and ρ2 are actually monotone and uniformly continuous, but

ρ1�ρ2 is not law-invariant.

6 Examples for law-invariance of inf-convolution

Example 10 (Monetary risk measures). A monetary risk measure is a risk functional ρ : X → R

satisfying monotonicity and cash-additivity. Special cases of monetary risk measures (up to sign

change) include all commonly used risk measures, such as distortion risk measures (Yaari’s dual

utilities), convex risk measures, and coherent risk measures. For more on these risk measures, we

refer to Föllmer and Schied (2016). Monotonicity and cash-invariance imply that ρ is uniformly

continuous. Hence, by Theorem 2 (i), as long as one of ρ1, . . . , ρn is a law-invariant monetary risk

measure, and the rest are law-invariant risk functionals, then �ni=1ρi is law-invariant and uniformly

continuous.

19



Remark 4. In the context of monetary risk measures, the law-invariance of ρ (all risk measures

here are assumed monetary) is equivalent to the acceptance set Aρ = {X ∈ X : ρ(X) 6 0} being

law-invariant. Since we can always write

ρ1�ρ2(X) = inf{m ∈ R : X −m ∈ Aρ1 +Aρ2}

for every X ∈ X , the law-invariance of ρ1�ρ2 is equivalent to the sup-norm closure of Aρ1 + Aρ2
being law-invariant. Note that we have seen in Remark 1 that the sum of law-invariant sets is

not necessarily law-invariant, whereas Example 10 implies that the sup-norm closure of the sum of

law-invariant acceptance sets is law-invariant.

Example 11 (Mean-variance and mean-std functionals). A mean-variance functional, as originally

used by Markowitz (1952) in portfolio theory, is defined as

ρ(X) = E[X] + βVar(X), X ∈ X ,

where β > 0 is a constant. Similarly, one can define a mean-std functional, as

ρ(X) = E[X] + β
√

Var(X), X ∈ X .

A mean-variance or mean-std functional satisfies continuity and law-invariance (but not uniform

continuity). Hence, it follows from (iii) of Theorem 2 that �ni=1ρi is law-invariant if one of ρ1, . . . , ρn

is a mean-variance (or mean-std) functional.

Example 12 (Expected utility maximization). A utility function is an increasing function u : R→

[−∞,∞). For a utility function u, the expected utility functional is

Eu(X) = E[u(−X)], X ∈ X ,

where X is interpreted as a random loss. To be consistent with the choice of convention (minimiz-

ation) in this paper, we can define the expected disutility functional by

ρ(X) = −Eu(X), X ∈ X .

Clearly, if u is continuous from below, then ρ defined above is continuous from above and mono-

tone. Therefore, by Theorem 2 (ii), if one of ρ1, . . . , ρn is an expected disutility functional with u

continuous from below, and the others are law-invariant, then the inf-convolution �ni=1ρi is law-

invariant.
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Example 13 (Rank-dependent utilities). A rank-dependent utility (see, e.g., Quiggin (1982) and

Quiggin (1993)) is defined as

Hu,h(X) =

∫ ∞
0

h(P(u(X) > x)) dx+

∫ 0

−∞
(h(P(u(X) > x))− 1) dx, X ∈ X ,

where u is a continuous utility function and h is a distortion function (i.e. a continuous and increasing

function on [0, 1] satisfying h(0) = 0 and h(1) = 1). One can easily check that Hu,h(X) is law-

invariant and continuous. In light of Theorem 2 (iii), the inf-convolution of law-invariant risk

functionals is law-invariant if one of the risk functionals is a rank dependent utility. In particular,

�ni=1Hui,hi is law-invariant for all continuous utility functions u1, . . . , un and distortion functions

h1, . . . , hn.

Example 14 (Cumulative prospect theory). A subjective utility in cumulative prospect theory

(see, e.g., Tversky and Kahneman (1992)) is defined as the functional

ρ(X) =

∫ 0

−∞
v(x) dw1(FX(x))−

∫ ∞
0

v(x) dw2(1− FX(x)), X ∈ X , (18)

where v is a continuous utility function, and w1 and w2 are two distortion functions. One can

easily check that ρ is law-invariant and continuous. Hence, by (iii) of Theorem 2, �ni=1ρi is law-

invariant as long as one of ρ1, . . . , ρn is a subjective utility defined as in (18), and the others are

law-invariant.

Example 15 (Monotonicity plus continuity from below is not sufficient). We revisit Example 2 in

Section 3. Recall that in Example 2, we use two risk functionals

ρ1(X) = 1− 1{X∼FB} and ρ2(X) = 1− 1{X∼FU}, X ∈ X ,

where the distributions FB and FU are defined in Example 2. The above two risk functionals are

not monotone or continuous. We can make the following modification

ρ̂1(X) = 1− 1{X�stFB} and ρ̂2(X) = 1− 1{X�stFU}, X ∈ X ,

where for a random variable X and a distribution G, X �st G stands for the usual stochastic order,

that is, P(X 6 x) > G(x) for all x ∈ R. With the above modification, we can check that both ρ̂1

and ρ̂2 are monotone and continuous from below.

Next, take the random variables X and Z as in Example 2. Obviously, ρ̂1�ρ̂2(X) = 0 since

there exist Y such that Y ∼ FB and X − Y ∼ FU . Suppose for the purpose of contradiction that

there exists W �st FB such that Z −W �st FU . Note that W �st FB and Z −W �st FU imply

21



E[W ] 6 1
2 and E[Z −W ] 6 0. Since E[W ] + E[Z −W ] = E[Z] = 1

2 , we know that E[W ] = 1
2 and

E[Z −W ] = 0. Note that the partial order �st together with equality in the mean implies equality

in distribution. Therefore, W ∼ FB and Z −W ∼ FU , which is not possible as verified in Example

2. Hence, ρ̂1�ρ̂2(Z) > 1 > 0 = ρ̂1�ρ̂2(X), and ρ̂1�ρ̂2 is not law-invariant.

One interesting question about inf-convolution is exactness, that is, whether the infimum in

an inf-convolution can be attained as a minimum. In the next example and the next remark, we

discuss this issue, where we obtain a new observation on the sum of law-invariant acceptance sets.

Example 16 (Non-attainability of the inf-convolution). Following the same notation of Examples

2 and 15, we define two risk measures

ρ1(Y ) = inf{m ∈ R : Y −m �st FB} and ρ2(Y ) = inf{m ∈ R : Y −m �st FU}, Y ∈ X .

In other words, the acceptance set of ρ1 is A1 = {Y ∈ X : Y �st FB} and that of ρ2 is A2 =

{Y ∈ X : Y �st FU}. Such ρ1 and ρ2 belong to the class of risk measures based on benchmark

loss distributions studied by Bignozzi et al. (2019). One can easily check that ρ1 and ρ2 are both

law-invariant monetary risk measures. Take the random variables X and Z as in Example 2. As we

have seen in Example 2, there exists Y ∼ FB such that X − Y ∼ FU , and hence ρ1�ρ2(X) 6 0 (in

fact, one can check that ρ1�ρ2(X) = 0). By (i) of Theorem 2, ρ1�ρ2 is law-invariant. Noting that

X and Z have the same distribution function, we have ρ1�ρ2(Z) = ρ1�ρ2(X) 6 0. If ρ1�ρ2(Z) is

attained, then there exist W ∈ X and x ∈ R such that ρ1(W ) 6 x and ρ2(Z −W ) 6 −x, which

implies that W − x �st FB and Z −W + x �st FU . As we have seen in Example 15, this leads to a

contradiction. Therefore, the inf-convolution ρ1�ρ2(Z) cannot be attained.

Note that both ρ1 and ρ2 in Example 16 are monetary, which means that they are uniformly

continuous; thus uniform continuity and law-invariance in Theorem 2 together do not guarantee

exactness.

Remark 5. There are some results in the literature on the exactness of the inf-convolution of

monetary risk measures, and Example 16 complements these results. We summarize these findings

below. Let ρ1 and ρ2 be two monetary risk measures and X ∈ X .

(i) If ρ1�ρ2(X) = −∞ (this actually implies that ρ1�ρ2 = −∞ on X because of uniform con-

tinuity), then the inf-convolution cannot be exact at X. This is the case of VaR studied by

Embrechts et al. (2018); see Example 4.
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(ii) If ρ1�ρ2(X) > −∞, and ρ1 and ρ2 are both convex risk measures, the inf-convolution may

not be attained; see Exercise 21 in Delbaen (2012).

(iii) If ρ1�ρ2(X) > −∞, and ρ1 and ρ2 are both law-invariant convex risk measures, then the

inf-convolution is exact at X. This is guaranteed by Theorem 10.52 of Rüschendorf (2013);

see Example 3.

(iv) If ρ1�ρ2(X) > −∞, and ρ1 and ρ2 are both law-invariant and monetary risk measures, then

inf-convolution may not be attained as shown in Example 16.

It is well known that the attainability of inf-convolution is equivalent to the || · ||-closedness of

the sum of the corresponding acceptance sets. Example 16 implies that the sum of law-invariant

acceptance sets is not necessarily closed; however, it is closed if one further assumes convexity of

the acceptance sets, as suggested by (iii) of Remark 5.

7 Generalization beyond bounded random variables

So far in this paper, we have considered the space X of bounded random variables as the

common domain of risk functionals. In this section, we discuss the extension of our results to

spaces beyond the space of bounded random variables.

For p ∈ [0,∞), let Lp be the collection of all random variables having finite p-th moment

defined on (Ω,F ,P). We treat the cases Lp, p ∈ [0,∞) and L∞ (the set of bounded random

variables) separately because, generally, conclusions on inf-convolution for Lp, p ∈ [0,∞) and those

for L∞ do not imply each other. This is due to the fact that the set X plays an important role

in the definition of inf-convolution in (2)-(3), and a different choice of X for even the same risk

functionals (restricted to smaller domains) may lead to a different value of the inf-convolution. We

shall see this in the following example.

Example 17. Let ρ1(X) = ρ2(X) = −(sup{p > 0 : X ∈ Lp})−1, X ∈ L0. One can easily

check that ρ1(X) = ρ2(X) = 0 for all X ∈ L∞. Therefore, if we set X = L∞ in the definition

of inf-convolution, then ρ1�ρ2(0) = 0. However, if we set X = Lp, for some 0 < p < ∞, then

ρ1�ρ2(0) = −2/p. Therefore, even for the same risk functionals, an analysis of its inf-convolution

in the case X = Lp does not imply the case X = L∞.

In the sequel, we fix p ∈ [0,∞) and set X = Lp. A risk functional is a mapping from X to
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[−∞,∞).5 We naturally define continuity and uniform continuity for risk functionals with respect

to sup-norm ||·|| , although ||·|| is no longer a norm on Lp. More precisely, we say that ρ is continuous

if ρ(Xn)→ ρ(X) for any sequences of {Xn}n>1 ⊂ Lp and X ∈ Lp satisfying ||Xn −X|| → 0, and ρ

is uniformly continuous if for all ε > 0 there exists δ > 0 such that for all X,Y ∈ Lp, ||X − Y || 6 δ

implies |ρ(X)−ρ(Y )| 6 ε with the convention (−∞)− (−∞) = 0. We inherit all the other concepts

and notation from the previous sections. Note that, although || · || is no longer a norm on Lp, all

monetary risk measures on Lp satisfy uniform continuity as we define above.

We first see that in the proof of Theorem 1, the boundedness of random variables is not

relevant. Hence, the statement of Theorem 1 is valid for X = Lp. Again, X⊥ is defined in (11).

Theorem 3. Let X = Lp, p ∈ [0,∞). If ρ1, . . . , ρn are law-invariant risk functionals, then �ni=1ρi

is law-invariant on X⊥. In particular, if X = X⊥, then �ni=1ρi is law-invariant.

Next, we generalize the results in Theorem 2 for X = Lp which requires a small modification

to the proof of Theorem 2. Using Theorem 4, the examples in Section 6 are all valid on Lp, as long

as the concerned risk functionals take finite values on Lp.

Theorem 4. Suppose that ρ1, . . . , ρn are law-invariant risk functionals and X = Lp, p ∈ [0,∞).

(i) If one of ρ1, . . . , ρn is uniformly continuous, then �ni=1ρi is law-invariant and uniformly con-

tinuous.

(ii) If one of ρ1, . . . , ρn is monotone and continuous from above, then �ni=1ρi is law-invariant,

monotone and continuous from above.

(iii) If one of ρ1, . . . , ρn is continuous, then �ni=1ρi is law-invariant.

Proof. Note that the statements in Lemmas 1-2 and Proposition 1 are still valid for X = Lp,

p ∈ [0,∞). Hence, cases (i) and (ii) follow from the same arguments as in the proof of Theorem

2. We next focus on case (iii). Without loss of generality, we assume that ρn is continuous. Take

X,Y ∈ X with X
d
= Y . Similarly to Theorem 2, it suffices to show that for any Z1, . . . , Zn−1 ∈ X ,

there exist sequences {Wi,k}k∈N ⊂ X , i = 1, . . . , n− 1 such that

Wi,k
d
= Zi for all i, k and lim

k→∞
ρn

(
Y −

n−1∑
i=1

Wi,k

)
= ρn

(
X −

n−1∑
i=1

Zi

)
.

5Traditionally, a risk functional may take the value ∞ on Lp. However, for the problem inf-convolution this is

irrelevant, as the possible allocations which lead to the value∞ do not affect the minimization. Therefore, we exclude

∞ from the range of risk functionals.
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Write Z =
∑n−1

i=1 Zi and fix k ∈ N. Again, using the same argument in the proof of Theorem 2, we

know that there exist disjoint sets A`, ` ∈ Z such that for all integers j ∈ Z,

P
({

Y 6
j

k

}
∩A`

)
= P

({
X 6

j

k

}
∩
{
`

k
< Z 6

`+ 1

k

})
,

P(A`) = P( `k < Z 6 `+1
k ), and 1A` ∈ X⊥. Hence, for ` ∈ Z, there exists a random vector

(W
(`)
1,k , . . . ,W

(`)
n−1,k) independent of A` such that

P
(

(W
(`)
1,k , . . . ,W

(`)
n−1,k) 6 w

)
= P

(
(Z1, . . . , Zn−1) 6 w

∣∣∣ `
k
< Z 6

`+ 1

k

)
for all w ∈ Rn−1.

Define random variables Wi,k, i = 1, . . . , n− 1, and Wk by

Wi,k =
∑
`∈Z

1A`W
(`)
i,k and Wk =

n−1∑
i=1

Wi,k,

which satisfy Wi,k
d
= Zi, i = 1, . . . , n−1. With Wi,k defined above, we can follow the same argument

as in the proof of Theorem 2, and obtain that (15) and (16) hold. This further implies (17), which

now reads as |F−1Y−Wk
(U) − F−1X−Z(U)| 6 4/k, where U is a uniform random variable taking values

on [0, 1]. Hence, by the assumed continuity of ρn,

lim
k→∞

ρn(Y −Wk) = lim
k→∞

ρn(F−1Y−Wk
(U)) = ρn(F−1X−Z(U)) = ρn(X − Z).

This completes the proof.

Remark 6. We finally discuss the possibility of generalizing our main results to spaces beyond

Lp. Assume that X is a generic convex cone containing L∞. The results in Lemma 1, Lemma 3,

Proposition 1 and Theorem 4 (i)-(ii) do not require any specific structure of X , and hence they are

still valid. For Theorem 3 and the arguments in the proof of Theorem 4 (iii) to work, it suffices to

assume that X is law-invariant (meaning that X ∈ X and X
d
= Y implies Y ∈ X ).
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