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Abstract

We introduce the family of law-invariant convex risk functionals, which includes a wide

majority of practically used convex risk measures and deviation measures. We obtain a unified

representation theorem for this family of functionals. Two related optimization problems are

studied. In the first application, we determine worst-case values of a law-invariant convex risk

functional when the mean and a higher moment such as the variance of a risk are known. Second,

we consider its application in optimal reinsurance design for an insurer. With the help of the

representation theorem, we can show the existence and the form of optimal solutions.

Key-words: Law-invariant convex risk functional, dual representation, robust evaluation,

optimal reinsurance design, budget constraint

1 Law-invariant convex risk functionals

In the last decades, risk measures (Artzner et al. (1999), Föllmer and Schied (2002)) and

deviation measures (Rockafellar et al. (2006)) have been popular in banking and finance for various

purposes, such as calculating solvency capital reserves, pricing of insurance risks, performance

analysis, and internal risk management. Different classes of axioms are proposed for risk measures

and deviation measures in the literature. In this paper, we propose a general class of functionals,

termed convex risk functionals, to unify risk measures and deviation measures in the literature.

Let (Ω,F ,P) be an atomless probability space and Lp, p ∈ [0,∞) be the set of all random

variables with finite p-th moment and L∞ be the set of essentially bounded random variables. Each

random variable represents a random risk in the future. For X ∈ L∞, its L∞-norm is defined as

‖X‖∞ = sup{x ∈ R : P(|X| > x) > 0}. We use
p−→ to denote convergence in probability. Our key

concept, the convex risk functionals are defined below.

Definition 1.1 (Law-invariant Convex Risk Functionals). Fix p ∈ [1,∞]. A mapping ρ : Lp → R
is called a law-invariant convex risk functional if it satisfies following properties for any X,Y ∈ Lp.

(B1) (Translation invariance) ρ(X +m) = ρ(X) + cm for any m ∈ R, where c = ρ(1)− ρ(0).
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(B2) (Convexity) ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for any λ ∈ [0, 1];

(B3) (Continuity) ρ is continuous with respect to the Lp-norm.

(B4) (Law-invariance) ρ(X) = ρ(Y ), if X and Y have the same distribution (denoted by X
d
= Y ).

If we interpret random variables as future losses, then in the case of convex and coherent risk

measures, the constant c in (B1) is 1, and in the case of generalized deviations, the constant c in (B1)

is 0. We sometimes omit “law-invariant” and call ρ in Definition 1.1 simply a convex risk functional,

as all functionals we encounter in this paper are law-invariant. The four properties in Definition

1.1 are common and well studied in the literature. We omit a detailed discussion and the reader is

referred to classic books Föllmer and Schied (2011), Delbaen (2012) and McNeil et al. (2015). Quite

obviously, the class of convex risk functionals includes all coherent risk measures (Artzner et al.

(1999)), convex risk measures (Föllmer and Schied (2002)), convex premium principles (Deprez and

Gerber (1985); Gerber et al. (2019)), and generalized deviations (Rockafellar et al. (2006); Grechuk

et al. (2009)) as special cases.

In the classic literature (e.g. Artzner et al. (1999) and Rockafellar et al. (2006)), risk measures

are monotone, satisfying1

(A1) (Monotonicity) ρ(X) ≤ ρ(Y ), for X,Y ∈ Lp, X ≤ Y .

On the other hand, deviation measures in Rockafellar et al. (2006), in addition to (B2)-(B3), are

required to be subadditive, and to take the value zero on constants, implying (B1) with c = 0.

Convex risk functionals are not subject to these constraints and this allows us to study many types

of deviation measures, such as the variance (not covered in the definition of Rockafellar et al. (2006)

since it is not subadditive), the standard deviation, the mean absolute deviation and the Gini mean

deviation, and a combination of a risk measure with a deviation measure, such as the standard

deviation principle and the variance principle, both widely used in insurance, and the Gini Shortfall

which is generally not monotone (Furman et al. (2017)).

Remark 1.1. As a classic result in convex analysis, real-valued law-invariant convex risk measures

(they satisfy (A1); see Example 2.3) on Lp, p ∈ [1,∞] automatically satisfy continuity (B3). The

convex risk functionals in Definition 1.1 are not necessarily monotone, and (B3) is essential in this

case.

The main contributions of the paper are three-fold. First, we provide a unified representation

theorem for the class of law-invariant convex risk functionals in Section 2 and discuss some examples.

Second, we solve the optimization of convex risk functionals under moment constraints in Section

3. Third, we formulate a large class of reinsurance design problems using law-invariant convex risk

functionals, and then solve the unconstrained and constrained optimization problems separately in

Section 4. Conclusion is given in Section 5, and some proofs are presented in the Appendix.

1In this paper, the properties labelled (Bx) are always satisfied by law-invariant convex functionals, and the
properties labelled (Ax) are additional properties.
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2 Representation theorems and examples

2.1 Preliminaries

In this section we obtain representation theorems for convex risk functionals. For this purpose,

we rely on two important examples of risk measures, the Expected Shortfall (ES) and the Value-at-

Risk (VaR), both widely used in banking and insurance (see e.g. McNeil et al. (2015)). ES is also

known as the Tail Value-at-Risk (TVaR) in the insurance literature.

The Value-at-Risk (VaR) of X ∈ L1 at level α ∈ [0, 1) is defined as

VaRα(X) , inf {x ∈ R : P(X > x) ≤ α} .

In addition, let VaR1(X) = inf {x ∈ R : P(X > x) < 1}. The Expected Shortfall (ES) of a random

variable X ∈ L1 at level α ∈ (0, 1] is defined as

ESα(X) ,
1

α

∫ α

0
VaRt(X)dt.

Note that we use the “small α” convention in this paper.

For c ∈ R, denote by Φc the set of concave functions h on [0, 1] with h(0) = 0 and h(1) = c,

and let Φ =
⋃
c∈R Φc, which is the set of concave functions h on [0, 1] with h(0) = 0. For h ∈ Φ, we

define the signed Choquet integral with respect to h ◦ P as

ρh(X) =

∫
Xd(h ◦ P) =

∫ ∞
0

h(P(X > x))dx+

∫ 0

−∞
(h(P(X > x)− h(1))dx, X ∈ L1. (1)

The above integral is always well posed; see Lemma 2.1 below. Law-invariant signed Choquet

integrals include many examples, such as the Gini mean deviation, the range, the Gini Shortfall

(Furman et al. (2017)), spectral risk measures (Acerbi (2002)), and Wang’s premium principles

(Wang et al. (1997), see Definition 4.1 below).

For h ∈ Φ, noting that h is continuous on (0, 1), the Riemann-Stieltjes integral
∫
fdh for a

function f on [0, 1] should be interpreted as∫ 1

0
f(α)dh(α) =

∫ 1

0
f(α)I(0,1)(α)dh(α) + h(0+)f(0) + (h(1−)− h(1))f(1),

where by convention 0 × ∞ = 0. Since h ∈ Φc is concave, its left derivative h′ is well defined

a.e. For q ∈ (1,∞), denote by ||h′||q the q-Lebesgue norm of h′, i.e., ||h′||q = (
∫ 1

0 |h
′(t)|qdt)1/q

if h is continuous on [0, 1] and let ||h′||q = ∞ if h is not continuous on [0, 1]. In addition, let

||h′||∞ = limq→∞ ||h′||q which is the supremum of |h′| on [0, 1], and let ||h′||1 be the total variation

of h′ on [0, 1], which is always finite for h ∈ Φ. Below, we use the convention 0−1 =∞.

In Lemma 2.1 below, we collect some technical facts on signed Choquet integrals, which will be

useful for the main representation results. For the proof of Lemma 2.1, see the general properties

of signed Choquet integrals in Cerreia-Vioglio et al. (2012, 2015).
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Lemma 2.1. For h ∈ Φ, the following hold.

(i) ρh(X) =
∫ 1

0 VaRα(X)dh(α) > −∞ for X ∈ L1.

(ii) ρh is a law-invariant convex risk functional.

(iii) ρh is finite on Lp for p ∈ [1,∞] if and only if ||h′||q <∞, where q = (1−1/p)−1. In particular,

ρh is always finite on L∞.

2.2 Main representation results

Now we are ready to present the main representation result for convex risk functionals. For

p ∈ [1,∞) and c ∈ R, denote by

Φp
c = {h ∈ Φc : ||h′||q <∞, where q = (1− 1/p)−1},

and in addition, let Φ∞c = Φc. By Lemma 2.1, ρh in (1) is finite on Lp for h ∈ Φp
c .

Theorem 2.2. Fix p ∈ [1,∞]. For a functional ρ : Lp → R, the following are equivalent:

1) ρ is a law-invariant convex risk functional.

2) There exist c ∈ R and a mapping β : Φp
c → (−∞,∞] such that

ρ(X) = sup
h∈Φpc

{∫ 1

0
VaRα(X)dh(α)− β(h)

}
, X ∈ Lp. (2)

Proof. “⇐=” Suppose that ρ is given by (2). Let c = ρ(1) − ρ(0). The properties (B1) and

(B4) of VaR imply that ρ satisfies (B1) and (B4), respectively. By Lemma 2.1, the mapping X 7→∫ 1
0 VaRα(X)dh(α) for h ∈ Φc is a law-invariant convex risk functional. Hence, ρ, as the supremum of

convex functionals, satisfies (B2). To show (B3), from the Lp-continuity of X 7→
∫ 1

0 VaRα(X)dh(α)

for h ∈ Φp
c , we know that ρ is the supremum of Lp-continuous functionals, and hence it is lower semi-

continuous with respect to Lp-norm. Recall that real-valued convex functions on Banach spaces are

norm-continuous if and only if they are lower semi-continuous with respect to the the norm (see

e.g. Theorem 5.3.12 of Kosmol and Müller-Wichards (2011)). Therefore, ρ satisfies (B3).

“=⇒” Suppose that ρ : Lp → R is a law-invariant convex risk functional. We equip Lp with

a topology τp such that it has the dual space Lq where q ∈ [1,∞] is the Hölder conjugate of p

(satisfying 1/p + 1/q = 1). If 1 ≤ p < ∞, we can take the topology to be the Lp-norm; note that

ρ is continuous with respect to τp. If p =∞, we take the topology τ∞ = σ
(
L∞,L1

)
. By Theorem

30 of Delbaen (2012), the functional ρ satisfying (B2)-(B4) is lower semi-continuous with respect

to τ∞.

In both cases, the functional ρ is lower semi-continuous with respect to τp, and hence we obtain

its representation and its conjugate by the Fenchel-Moreau Theorem, given by

ρ(X) = sup
X′∈Lq

{
E
[
X ′X

]
− ρ′(X)

}
, X ∈ Lp,
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where

ρ′(X ′) = sup
X∈Lp

{
E
[
X ′X

]
− ρ(X)

}
, X ′ ∈ Lq. (3)

A proof of the above equations can be found, for example, in Theorem 5 in Rockafellar (1974) or

Theorem A.62 of Föllmer and Schied (2011). Since ρ satisfies law-invariance (B4), we have

ρ(X) = sup

Y ∈Lp,Y d
=X

ρ(Y ) = sup

Y ∈Lp,Y d
=X

sup
Y ′∈Lq

{
E
[
Y ′Y

]
− ρ′(Y ′)

}
= sup

Y ′∈Lq
sup

Y ∈Lp,Y d
=X

{
E
[
Y ′Y

]
− ρ′(Y ′)

}
= sup

Y ′∈Lq

{∫ 1

0
VaRt(Y

′)VaRt(X)dt− ρ′(Y ′)
}
, (4)

where the last equality is the Fréchet-Hoeffding inequality; see Lemma 4.60 in Föllmer and Schied

(2011). Note that Lp = {Y ∈ Lp : Y + m ∈ Lp} for any constant m ∈ R. For all m 6= 0, Y ′ ∈ Lq,
and since ρ satisfies (B1), we have

ρ′(Y ′) = sup
Y ∈Lp

{
E
[
Y ′Y

]
− ρ(Y )

}
= sup

Y+m∈Lp

{
E
[
Y ′Y

]
+mE

[
Y ′
]
− ρ(Y +m)

}
= mE

[
Y ′
]

+ sup
Y+m∈Lp

{
E
[
Y ′Y

]
− ρ(Y )− cm

}
= m

(
E
[
Y ′
]
− c
)

+ ρ′(Y ′).

It follows that ρ′(Y ′) =∞ for all Y ′ ∈ Lq with E[Y ′] 6= c. Thus,

ρ(X) = sup
Y ′∈Lq ,E[Y ′]=c

{∫ 1

0
VaRt(Y

′)VaRt(X)dt− ρ′(Y ′)
}
. (5)

Next we show that ρ′ is law-invariant. Note that for Y ′
d
= X ′ ∈ Lq, using the same argument

leading to (4), we have

ρ′(Y ′) = sup
Y ∈Lp

{∫ 1

0
VaRt(Y )VaRt(Y

′)dt− ρ(Y )

}
= sup

Y ∈Lp

{∫ 1

0
VaRt(Y )VaRt(X

′)dt− ρ(Y )

}
= ρ′(X ′).

Therefore, ρ′ is law-invariant.

For each Y ′ ∈ Lq with E[Y ′] = c, define hY ′(α) =
∫ α

0 VaRt(Y
′)dt for α ∈ (0, 1] with hY ′(0) = 0.

It is easy to check hY ′(1) = E[Y ′] = c and hY ′ ∈ Φp
c . Let Φ̂p

c = {hY ′ : Y ′ ∈ Lq, E[Y ′] = c} and note

that Φ̂p
c ⊂ Φp

c . Since ρ′ is law-invariant and hY ′ determines the distribution of Y ′, we can define

β : Φ̂p
c → (−∞,+∞] via β(hY ′) = ρ′(Y ′), Y ′ ∈ Lq. Therefore, (5) leads to

ρ(X) = sup
h∈Φ̂pc

{∫ 1

0
VaRt(X)dh(t)− β(h)

}
.
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Extending the domain of β via β(h) =∞ for h ∈ Φp
c \ Φ̂p

c leads to (2).

Remark 2.3. The mapping β in Theorem 2.2 can be chosen to be convex. More precisely, if ρ is a

law-invariant convex risk functional, then it has a representation (2) in which β is convex. To see

this, for β in the proof of Theorem 2.2, for any h1, h2 ∈ Φc, take a comonotonic pair of random

variables X ′1, X
′
2 ∈ L1 such that hi(q) − hi(0+) =

∫ q
0 VaRt(X

′
i)dt, i = 1, 2. For any λ ∈ [0, 1], we

have (λh1 + (1− λ)h2) (α) =
∫ α

0 VaRt(λX
′
1 + (1− λ)X ′2)dt for α ∈ [0, 1], and hence

β (λh1 + (1− λ)h2) = ρ′
(
λX ′1 + (1− λ)X ′2

)
≤ λρ′

(
X ′1
)

+ (1− λ)ρ′
(
X ′2
)

= λβ(h1) + (1− λ)β(h2),

which implies the convexity of β.

Next, we present a representation for positively homogeneous convex risk functionals on Lp,
namely, those satisfying the following property:

(A2) (Positive homogeneity) ρ(λX) = λρ(X) for λ > 0 and X ∈ Lp.

Theorem 2.4. Fix p ∈ [1,∞]. For a functional ρ : Lp → R, the following are equivalent:

1) ρ is a positively homogeneous law-invariant convex risk functional.

2) There exist c ∈ R and a set Ψp
c ⊆ Φp

c such that

ρ(X) = sup
h∈Ψpc

{∫ 1

0
VaRα(X)dh(α)

}
, X ∈ Lp. (6)

Proof. It is straightforward to verify that (6) defines a positively homogeneous law-invariant convex

risk functional. To show the converse, by (B3) and (A2) of ρ,

sup
h∈Φpc

{−β(h)} = ρ(0) = lim
λ↓0

ρ(λ) = lim
λ↓0

λρ(1) = 0.

Therefore, β(h) ≥ 0 for h ∈ Φp
c . Using (A2) again, for λ > 0, ρ(X) = 1

λρ(λX). Hence,

ρ(X) = sup
λ>0

1

λ
ρ(λX) = sup

λ>0
sup
h∈Φpc

{∫ 1

0
VaRα(X)dh(α)− β(h)

λ

}
= sup

h∈Ψpc

{∫ 1

0
VaRα(X)dh(α)

}
,

where Ψp
c = {h ∈ Φp

c : β(h) <∞}.

Remark 2.5. For a set Ψp
c ⊂ Φp

c , the representation (6) is a special case of (2) by choosing β = 0

on Ψp
c and β =∞ on Φp

c \Ψp
c .

Below we list some classic examples of convex risk functionals. The first interesting examples

are the standard deviation and the variance, both well known to be convex (Deprez and Gerber

(1985)) and they have a representation in Theorem 2.2.
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Example 2.1 (Standard deviation). The standard deviation, defined as

σ(X) =
√

E[X2]− (E[X])2, X ∈ L2,

has the following representation

σ(X) = sup
h∈Φ2

0

{∫ 1

0
VaRt(X)dh(t)− β(h)

}
, X ∈ L2, (7)

where β(h) = 0 if ||h′||22 ≤ 1 and β(φ) = ∞ otherwise, i.e. β(h) = ∞× I{||h′||22>1}. Equivalently, it

can be written in the form of (6) as

σ(X) = sup

{∫ 1

0
VaRt(X)dh(t) : h ∈ Φ0, ||h′||22 ≤ 1

}
, X ∈ L2. (8)

See Example 2.3 of Wang et al. (2019) for a simple proof of this representation on L∞, which also

applies to L2.

Example 2.2 (Variance and mean-variance). In the insurance context, the mean-variance premium

principle is defined as

ρ(X) = σ2(X) + cE[X] = E[X2]− (E[X])2 + cE[X], X ∈ L2,

where c ≥ 0. It has the following representation

ρ(X) = sup
h∈Φ2

c

{∫ 1

0
VaRt(X)dh(t)− 1

4
(||h′||22 − c2)

}
, X ∈ L2. (9)

In particular, setting c = 0, we get a representation for the variance

σ2(X) = sup
h∈Φ2

0

{∫ 1

0
VaRt(X)dh(t)− 1

4
||h′||22

}
, X ∈ L2, (10)

To show (9), write β(h) = 1
4(||h′||22 − c2) for h ∈ Φc and note that for a continuous h,∫ 1

0
VaRt(X)dh(t) =

∫ 1

0
(VaRt(X)− E[X])h′(t)dt+ cE[X]

=

∫ 1

0
(VaRt(X)− E[X])(h′(t)− c)dt+ cE[X],

where the first equality is due to
∫ 1

0 dh(t) = h(1)− h(0) = c. By Hölder’s inequality,

∫ 1

0
VaRt(X)dh(t) ≤ cE[X] +

√∫ 1

0
(VaRt(X)− E[X])2 dt

√∫ 1

0
(h′(t)− c)2 dt

= cE[X] + 2
√
σ2(X)

√
β(h) ≤ σ2(X) + cE[X] + β(h).
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Therefore,

sup
h∈Φ2

c

{∫ 1

0
VaRt(X)dh(t)− β(h)

}
≤ σ2(X) + cE[X].

That is, the right-hand-side of (9) is at most σ2(X)+cE[X]. To show that this value can be attained,

we simply take h such that h′(t) = 2 (VaRt(X)− E[X]) + c, t ∈ [0, 1]. The above argument shows

that (9) and (10) hold for all X ∈ L2.

Example 2.3 (Convex and coherent risk measures). As mentioned in Section 1, risk measures in

the literature are typically monotone, i.e. satisfying (A1). Using the terminology in McNeil et al.

(2015), a functional ρ : L∞ → R is called a convex risk measure if it satisfies axioms (B1) with

c = 1, (B2) and (A1), and it is called a coherent risk measure if it is a convex risk measure and

satisfies (A2). We focus on risk measures that are law-invariant, i.e., satisfying (B4). Convex

and coherent risk measures automatically satisfy the continuity (B3) on Lp (see Remark 1.1), and

hence they are convex risk functionals in Definition 1.1. To arrive at a convex risk measure from

the representation (2), we simply set c = 1 in (2) and require β(h) = ∞ for all h that is not an

increasing function. Furthermore, a Fatou-continuous law-invariant convex risk measure has an

ES-based representation:

ρ(X) = sup
µ∈P([0,1])

(∫ 1

0
ESα(X)µ(dα)− β̃(µ)

)
, (11)

for some function β̃ : P ([0, 1])→ [0,∞] which is lower semi-continuous and convex, where P ([0, 1])

is the set of all Borel probability measures on [0, 1]. A proof of (11) can be found in Frittelli and

Rosazza Gianin (2005) and Föllmer and Schied (2011), or directly obtained from (2) by using the

relation (dµ/dh)(s) = s, 0 < s < 1 (see (8.26) of McNeil et al. (2015)). A similar representation

holds for coherent risk measures, known as the Kusuoka representation (Kusuoka (2001)).

Example 2.4 (Generalized deviation measures). Law-invariant generalized deviation measures are

studied by Rockafellar et al. (2006) and Grechuk et al. (2009). They are functionals ρ that satisfy

(B2)-(B4), (A2), and ρ(m) = 0 for all constants m ∈ R. Note that (B2) and (A2) together implies

subadditivity. A simple exercise shows that a generalized deviation measure satisfies (B1) with

c = 0. Thus, they are a special type of convex risk functionals according to our definition.

Remark 2.6. If a risk functional ρ satisfies the properties (B1)-(B4), then the mapping X 7→
ρ(X) − (ρ(1) − ρ(0))E[X] satisfies the properties (B1)-(B4) with c = 0, which can be seen as a

variability measure (which is more general than the deviation measures in Example 2.4). Hence,

any law-invariant convex risk functional can be seen as a combination of a variability measure and

a constant times the mean.

2.3 Quasi-convexity

In this section, we discuss the notion of quasi-convexity and its relation to convexity (B2).

(B2’) (quasi-convexity) ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )} for any λ ∈ [0, 1] and X,Y ∈ Lp.
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In the mathematical finance literature (see e.g. Föllmer and Schied (2011) and Frittelli and Maggis

(2011)), quasi-convexity is argued as a plausible notion to capture the diversification effect. Clearly,

(B2’) is weaker than (B2), namely (B2) =⇒ (B2’). A natural question is whether (B2) may be

replaced by (B2’) in the main representation results. First, in the following proposition we show

that (B2) is equivalent to (B2’) if ρ(1)− ρ(0) 6= 0.

Proposition 2.7. Fix p ∈ [1,∞]. For a mapping ρ : Lp → R satisfying (B1) and ρ(1)− ρ(0) 6= 0,

the properties (B2) and (B2’) are equivalent.

Proof. It suffices to show (B2’) =⇒ (B2). Take X,Y ∈ Lp and λ ∈ [0, 1]. Let c = ρ(1) − ρ(0) and

b = ρ(Y )− ρ(X). Then, by (B1) and (B2’), we have

ρ(λX + (1− λ)Y ) = ρ(λ(X + b/c) + (1− λ)Y )− λb

≤ max{ρ(X + b/c), ρ(Y )} − λb

= max{ρ(X) + b, ρ(Y )} − λb

= ρ(Y )− λb = λρ(X) + (1− λ)ρ(Y ).

Hence (B2) holds.

As suggested by Proposition 2.7, if we replace (B2) by the weaker property (B2’), Theorem

2.2 and other results of Sections 2 and 3 hold in the case ρ(1) − ρ(0) 6= 0. Next, we show by the

following example that (B2) and (B2’) are not equivalent for the case ρ(1)− ρ(0) = 0.

Example 2.5. Let ρ : L2 → R be given by ρ(X) = σ(X)I{σ(X)≥1}, where σ(·) is the standard

deviation in Example 2.1. Clearly, ρ satisfies (B1) with c = ρ(1)− ρ(0) = 0. Note that σ is convex

on L2, and hence it is quasi-convex on L2. We now show that ρ is quasi-convex, that is, for any

X,Y ∈ L2 and λ ∈ [0, 1],

ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )}. (12)

Note that

max{ρ(X), ρ(Y )} = max{σ(X), σ(Y )}I{max{σ(X),σ(Y )}≥1}.

If max{σ(X), σ(Y )} < 1, then by quasi-convexity of σ, we have σ(λX+(1−λ)Y ) ≤ max{σ(X), σ(Y )} <
1. Hence, ρ(λX + (1− λ)Y ) = 0 and (12) holds. If max{σ(X), σ(Y )} ≥ 1, then

ρ(λX + (1− λ)Y ) ≤ σ(λX + (1− λ)Y ) ≤ max{σ(X), σ(Y )} = max{ρ(X), ρ(Y )},

and thus (12) holds. Hence, ρ is quasi-convex.

On the other hand, if we take a standard normal random variable Z and let X = 0.8Z and

Y = 1.2Z, then ρ(X) = 0, ρ(Y ) = 1.2, and thus

ρ

(
X

2
+
Y

2

)
= ρ(Z) = 1 > 0.6 =

1

2
ρ(X) +

1

2
ρ(Y ).

Therefore, ρ is not convex. This shows that quasi-convexity does not imply convexity if c = 0.

9



In the next example, we show that quasi-convexity is not invariant by adding or subtracting

the mean. Note that all properties (B1)-(B4) are preserved under such a transformation.

Example 2.6. Take ρ as in Example 2.5, and define another functional ρ′ : L2 → R by ρ′(X) =

ρ(X) + E[X]. The functional ρ′ satisfies (B1) with c = 1. We shall see that ρ′ is not quasi-convex

although ρ is. For instance, we can take a standard normal random variable Z and let X = 0.8Z+1.2

and Y = 1.2Z. Then, ρ′(X) = 1.2, ρ′(Y ) = 1.2, and thus

ρ′
(
X

2
+
Y

2

)
= ρ′(0.6 + Z) = 1.6 > 1.2 = max{ρ′(X), ρ′(Y )}.

Hence, ρ′ is not quasi-convex. Therefore, quasi-convexity (B2’) is not invariant by adding or sub-

tracting the mean functional.

In summary, quasi-convexity is equivalent to convexity if ρ(1) − ρ(0) 6= 0, which is the case

of (not necessarily monotone) risk measures. In the case ρ(1) − ρ(0) = 0, which is the case of

deviation measures, these two notions are not equivalent. For general results on the representation

of quasi-convex risk functionals, we refer to Frittelli and Maggis (2011) and the references therein.

3 Worst-case values with moment information

In this section we consider convex risk functionals defined on L2. According to Theorem 2.2

and Remark 2.3, a convex risk functional ρ : L2 → (−∞,∞] can be written as

ρ(X) = sup
h∈Φ2

c

{∫ 1

0
VaRα(X)dh(α)− β(h)

}
, (13)

where c ∈ R and β : Φ2
c → (−∞,∞] is convex and infh∈Φ2

c
β(h) ∈ R. Without further specifying β,

ρ in (13) may possibly take the value∞ for some X ∈ Lp. Certainly, (13) includes all law-invariant

risk functionals in Definition 1.1, which are real-valued. A condition for the finiteness of ρ in (13)

on Lp, p ∈ [1,∞] is specified in Proposition 3.6 at the end of this section.

In the context of robust risk evaluation, one may only have partial information on a risk X to

be evaluated. We consider the case in which one only knows the mean and the variance of X. This

setup has wide applications in model uncertainty and portfolio optimization. We refer to Li et al.

(2018), Li (2018) and Cornilly et al. (2019) and the references therein for more background on this

problem. Later we generalize our results to the case of another moment instead of the variance.

Denote by L2(m, v) = {X ∈ L2 : E[X] = m, σ2(X) = v2}. Define the worst-case value of ρ

with mean m ∈ R and standard deviation v > 0 as

ρ̄(m, v) = sup{ρ(X) : X ∈ L2(m, v)}.

Since h ∈ Φ2
c is concave and continuous, it one-to-one corresponds to its left derivative h′. Recall

that ||h′||22 =
∫ 1

0 (h′(t))2dt and ||h′ − c||22 =
∫ 1

0 (h′(t) − c)2dt = ||h′||22 − c2. Clearly ||h′ − c||22 = 0

10



if and only if h′(t) = c a.e. Note that h′ exits almost everywhere and it is a decreasing function.

Recall that for h ∈ Φ2
c ,

ρh(X) =

∫ 1

0
VaRα(X)dh(α) =

∫ 1

0
VaRα(X)h′(α)dα, X ∈ L2, (14)

and its corresponding worst-case value is

ρ̄h(m, v) = sup{ρh(X) : X ∈ L2(m, v)}.

We aim to calculate the values ρ̄(m, v) and ρ̄h(m, v) and, if possible, find the distributions of X

attaining the worst-case values. The main results are summarized in the following theorem.

Theorem 3.1. Suppose that c ∈ R, m ∈ R and v > 0.

(i) For h ∈ Φ2
c ,

ρ̄h(m, v) = mc+ v||h′ − c||2. (15)

If ||h′ − c||2 > 0, the above maximum value is attained by a random variable X ∈ L2(m, v)

with

VaRt(X) = m+ v
h′(t)− c
||h′ − c||2

, t ∈ (0, 1) a.e.

If ||h′ − c||2 = 0, the above maximum value is attained by any random variable X ∈ L2(m, v).

(ii) For ρ given in (13), we have

ρ̄(m, v) = mc+ sup
h∈Φ2

c

{
v||h′ − c||2 − β(h)

}
. (16)

Proof. We first show (i). Hölder’s inequality implies

ρ̄h(0, 1) = sup
X∈L2(0,1)

∫ 1

0
h′(t)VaRt(X)dt = sup

X∈L2(0,1)

∫ 1

0
(h′(t)− c)VaRt(X)dt

≤ sup
X∈L2(0,1)

||h′ − c||2
(∫ 1

0
(VaRt(X))2dt

)1/2

(17)

= ||h′ − c||2.

Assume ||h′ − c||2 > 0. To attain the Hölder bound in (17), it is necessary and sufficient that

VaRt(X) = k(h′(t)− c) a.e. for some k > 0, leading to k = 1/||h′ − c||2, and namely,

VaRt(X) =
h′(t)− c
||h′ − c||2

t ∈ (0, 1) a.e. (18)

Note that since h′ is a decreasing function, such a random variable X ∈ L2(0, 1) always exists, noting

that for any decreasing function g in (0, 1), the random variable g(1−U) has VaRt(g(1−U)) = g(t)

a.e. for a uniform [0, 1] random variable U .
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If ||h′− c||2 = 0, it is trivial to see ρh(X) = cE[X], which is a constant for all random variables

X ∈ L2(0, 1). Therefore, ρ̄h(0, 1) = ||h′ − c||2 for all h ∈ Φ2
c . Any random variable Y ∈ L2(m, v)

is one-to-one corresponding to a random variable X ∈ L2(0, 1) via Y = vX +m. Since ρh satisfies

translation invariance (B1) and positive homogeneity (A2), we have ρ̄h(m, v) = mc + vρ̄h(0, 1).

Hence, we obtain (15), and the attaining random variable is obtained from (18).

The statement (ii) can be verified directly from (i) and ρ(X) = suph∈Φ2
c
{ρh(X)− β(h)}.

Remark 3.2. Results of a similar type as Theorem 3.1 are available in the literature. In particular, in

the context of coherent or distortion risk measures, some special cases of Theorem 3.1 are obtained

by Li (2018) and Zhu and Shao (2018). Theorem 3.1 covers these cases, and we provide a concise

proof based on Hölder’s inequality, different from the above literature. Cornilly et al. (2019) studied

a related problem for convex distortion risk measures, where the optimization problem is taken over

the set of random variables with a specified bounded range. Zhu and Shao (2018) also obtained

results for non-convex distortion risk measures, which is not the focus of this paper.

Next we present a corollary for the case of a positively homogeneous convex risk functional

ρ : L2 → R, given by (see Theorem 2.4)

ρ(X) = sup
h∈Ψ2

c

{∫ 1

0
VaRα(X)dh(α)

}
, X ∈ L2. (19)

Corollary 3.3. Suppose that c ∈ R, m ∈ R, v > 0 and ρ is given by (19). Then

ρ̄(m, v) = mc+ v sup
h∈Ψ2

c

||h′ − c||2.

Example 3.1. We list a few simple cases of Theorem 3.1 and Corollary 3.3. It is obvious that, if ρ

is the standard deviation or the variance, the corresponding worst-case value ρ̄(m, v) should be v or

v2. This can be checked using Theorem 3.1, Corollary 3.3, (8) and (10). If ρ(X) = σ(X), X ∈ L2,

using Corollary 3.3 and (8), we arrive at the equality

ρ̄(m, v) = v sup{||h′||2 : h ∈ Φ0, ||h′||22 ≤ 1} = v.

If ρ(X) = σ2(X), X ∈ L2, using using Theorem 3.1 and (10), we arrive at the equality

ρ̄(m, v) = sup
h∈Φ2

0

{
v||h′||2 −

1

4
||h′||22

}
= sup

x≥0

{
vx− 1

4
x2

}
= v2.

In the case of ρ = ESα for some α ∈ (0, 1), we have ρ(X) =
∫ 1

0 VaRt(X)dh(t) for X ∈ L2, where

h(t) = min{ tα , 1}. Using Theorem 3.1, we have

sup
X∈L2(m,v)

ESα(X) = m+ v||h′ − 1||2 = m+ v

√∫ 1

0

(
1

α
I[0,α](t)− 1

)2

dt = m+ v

√
1− α
α

.
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This is the well-known Cantelli-type formula for ES; see Li et al. (2018) for this formula and a

collection of results on ES bounds with mean and variance constraints.

Finally, we illustrate that the results in Theorem 3.1 and Corollary 3.3 can be extended to the

case of another central moment instead of the variance. For p > 1, m ∈ R and v > 0, denote by

Lp(m, v) = {X ∈ Lp, E[X] = m, E[|X −m|p] = vp}. To establish the result in Lp, we introduce

the following quantities, for h ∈ Φc and q ≥ 1,

[h]q = min
x∈R
||h′ − x||q and ch,q = arg min

x∈R
||h′ − x||q.

For q > 1, to verify that [h]q and ch,q are well-defined, consider the mapping

φ : R→ R, x 7→
∫ 1

0

∣∣h′(t)− x∣∣q dt,

which is strictly convex, and thus continuous. Moreover, invoking Jensen’s inequality, we end up

with

lim
x→−∞

φ(x) = lim
x→∞

φ(x) =∞.

From this we can conclude that φ has a unique minimum at ch,q ∈ R. Moreover, note that [h]q =

||h′ − ch,q||q, and for q = 2, [h]2 = ||h′ − c||2 and ch,2 = c. The quantity [h]q may be interpreted as

a q-central norm of the function h′ and ch,q as a q-center.

Theorem 3.4. For c ∈ R, p > 1, h ∈ Φp
c , m ∈ R, and v > 0, we have

sup{ρh(X) : X ∈ Lp(m, v)} = mc+ v[h]q,

where q = (1 − 1/p)−1. If [h]q > 0, the above maximum value is attained by a random variable

X ∈ Lp(m, v) with

VaRt(X) = m+ v
|h′(t)− ch,q|q

h′(t)− ch,q
[h]1−qq , t ∈ (0, 1) a.e.,

where by convention 0q/0 = 0. If [h]q = 0, the above maximum value is attained by any random

variable X ∈ Lp(m, v).

Proof. The proof is similar to that of Theorem 3.1. The case [h]q = 0 is trivial and we assume

[h]q > 0 in the following. Again we use Hölder’s inequality, and obtain

sup
X∈Lp(0,1)

∫ 1

0
h′(t)VaRt(X)dt = sup

X∈Lp(0,1)

∫ 1

0
(h′(t)− ch,q)VaRt(X)dt

≤ sup
X∈Lp(0,1)

||h′ − ch,q||q
(∫ 1

0
|VaRt(X)|pdt

)1/p

= [h]q.

To construct a random variable that attains the Hölder bound, we use the Hölder extremal equality,
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which states that, for any function f on [0, 1], it holds

||f ||q = sup

{∣∣∣∣∫ 1

0
f(t)g(t)dt

∣∣∣∣ : ||g||p ≤ 1

}
,

and if ||f ||q < ∞, the maximum is attained by g(t) = ||f ||1−qq |f(t)|q/f(t), t ∈ [0, 1], which satisfies

||g||p = 1. Because h′ is a decreasing function and q > 1, the function |h′ − ch,q|q/(h′ − ch,q) is also

a decreasing function. Let X be a random variable whose distribution is given by

VaRt(X) =
|h′(t)− ch,q|q

h′(t)− ch,q
[h]1−qq , t ∈ (0, 1) a.e.

Note that such a random variable X always exists. For instance, we can take

X =
|h′(U)− ch,q|q

h′(U)− ch,q
[h]1−qq

where U is a uniform random variable on [0, 1]. It is easy to see that X satisfies the above require-

ment noting that |h′ − ch,q|q/(h′ − ch,q) is a decreasing function.

From the Hölder extremal equality, E[|X|p] = 1 and

ρh(X) = [h]1−qq

∫ 1

0
|h′(t)− ch,q|qdt = [h]1−qq [h]qq = [h]q.

It remains to verify E[X] = 0, which boils down to∫ 1

0

|h′(t)− ch,q|q

h′(t)− ch,q
dt =

∫ 1

0
|h′(t)− ch,q|q−1I{h′(t)>ch,q}dt−

∫ 1

0
|h′(t)− ch,q|q−1I{h′(t)<ch,q}dt

=

(
d

dx

∫ 1

0
|h′(t)− x|qdt

)∣∣∣∣
x=ch,q

=

(
d

dx
||h′ − x||qq

)∣∣∣∣
x=ch,q

= 0,

where the last equality is due to the fact that ch,q minimizes ||h′ − x||q over x ∈ R. Therefore,

X ∈ Lp(0, 1) and ρh(X) = [h]q. Similarly to the proof of Theorem 3.1, any random variable

Y ∈ Lp(m, v) is one-to-one corresponding to a random variable X ∈ Lp(0, 1) via Y = vX + m.

Since ρh satisfies translation invariance (B1) and positive homogeneity (A2), we have

sup{ρh(Y ) : Y ∈ Lp(m, v)} = v sup{ρh(X) : X ∈ Lp(0, 1)}+mc = mc+ v[h]q.

The rest of the proof is straightforward.

Remark 3.5. A similar setup with an absolute moment constraint instead of a central moment

constraint is considered by Cornilly et al. (2019) for convex distortion risk measures and random

variables with a specified bounded range. As far as we are aware of, formula of the type in Theorem

3.4 does not appear in the literature. The argument using the Hölder inequality can be applied to

the problem of the absolute moment constraint in an analogous way. Note that if p = 2, having a
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mean-variance constraint is equivalent to having a mean-second-moment constraint.

Theorem 3.4 implies the following formula for the supremum over Lp(m, v) of ρ defined via

(13) in the beginning of this section:

sup{ρ(X) : X ∈ Lp(m, v)} = mc+ sup
h∈Φpc

{v[h]q − β(h)}, (20)

generalizing (16) in Theorem 3.1. Before ending this section, we present a proposition yielding the

finiteness of ρ on Lp.

Proposition 3.6. For p ∈ [1,∞] and c ∈ R, the functional ρ on Lp defined via

ρ(X) = sup
h∈Φpc

{∫ 1

0
VaRα(X)dh(α)− β(h)

}
,

is finite if infh∈Φpc
β(h) ∈ R and suph∈Ψ ||h′||q < ∞, where Ψ = {h ∈ Φp

c : β(h) < ∞} and

q = (1− 1/p)−1 ∈ [1,∞].

Proof. We have ρ(0) = − infh∈Φβ β(h) ∈ R and for any h ∈ Φp
c , β(h) + ρ(0) ≥ 0 . For X ∈ Lp,

ρ(X) = sup
h∈Φpc

{∫ 1

0
VaRα(X)dh(α)− β(h)− ρ(0)

}
+ ρ(0)

≤ sup

{∫ 1

0
VaRα(X)dh(α) : h ∈ Φp

c , β(h) <∞
}

+ ρ(0)

≤ sup
{
E[|X|p]1/p||h′||q : h ∈ Ψ

}
+ ρ(0) <∞,

where Hölder’s inequality is applied to get the second inequality.

4 Reinsurance design problem

4.1 Problem setup

In this section, we consider an application of the representation (2) in optimal reinsurance

design problems. All proofs in this section are presented in the Appendix.

A reinsurance contract, bought by an insurer from a reinsurer to protect against the insurer’s

potential aggregate claim, is an important risk-sharing tool for an insurer. Denote by X the

underlying (aggregate) risk faced by the insurer and assume that X ∈ L∞+ , where L∞+ = {X ∈
L∞ : X ≥ 0}. We focus on the case that X ∈ L∞ due to technical challenges. Consistently to the

literature of reinsurance (Cai and Tan (2007), Cai et al. (2008) and Cheung (2010)) the survival

function SX(x) of X is assumed to be continuous and strictly decreasing on
(
0, X̄

]
with a possible

jump at 0, where X̄ is the essential supremum of X. Under a reinsurance contract, the reinsurer

agrees to cover a part of the risk I(X) for the insurer and requires a premium. The function I(x)

is commonly described as the ceded loss function, while R(x) , x − I(x) is known as the retained

loss function. The total random loss faced by the insurer with a reinsurance contract becomes the
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retained loss X − I(X) plus the premium. To avoid moral hazard, a “feasible” I needs to satisfy

following two conditions, and we denote I to be the set of all feasible ceded loss functions satisfying

1. I :
[
0, X̄

]
→
[
0, X̄

]
is a non-decreasing function satisfies I(0) = 0,

2. 0 ≤ I(y)− I(x) ≤ y − x, for any 0 ≤ x ≤ y ≤ X̄,

Note that any I ∈ I is 1-Lipschitz continuous on [0, X̄]. Since a sequence {In}∞n=1 ⊂ I is uni-

formly bounded and equicontinuous, by the Arzelà-Ascoli theorem, there exists a subsequence that

converges uniformly on [0, X̄] and the limit function also belongs to I.

We assume that the insurer takes a law-invariant convex risk functional ρ on L∞ with the

representation (2) where c ≥ 0, β is convex and lower semi-continuous with respect to 1-Lebesgue

norm and limn→∞ β(hn) = ∞ whenever limn→∞ ‖hn‖∞ = ∞. In the context of reinsurance, all

random variables represent risks in the sense that a positive value means a loss and a negative

value means a gain. It is natural that adding a sure loss makes the position less favourable by

the insurer, or equivalently, increases the value of the risk functional. Noting that (B1) implies

ρ(Y + 1) = ρ(Y ) + c for all random variables Y , the assumption c ≥ 0 is natural.

As the seller of a reinsurance contract, the reinsurer will assign a premium to a ceded loss

I(X). We assume that the reinsurer uses a Wang’s premium principle (Wang et al. (1997)), which

is a special case of the signed Choquet integrals in (1).

Definition 4.1 (Wang’s premium principle). Suppose that g : [0, 1] → [0, 1] is an increasing and

concave function with g(0) = 0 and g(1) = 1. Then, g is called a distortion function, and the

Choquet integral ρ(1+θ)g : L∞+ → R, defined on the set of non-negative random variables,

ρ(1+θ)g(Y ) = (1 + θ)

∫ ∞
0

g ◦ SY (t) dt, Y ∈ L∞+ ,

for a constant θ ≥ 0 is called a Wang’s premium principle.

Remark 4.1. In the insurance literature, Wang’s premium principle is commonly defined with θ = 0.

Indeed, when the distortion function g is concave, the exceeding amount
∫∞

0 g ◦ SY (t) dt− E[Y ] is

non-negative and it is the risk loading added to the expected loss. In Definition 4.1, we impose an

additional risk loading parameter θ in order to include the expected value premium principle. When

g(x) = x for x ≥ 0, ρ(1+θ)g(Y ) = (1 + θ)E[Y ] recovers the expected value premium principle.

In this section, we consider a general framework of the optimal reinsurance design problem

from the perspective of the insurer. Without any constraint on premiums, the insurer is interested

in the following free premium problem:

min
I∈I

ρ
(
X − I(X) + ρ(1+θ)g(I(X))

)
. (21)

The insurer may face a budget on his purchasing of reinsurance

ρ(1+θ)g(I(X)) ≤ p, for some budget threshold p > 0. (22)
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We call the minimization problem (21) subject to (22) as the budget constraint problem. Note that

ρ(1+θ)g(I(X)) ≤ ρ(1+θ)g(X) ≤ (1+θ)X̄ for all I ∈ I. Therefore, if p ≥ (1+θ)X̄, then the constraint

(22) is trivial. Hence, the budget constraint problem includes the free premium problem as a special

case.

Due to the continuity of the mappings ρ and ρ(1+θ)g, the budget constraint problem (21)-(22)

admits an optimal solution I∗ ∈ I. To be more precise, take a sequence {In}∞n=1 ⊂ I satisfying

ρ(1+θ)g(In(X)) ≤ p and

lim
n→∞

ρ
(
X − In(X) + ρ(1+θ)g(In(X))

)
= inf

I∈I, ρ(1+θ)g(I(X))≤p
ρ
(
X − I(X) + ρ(1+θ)g(I(X))

)
.

Since there exists a subsequence {Ink}∞k=1 that uniformly converges to I∗ ∈ I. we know, Ink(X)→
I∗(X) in L∞ as k →∞. Since both the mappings Y 7→ ρ

(
X − Y + ρ(1+θ)g(Y )

)
and Y 7→ ρ(1+θ)g(Y )

are ‖ · ‖∞-continuous, we know that I∗ is a minimizer for Problem (21)-(22).

The insurer’s objective and the reinsurer’s premium principle belongs to some families of

functionals. In the one-reinsurer model, a lot of research has been done when one of the two

functionals is given specifically while the other one is only given by a general expression. For

example, Chi and Tan (2013) assigned the ES to the insurer; Cheung et al. (2014) chose the

actuarial pricing principle for the reinsurer; Cheung and Lo (2017) used distorted risk measures for

both the insurer and the reinsurer, which is generalized to coherent risk measures in Cheung et al.

(2019). We provide a general formula for the optimal reinsurance contract, which can be applied to

any law-invariant convex risk functionals and Wang’s premium principle. The class of convex risk

functionals we consider includes not only convex risk measures, but also deviation measures, and

combinations of a convex risk measure and a deviation measure. Thus, our setting includes many

classic settings with a great generality.

Before moving onto the next section, we quote the following well-known Sion’s Minimax The-

orem which will be helpful for solving Problem (21).

Theorem 4.2 (Sion’s Minimax Theorem). Let Ξ1 be a compact convex subset of a topological vector

space, and Ξ2 be a convex subset of a topological vector space. Let f be a real-valued function defined

on Ξ1 × Ξ2 such that

1) ξ1 7→ f(ξ1, ξ2) is convex and lower-semicontinuous on Ξ1 for each ξ2 ∈ Ξ2;

2) ξ2 7→ f(ξ1, ξ2) is concave and upper-semicontinuous on Ξ2 for each ξ1 ∈ Ξ1.

Then

inf
ξ1∈Ξ1

sup
ξ2∈Ξ2

f(ξ1, ξ2) = sup
ξ2∈Ξ2

inf
ξ1∈Ξ1

f(ξ1, ξ2). (23)

Remark 4.3. If the equation (23) holds, the value in (23) is called the saddle-value in the minimax

problem. A pair (ξ∗1 , ξ
∗
2) ∈ Ξ1×Ξ2 is called a saddle-point of f with respect to Ξ1×Ξ2, if it satisfies

infξ1∈Ξ1 f(ξ1, ξ
∗
2) = supξ2∈Ξ2

f(ξ∗1 , ξ2). For an arbitrary real-value function f and space Ξ1 × Ξ2, it
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is always true that infξ1∈Ξ1 supξ2∈Ξ2
f(ξ1, ξ2) ≥ supξ2∈Ξ2

infξ1∈Ξ1 f(ξ1, ξ2), but (23) may not hold.

The existence of a saddle-point implies the existence of the saddle value because (23) is implied by

the following observation

inf
ξ1∈Ξ1

sup
ξ2∈Ξ2

f(ξ1, ξ2) ≤ sup
ξ2∈Ξ2

f(ξ∗1 , ξ2) = inf
ξ1∈Ξ1

f(ξ1, ξ
∗
2) ≤ sup

ξ2∈Ξ2

inf
ξ1∈Ξ1

f(ξ1, ξ2).

It should be pointed out that, the existence of a saddle-value is not a sufficient condition for the

existence of a saddle-point.

4.2 The free premium problem

As we have seen above, the free premium problem (21) is a special case of the budget constraint

problem (21)-(22). Nevertheless, we first analyze the free premium problem, because the arguments

here are easier to follow, thus helping the reader to understand our main ideas.

The existence of optimal solutions to Problem (21) is guaranteed by the continuity of the risk

functionals. To obtain insight of the form of optimal reinsurance ceded functions, we need to first

rely on the main representation result in Theorem 2.2 to transfer the minimization problem (21) to

a minimax problem, and then to characterize the optimal solution by applying Theorem 4.2. For a

given I ∈ I, using Lemma 2.1, we can write

ρ
(
X − I(X) + ρ(1+θ)g(I(X))

)
= sup

h∈Φc

(∫ 1

0
VaRα(R(X))dh(α)− β(h)

)
+ cρ(1+θ)g(I(X))

= sup
h∈Φc

f(I, h),

where f : I × Φc → R is defined via

f(I, h) ,
∫ X̄

0
h ◦ SR(X)(x)dx+ c(1 + θ)

∫ X̄

0
g ◦ SI(X)(t) dt− β(h). (24)

Therefore, Problem (21) has the following minimax expression (25).

min
I∈I

sup
h∈Φc

f(I, h), (25)

which can be solved by changing the order of the minimum and the supremum with the help of

Theorem 4.2. Such technique is crucial in solving minmax problems when general risk measures

are used; see also Cheung et al. (2014, 2019).

For each h ∈ Φc, write:

1. φh(x) , min {h(x), c(1 + θ)g(x)} = h(x) ∧ (c(1 + θ)g(x)), for any x ∈ [0, 1];

2. Gh ,
{

0 ≤ t ≤ X̄ : c(1 + θ)g ◦ SX(t) < h ◦ SX(t)
}

, and Gch , [0, X̄] \Gh;

3. Eh ,
{

0 ≤ t ≤ X̄ : c(1 + θ)g ◦ SX(t) = h ◦ SX(t)
}

, and (Gh ∪ Eh)c , [0, X̄] \ (Gh ∪ Eh);
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and define Ih(t) to be the reinsurance policy satisfying the following conditions:

Ih(0) = 0, and I ′h(t) = IGh(t) a.e., for t ≥ 0, (26)

where IGh(t) = 1 for t ∈ Gh and IGh(t) = 0 for t /∈ Gh is the indicator function associated with Gh.

Lemma 4.4. For a given X ∈ L∞+ , there exists h0 ∈ Φc such that

S , sup
h∈Φc

{∫ X̄

0
φh ◦ SX(t)dt− β(h)

}
=

∫ X̄

0
φh0 ◦ SX(t)dt− β(h0) (27)

is the saddle-value of the minimax problem (25). Moreover, denoted by I0 an optimal solution to

Problem (21), we have ρ
(
X − I0(X) + ρ(1+θ)g(I0(X))

)
= S.

The next proposition provides a necessary condition for the expression of the minimizer of

Problem (21).

Proposition 4.5. Each optimal solution I0 for Problem (21) has the following form:

I0(x) =

∫ x

0

(
IGh0 (t) + α(t)IEh0 (t)

)
dt, for x ≥ 0, (28)

where α : R+ → [0, 1] is any measurable function, and h0 is defined in Lemma 4.4.

Remark 4.6. The feasibility constraints I ∈ I on the ceded loss function are mathematically un-

necessary for the solution of our main problem (21) in this paper. That is, by allowing all possible

choices of measurable function I in (21), one would still obtain an optimal solution I which be-

longs to I. This conclusion is based on the celebrated result of comonotone improvement; see, for

instance, Jouini et al. (2008) in the context of optimal risk sharing between two agents. To be

consistent with the reinsurance literature and its practice, we still impose the feasibility conditions

on the ceded loss function I.

In addition to the assumptions of Proposition 4.5, if the set Eh0 has Lebesgue measure zero,

then the optimal reinsurance contract is simplified to Ih0(x) ,
∫ x

0 IGh0 (t) dt for x ≥ 0. Then, the

necessary condition for optimality of reinsurance contract given by the expression (28) becomes a

sufficient condition. It implies that (Ih0 , h0) is a saddle point of the function f(I, h) on I × Φc,

i.e. suph∈Φc f(Ih0 , h) = f(Ih0 , h0) = minI∈I f(I, h0).

If ρ is a law-invariant and comonotonic additive coherent risk measure. There exists h ∈ Φ1

such that ρ(X) =
∫ 1

0 VaRq(X)dh(q) for all X ∈ L∞ (Kusuoka (2001)). Thus, any reinsurance

contract with the form of

I0(x) =

∫ x

0
(IGh(t) + α(t)IEh(t)) dt, for x ≥ 0, (29)

where α : R+ → [0, 1] is any measurable function, will be the optimal reinsurance ceded loss function

for such a choice of ρ. This result is mathematically equivalent to Proposition 3.1 of Jouini et al.

(2008) in the context of risk sharing using convex monetary utility functions.
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Remark 4.7. The Minimax Theorem is applied to obtain the result in Proposition 4.5. In order

to make the Minimax Theorem applicable to very general risk functionals with representation (2),

we need to work on L∞ space because the set of all feasible ceded loss function I is a compact

set. On the other hand, if we impose certain restrictions on risk functionals, then the boundness

assumption on X can be relaxed. To see this, we take X ≥ 0 and X ∈ Lp, 1 ≤ p <∞, and assume

ρ(X) = sup
h∈Ψ

{∫ 1

0
VaRq(X)dh(q)− β(h)

}
, (30)

where Ψ ⊆ Φc is a convex and compact subset and β is continuous with respect to the supremum

norm on Ψ. Note that infI∈I suph∈Ψ f(I, h) = − supI∈I infh∈Ψ−f(I, h). We can check that all

conditions in the Minimax Theorem are satisfied.

1. Ψ is convex and compact.

2. I is convex.

3. −f(·, h) is linear and thus concave on I.

4. −f(I, ·) is convex and lower-semicontinuous on Ψ.

Therefore, we can apply the Minimax Theorem to interchange the supremum and infimum

sup
I∈I

inf
h∈Ψ
−f(I, h) = inf

h∈Ψ
sup
I∈I
−f(I, h),

and conduct similar argument in proof of Proposition 4.5 to solve the optimization problem (21).

A simple example of (30) is Ψ = {h} and in this case the Minimax Theorem is always applicable.

Then we can get the optimal result (29) for unbounded random variable X ∈ Lp.

A direct consequence of Proposition 4.5 gives a mathematical support to the optimality of

an insurance with deductible. If I(x) = 0 for 0 ≤ x ≤ d, then we call d the deductible of I.

Insurance with deductible is commonly observed in practice. The most popular examples are

deductible insurance defined as I(x) = (x − d)+ and excess-of-loss insurance defined as I(x) =

max{(x− d)+,M}. Many studies in the insurance literature discuss the optimality of either stop-

loss or excess-of-loss insurance under different model assumptions, e.g. dependent insurable risks

in Cai and Wei (2012), the reinsurer’s default risk in Cai et al. (2014), the presence of exclusion

clauses in Chi and Liu (2017), and the Pareto-optimal arrangement in Cai et al. (2017). The next

corollary gives a general result on the presence of a deductible part for a monotone law-invariant

convex risk functional.

Corollary 4.8. Assume θ > 0 and either c = 0 or ρ satisfies monotonicity (A1). There exists

an insurance policy with deductible as an optimal solution to Problem (21). In particular, if the

expected premium principle ρ(1+θ)g(I(X)) = (1+θ)E[I(X)] is used, then a stop-loss insurance policy

is an optimal solution.
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Example 4.1. Assume that the insurer uses ES at level α ∈ (0, 1). Define a convex function

β : Φ1 → R ∪ {+∞} via β(h) = 0 if h(t) = hα(t) , 1
α t I[0,α](t) + I(α,1](t) otherwise β(h) = +∞.

Then, ESα can be induced by substituting this particular β into the expression (11) for the convex

risk measure in Theorem 2.2. Since β only takes finite value at hα, the function
∫ X̄

0 φh◦SX(t)dt−β(h)

achieves its maximal value at hα.

In the first case that (1 + θ)g(α) ≥ 1, since g is concave and hα is linear on both [0, α] and

[α, 1], we know that (1 + θ)g ≥ hα on [0, 1]. Thus, (29) implies that buying no reinsurance is the

optimal solution for the insurer. In the second case, we assume that (1 + θ)g(α) < 1. Note that,

functions hα and (1 + θ)g will cross at most once on [0, α). When (1 + θ)g′(0) > 1
α , they do cross,

and denote by d∗2 the root of equation

1

(1 + θ)α
=
g ◦ SX(d∗2)

SX(d∗2)
,

then d∗2 > a. When (1 + θ)g′(0) ≤ 1
α , g is always smaller or equal to hα on [0, 1] and we use

d∗2 = X̄ in this case. It can be easily checked that VaRα(X) ≤ d∗2 and Ghα = [d∗2, X̄]. Meanwhile,

hδα and (1 + θ)g cross at most once (α, 1] at the point d∗1 such that (1 + θ)g ◦ SX(d∗1) = 1. Thus,

[0, d∗1] ⊂ (Ghα ∪ Ehα)c. Therefore, by using the expression (29), the optimal solution to Problem

(21) when ρ = ESα is I∗(x) = (x− d∗1)+ − (x− d∗2)+, and the corresponding minimal value is

min
I∈I

ESα
(
X − I(X) + ρ(1+θ)g(I(X))

)
=

∫ X̄

0
φhα ◦ SX(t)dt− β(hα)

= d∗1 +

∫ X̄

d∗2

SX(t)dt+ (1 + θ)

∫ d∗2

d∗1

g ◦ SX(t)dt.

This result is consistent with the known result in Chi and Tan (2013).

4.3 The budget constraint problem

Next, we consider the budget constraint problem (21)-(22). In Proposition 4.5, an optimal

solution I0 to the free premium problem (21) has premium larger than or equal to (1 + θ)
∫
Gh0

g ◦
SX(x)dx. Thanks to (A1) monotonicity which is satisfied by Wang’s premium principle, the budget

constraint (22) is not binding if p > (1 + θ)
∫
Gh0

g ◦ SX(x)dx. Therefore, to avoid redundant

argument, we assume

p ≤ (1 + θ)

∫
Gh0

g ◦ SX(x)dx,

that is p is no larger than the minimal premium for optimal solutions to the free premium problem

(21).

For each h ∈ Φc and λ ≥ 0, write

Gh,λ = {0 ≤ x ≤ X̄ : (λ+ c)(1 + θ)g ◦ SX(x) < h ◦ SX(x)},

Eh,λ = {0 ≤ x < X̄ : (λ+ c)(1 + θ)g ◦ SX(x) = h ◦ SX(x)}.
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Theorem 4.9. Assume p ≤ (1 + θ)
∫
Gh0

g ◦ SX(x)dx. There exists h∗ ∈ Φc and λ∗ ≥ 0 such that

I∗(x) =

∫ x

0

(
IGh∗,λ∗ (t) + α(t)IEh∗,λ∗ (t)

)
dt, (31)

is an optimal solution to Problem (21)-(22), where α : R+ → [0, 1] is any measurable function such

that ρ(1+θ)g(I
∗(X)) = p.

Example 4.2 (Mean-variance). In the budget constraint problem, suppose the insurer’s objective

is given by the mean-variance measure in (9) and the reinsurer uses an expected premium principle

with θ > 0. According to Example 2.2, for any retained loss function R, the supremum in (9) is

attained at h such that h′(q) = 2(VaRq(R(X))−E[R(X)]). For each λ > 0, since (λ(1 + θ) + c)g(·)
is linear and h(·) is concave, there exists xh,λ ≥ 0 such that Gh,λ = (xh,λ, X̄]. Taking α(x) = 0

in (31) implies that I∗ is a stop-loss function, a result that is well known in the literature since

the seminal work of Arrow (1963). Under our assumption that SX(·) is continuous and strictly

decreasing, there exists a deductible d∗ such that the budget constraint is achieved at the boundary,

i.e. (1 + θ)E[(X − d∗)+] = p.

Example 4.3 (Signed Choquet integrals). Suppose the insurer’s objective is given by a signed

Choquet integral with a concave distortion function h ∈ Φc and the reinsurer uses Wang’s premium

principle with an increasing concave distortion function g.

The optimal solution I0 to the free premium problem (21) has form given in (28) with h0 = h.

In particular, write Ih(x) =
∫ x

0 IGh(t)dt for x ≥ 0.

For the budget constraint problem (21)-(22), if p ≥ ρ(1+θ)g(Ih(X)), then there exists measur-

able function α : R+ → [0, 1] such that I0 in (28) satisfies the budget constraint.

Next, we assume p < ρ(1+θ)g(Ih(X)) = (1 + θ)
∫
Gh
g ◦ SX(x)dx. Applying the Lagrangian

multiplier method in the proof of Theorem 4.9, there exists λ0 > 0 such that

(1 + θ)

∫
Gh,λ0

g ◦ SX(x)dx ≤ p ≤ (1 + θ)

∫
Gh,λ0∪Eh,λ0

g ◦ SX(x)dx.

Thus, we can conclude that an optimal solution I∗ to Problem (21)-(22) satisfies

I∗(x) =

∫ x

0
(IGh,λ0 (t) + α(t)IEh,λ0 (t))dt

where α : R+ → [0, 1] is a measurable function and ρ(1+θ)g(I
∗(X)) = p. In particular, we take

g(x) = x for x ∈ [0, 1]. Since h is concave and continuous on (0, 1), there exits t0 ∈ [0, 1] such that

(c+λ0)(1+θ)t > h(t) for t ∈ (t0, 1) if the interval is non-empty, and (c+λ0)(1+θ)t is either strictly

smaller than or equal to h(t) on the whole interval (0, t0). A direct consequence is that I∗(x) = 0

for x ∈ [0,VaRt0(X)], i.e., I∗ is has a positive deductible if t0 < SX(0). On the interval (0, t0), if

h(t) > (c+λ0)(1+θ)t for all t ∈ (0, t0), then Gh,λ0 = (VaRt0(X),∞) and Eh,λ0 has measure zero; if

h(t) = (c+λ0)(1+θ)t for all t ∈ (0, t0), then Gh,λ0 = ∅ and Gh,λ0 ∪Eh,λ0 = [VaRt0(X),∞). In both

case, we can write an optimal solution in the stop-loss form I∗(x) = (x− d)+ where d ≥ VaRt0(X)
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such that ρ(1+θ)g(I
∗(X)) = p. Note that in this example, the insurer’s objective is not necessarily

monotone, and the stop-loss contract is still optimal.

5 Conclusion

In this paper, we introduce the family of law-invariant convex risk functionals and obtain its

representation. This family covers a broad range of existing risk measures such as convex risk mea-

sures and deviation measures. Two applications of our main representation result in optimization

problems are studied. First, we derive the expression of the worst-case value of a convex risk func-

tional when only partial information (the mean and the variance or a higher moment) of the risk is

available. Second, we obtain forms and properties of optimal reinsurance polices when the insurer

adopts a law-invariant convex risk functional while the reinsurer uses Wang’s premium principle.

In general, we show the existence of optimal solutions and the optimality of multi-layer ceded loss

functions. These applications illustrate that the new family of risk functionals is powerful and flex-

ible, and many classic results in the literature can be generalized without assuming monotonicity

of the underlying objectives.

Remark 5.1. Our framework is built for static risk functionals, that is, risks are modelled as one-

period random losses. In the literature of risk measures, risk functionals are also studied in a

dynamic setting; see, for instance, Weber (2006) and Kupper and Schachermayer (2009) for dy-

namic consistency of risk measures and its relation to loss functions. In view of relevant actuarial

applications, such as the robust risk assessment and the optimal reinsurance designin Sections 3

and 4, we leave dynamic aspects of convex risk functionals out of the scope of this paper, and they

are certainly interesting for future research.
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A Appendix: Proofs of results in Section 4

First, we present an auxiliary result2 which will be useful in the proofs of Lemma 4.4 and Theorem 4.9.

Lemma A.1. For X ≥ 0 with continuous survival function SX(x) on (0, X̄] where X̄ < ∞ is the essential

supremum of X, let J : [0, X̄] → [0,∞) be a nondecreasing 1-Lipschitz continuous mapping with J(0) = 0

and derivative J ′. Then for any concave function h : [0, 1] → R satisfying h(0) = 0, the associated signed

2We thank a referee for suggesting this lemma.
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Choquet integral ρh satisfies

ρh(J(X)) =

∫ 1

0

VaRα(J(X))dh(α) =

∫ X̄

0

J ′(x)h (P(X > x)) dx.

Proof. Since J is nondecreasing and continuous, VaRα(J(X)) = J(VaRα(X)) for all α ∈ [0, 1]. For X ≥ 0

with continuous survival function SX(x) on (0, X̄], we know VaR0(X) = X̄, VaRα(X) = 0 for α ∈ [SX(0), 1]

and SX(VaRα(X)) = α for α ∈ [0, SX(0)]. For a given h ∈ Φ, by Lemma 2.1 (i), a change of variable and

integration by parts, we have

ρh(J(X)) =

∫ 1

0

VaRα(J(X))dh(α)

=

∫ 1

0

J(VaRα(X))dh(α)

=

∫ 1

0

I(0,1)(α)J(VaRα(X))dh(α) + h(0+)J(VaR0(X)) + (h(1−)− h(1)) J(VaR1(X))

= −
∫ X̄

0

I(0,X̄)(x)J(x)dh(SX(x)) + h(0+)J(X̄)

=

∫ X̄

0

I(0,X̄)(x)h(SX(x))J ′(x)dx =

∫ X̄

0

J ′(x)h(P(X > x))dx.

Proof of Lemma 4.4. To apply Theorem 4.2 to interchange the minimum sign and the supremum sign

in the Problem (25), the following conditions should be checked carefully:

1) I is a compact set under the usual supremum norm ‖ · ‖∞ and I is convex.

2) Φc is convex.

3) For each fixed h ∈ Φc, f(·, h) is continuous in I under the supremum norm. Note that VaR is

comonotonic additive. Given I1, I2 ∈ I and λ ∈ [0, 1], f(λI1 +(1−λ)I2, h) = λf(I1, h)+(1−λ)f(I2, h)

for all h ∈ Φc. Thus, f(·, h) is convex on I.

4) Given h1, h2 ∈ Φc and λ ∈ [0, 1], the function f(I, λh1 + (1 − λ)h2) ≤ λf(I, h1) + (1 − λ)f(I, h2) for

all I ∈ I due to the convexity of the function β. Thus, f(I, ·) is concave on Φc. Also note that f(I, ·)
is upper-semicontinuous since β is lower-semicontinuous.

Therefore, by applying Theorem 4.2, we get

min
I∈I

sup
h∈Φc

f(I, h) = sup
h∈Φc

min
I∈I

f(I, h).

For each h ∈ Φc, we first solve minI∈I f(I, h) and then express the minimizer Ih in term of h.

To this end, we are going to find the minimizer of function f(·, h) among I. Since functions g, h, I ′

and 1− I ′ are all non-negative, and by Lemma A.1, one obtains

f(I, h) = c(1 + θ)

∫ X̄

0

g ◦ SX(t)I ′(t) dt+

∫ X̄

0

h ◦ SX(t) (1− I ′(t)) dt− β(h)

≥
∫ X̄

0

min {c(1 + θ)g ◦ SX(t), h ◦ SX(t)} [I ′(t) + 1− I ′(t)] dt− β(h)

=

∫ X̄

0

φh ◦ SX(t) dt− β(h).
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Conversely, we can check that the function Ih(t) defined in (26) satisfies Ih ∈ I, and

f(Ih, h) = c(1 + θ)

∫
Gh

g ◦ SX(t)dt+

∫
Gch

h ◦ SX(t)dt− β(h) =

∫ X̄

0

φh ◦ SX(t)dt− β(h).

Thus, the function Ih is a minimizer of minI∈I f(I, h), and moreover, S , suph∈Φc

{∫ X̄
0
φh ◦ SX(t)dt− β(h)

}
is the saddle value of the minimax problem (25).

Now, take a sequence hn ∈ Φc such that S = limn→∞ f(Ihn , hn). First assume that {hn : n ∈ N} is

uniformly bounded in the usual supremum norm on [0, 1], that is {‖hn‖∞ : n ∈ N} is a bounded sequence.

Since h′n, n ∈ N is a decreasing function, ‖h′n‖1 ≤ 2‖hn‖∞ − c, that is {hn : n ∈ N} has uniformly bounded

total variation on [0, 1]. By the Helly selection theorem, there exists a subsequence {hnk : k ∈ N}, which

pointwise converges to some function, denoted by h0. For simplicity, we say that {hn : n ∈ N} pointwise

converges to h0. For each λ ∈ (0, 1) and x, y ∈ [0, 1],

h0(λx+ (1− λ)y) = lim
n→∞

hn(λx+ (1− λ)y) ≥ lim
n→∞

(λhn(x) + (1− λ)hn(y)) = λh0(x) + (1− λ)h0(y).

Meanwhile h0(0) = limn→∞ hn(0) = 0 and h0(1) = limn→∞ hn(1) = c. Thus, h0 ∈ Φc. Second, we

assume that the sequence {‖hn‖∞ : n ∈ N} is unbounded. Then limn→∞ β(hn) = ∞ and S = −∞
contradicting the definition of S. In short, we can alway find h0 ∈ Φc such that hn is uniformly bounded

and pointwise converges to h0 by choosing a subsequence. It follows that φhn converges to φh0
pointwise.

Since 0 ≤ φhn(SX(x)) ≤ g(SX(x)) for all x ∈ [0, X̄] and all n ∈ N, and
∫ X̄

0
g(SX(x))dx <∞ by assumption,

the Dominated Convergence Theorem implies that

lim
n→∞

∫ X̄

0

φhn(SX(x))dx =

∫ X̄

0

φh0
(SX(x))dx.

Furthermore, the fact that β is non-negative and lower-semi continuos implies that

lim sup
n→∞

−β(hn) = − lim inf
n→∞

β(hn) ≤ −β(h0).

Thus,

S = lim
n→∞

f(Ihn , hn) ≤ lim sup
n→∞

∫ X̄

0

φhn ◦ SX(t)dt+ lim sup
n→∞

−β(hn)

≤
∫ X̄

0

[h0 ◦ SX(t)] ∧ [g ◦ SX(t)] dt− β(h0) = f(Ih0
, h0) ≤ S.

As a consequence, the minimax problem (25) has the saddle-value S =
∫ X̄

0
φh0
◦ SX(t)dt − β(h0), and an

optimal solution I0 to Problem (21) satisfies

ρ
(
X − I0(X) + ρ(1+θ)g(I0(X)

)
= min

I∈I
sup
h∈Φc

f(I, h) = sup
h∈Φc

min
I∈I

f(I, h) = S.

Proof of Proposition 4.5. Suppose that I0 is an optimal solution of Problem (21). By Theorem 4.4, we

have ρ
(
X − I0(X) + ρ(1+θ)g(I0(X))

)
= sup
h∈Φc

f(I0, h) = S. It follows that

S = f(Ih0
, h0) = min

I∈I
f(I, h0) ≤ f(I0, h0) ≤ sup

h∈Φc

f(I0, h) = S,
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and thus f(Ih0
, h0) = f(I0, h0). By conditions in (26), we have

f (Iµ0
, µ0) =

∫
Gµ0

g ◦ SX(t)dt+

∫
Gcµ0

hµ0
◦ SX(t)dt.

A direct calculation gives us

0 = f(I0, h0)− f(Ih0 , h0) =

∫ X̄

0

c(1 + θ)g ◦ SX(t)I ′0(t)dt+

∫ X̄

0

h0 ◦ SX(t)[1− I ′0(t)]dt

−
∫
Gh0

c(1 + θ)g ◦ SX(t)dt−
∫
Gch0

hµ0
◦ SX(t)dt

=

∫
Gh0

[h0 ◦ SX(t)− c(1 + θ)g ◦ SX(t)] [1− I ′0(t)]dt (32)

+

∫
(Gh0

∪Eh0
)c

[c(1 + θ)g ◦ SX(t)− h0 ◦ SX(t)] I ′0(t)dt

+

∫
Eh0

[c(1 + θ)g ◦ SX(t)I ′0(t) + h0 ◦ SX(t)(1− I ′0(t))− h0 ◦ SX(t)] dt.

The first two integrands on the right hand of the equality (32) are both non-negative and the third term

is zero. Therefore, we have I ′0(t) = 0 for t ∈ (Gh0 ∪ Eh0)c and I ′0(t) = 1 for t ∈ Gh0 . Since I satisfies the

1-Lipschitz continuity property, its right derivative I ′ on the set Eh0
is a measurable function α taking values

in [0, 1].

Proof of Corollary 4.8. If c = 0, Proposition 4.5 implies that a full insurance, which is a special case of

deductible insurance, is the optimal solution to Problem (21).

Assume c > 0 and ρ is monotone. In this case, the representation (2) can be taken such that β(h) =∞
for all h that is not increasing (Theorem 4.59 of Föllmer and Schied (2011)). For each increasing h ∈ Φc,

h(1) = c. Since g is continuous on (0, 1], h is increasing on (0, 1) and c(1 + θ)g(1) = c(1 + θ), there exists

t0 ∈ [0, 1) such that c(1 + θ)g(t) > c ≥ h(t) for all t ∈ (t0, 1). Thus, (0,VaRt0(X)) ⊂ (Gh ∪ Eh)
c

and

Ih(x) = 0 for x ∈ [0,VaRt0(X)].

If g is linear, i.e., g(t) = t, since h is a concave function, there exists t0 ∈ [0, 1) such that h(t) ≥
c(1 + θ)g(t) for t ∈ [0, t0] and h(t) < c(1 + θ)g(t) for t ∈ (t0, 1]. Applying (28) with α(t) = 1, we obtain an

optimal solution of the stop-loss type.

Proof of Theorem 4.9. Recall that c ≥ 0, and β, θ, and g are fixed. Without the budget constraint,

Proposition 4.5 shows that the free premium problem (21) has solutions in the form (28) for some h0 ∈ Φc,

and h0 depends on c. Moreover, premium amounts of optimal solutions in (28) are all larger than or equal

to ρ(1+θ)g(Ih0(X)) = (1 + θ)
∫
Gh0

g ◦ SX(t)dt, where Ih0(x) =
∫ x

0
IGh0

(t)dt for x ≥ 0. If p > ρ(1+θ)g(Ih0(X)),

then Ih0
is an optimal solution to the constrained problem (21)-(22), and the constraint (22) is not binding.

For p ≤ ρ(1+θ)g(Ih0
(X)), we claim that the constraint (22) is binding. Suppose Problem (21)-(22)

admits a solution Ĩ and ρ(1+θ)g(Ĩ(X)) < p. First note that

ρ
(
X − Ih0

(X) + ρ(1+θ)g(Ih0
(X))

)
< ρ

(
X − Ĩ(X) + ρ(1+θ)g(Ĩ(X))

)
.

Since the Choquet integral ρ(1+θ)g is additive for comonotonic random variables, there exists λ ∈ [0, 1) such

that

ρ(1+θ)g(I(X)) = λρ(1+θ)g(Ĩ(X)) + (1− λ)ρ(1+θ)g(Ih0
(X)) = p
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where I = λĨ + (1− λ)Ih0
, i.e., I satisfies (22). Due to the convexity of ρ, we have

ρ(X − I(X) + ρ(1+θ)g(I(X))) ≤ λρ
(
X − Ĩ(X) + ρ(1+θ)g(Ĩ(X))

)
+ (1− λ)ρ

(
X − Ih0

(X) + ρ(1+θ)g(Ih0
(X))

)
< ρ

(
X − Ĩ(X) + ρ(1+θ)g(Ĩ(X))

)
,

which contradicts the optimality of Ĩ. The claim is proved.

In particular, if p = ρ(1+θ)g(Ih0(X)), then Ih0 is an optimal solution to the constraint problem (21)-(22)

and the constraint (22) is binding.

In the rest of the proof, we assume p < ρ(1+θ)g(Ih0(X)) = (1 + θ)
∫
Gh0

g ◦ SX(t)dt. We translate the

constrained minimization problem (21)-(22) to a non-constrained problem by using the Lagrangian multiplier

method. Consider the following minimization problem

max
λ≥0

min
I∈I

{
ρ
(
R(X) + g(1+θ)g(I(X))

)
+ λg(1+θ)g(I(X))− λp

}
= max

λ≥0
min
I∈I

sup
h∈Φc

{fλ(I, h)− λp} , (33)

where (again using Lemma A.1)

fλ(I, h) =

∫ X̄

0

h ◦ SX(x)R′(x)dx+ (1 + θ)(λ+ c)

∫ X̄

0

g ◦ SX(x)I ′(x)dx− β(h). (34)

Similar as the free premium problem, we define

Gh,λ = {x ≥ 0 : (λ+ c)(1 + θ)g ◦ SX(x) < h ◦ SX(x)},

Eh,λ = {0 ≤ x < X̄ : (λ+ c)(1 + θ)g ◦ SX(x) = h ◦ SX(x)},

and Ih,λ(x) =
∫ x

0
IGh,λ(t)dt for x ≥ 0. Thus, for each λ ≥ 0 and h ∈ Φc, we know fλ(I, h) ≥ fλ(Ih,λ, h). For

a fixed λ ≥ 0, because λp is a constant and does not affect the min-sup problem, we have

min
I∈I

sup
h∈Φc

{fλ(I, h)− λp} = sup
h∈Φc

min
I∈I
{fλ(I, h)− λp} = sup

h∈Φc

{fλ(Ih,λ, h)− λp} .

Thus, (33) becomes

max
λ≥0

min
I∈I

{
ρ
(
R(X) + g(1+θ)g(I(X))

)
+ λg(1+θ)g(I(X))− λp

}
= sup
h∈Φc

max
λ≥0
{fλ(Ih,λ, h)− λp} .

Since fλ(Ih,λ, h) = (λ+ c)(1 + θ)
∫
Gh,λ

g ◦ SX(x)dx+
∫
Gch,λ

h ◦ SX(x)dx− β(h), the right and left derivatives

of fλ(Ih,λ, h)− λp with respect to λ are

d

dλ+
fλ(Ih,λ, h) = (1 + θ)

∫
Gh,λ

g ◦ SX(x)dx,
d

dλ−
fλ(Ih,λ, h) = (1 + θ)

∫
Gh,λ∪Eh,λ

g ◦ SX(x)dx.

Define

λ(h) = sup

{
λ ≥ 0 : (1 + θ)

∫
Gh,λ

g ◦ SX(x)dx > p

}
, (35)

where λ(h) = 0 if the set on the right hand side is an empty set.

In the rest of argument, for simplicity, we assume θ = 0 without loss of generality. Note that for a given
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h ∈ Φc, if λ1 ≤ λ2 then Gh,λ2
⊆ Gh,λ1

; if λ1 < λ2 then

Gh,λ2
∪ Eh,λ2

= {0 ≤ x < X̄ : λ2 + c ≤ h ◦ SX(x)

g ◦ SX(x)
} ⊆ {0 ≤ x < X̄ : λ1 + c <

h ◦ SX(x)

g ◦ SX(x)
} = Gh,λ1

.

For each x /∈ Gh,λ(h) ∪ Eh,λ(h), if any, there exists λ such that λ(h) > λ > h◦SX(x)
g◦SX(x) − c, i.e. x /∈ Gh,λ. Thus,

IGh,λ → IGh,λ(h)∪Eh,λ(h)
pointwise for λ ↑ λ(h). It follows that

p ≤ lim
λ↑λ(h)

∫
IGh,λ(x) g ◦ SX(x)dx =

∫
IGh,λ(h)∪Eh,λ(h)

(x) g ◦ SX(x)dx =
d

dλ−
fλ(h)(Ih,λ(h), h).

Similarly, IGh,λ∪Eh,λ → IGh,λ(h)
pointwise as λ ↓ λ(h), and

lim
λ↓λ(h)

∫
IGh,λ∪Eh,λ(x) g ◦ SX(x)dx =

∫
IGh,λ(h)

(x) g ◦ SX(x)dx =
d

dλ+
fλ(h)(Ih,λ(h), h).

Suppose there exists λ3 > λ(h) such that d
dλ− fλ3

(Ih,λ3
, h) ≥ p. Take λ̃3 ∈ (λ(h), λ3). Then we get the

contradiction

p ≤ d

dλ−
fλ3

(Ih,λ3
, h) <

d

dλ+
fλ̃3

(Ih,λ̃3
, h) ≤ p

where the last inequality is induced from the definition of λ(h). Thus,

p ≥ lim
λ↓λ(h)

∫
IGh,λ∪Eh,λ(x) g ◦ SX(x)dx =

d

dλ+
fλ(h)(Ih,λ(h), h).

In short, we now have

sup
h∈Φc

max
λ≥0
{fλ(Ih,λ, h)− λp} = sup

h∈Φc

{fλ(h)(Ih,λ(h), h)− λ(h)p}

and

d

dλ+
fλ(h)(Ih,λ(h), h) ≤ p ≤ d

dλ−
fλ(h)(Ih,λ(h), h).

Take a sequence {hn}∞n=1 ⊆ Φc such that fλ(hn)(Ihn,λ(hn), h) − λ(hn)p → suph∈Φc fλ(h)(Ih,λ(h), h) −
λ(h)p. By the argument in the proof of Lemma 4.4, there exists a subsequence of {hn} converging to

some h∗ ∈ Φc. Correspondingly, we obtain a sequence of non-negative real number (extended to positive

infinity) {λ(hn)}, which has a subsequence converging to some λ∗ ∈ [0,∞]. Without loss of generality,

we take {hn} converging to h0 pointwise and {λ(hn)} converging to λ∗. For each n ∈ N and x ≥ 0, we

have hn◦SX(x)
λ(hn) ≤ maxm≥n{hm◦SX(x)}

minm≥n{λ(hm)} . Denote by ĥn = maxm≥n{hm} and λ̂n = minm≥n{λ(hm)}. Then

Ghn,λ(hn) ⊆ Gĥn,λ̂n , Ghn,λ(hn) ∪ Ehn,λ(hn) ⊆ Gĥn,λ̂n ∪ Eĥn,λ̂n and

p ≤
∫

IGhn,λ(hn)∪Ehn,λ(hn)
(x) g ◦ SX(x)dx ≤

∫
IGĥn,λ̂n∪Eĥn,λ̂n (x) g ◦ SX(x)dx.

Since λ̂n ≤ λ̂n+1 and ĥn(x) ≥ ĥn+1(x) for x ≥ 0, we have (Gĥn+1,λ̂n+1
∪ Eĥn+1,λ̂n+1

) ⊆ (Gĥn,λ̂n ∪ Eĥn,λ̂n)

and ∩∞n=1(Gĥn,λ̂n ∪ Eĥn,λ̂n) = Gh∗,λ∗ ∪ Eh∗,λ∗ . Thus, we have

p ≤
∫

IGh∗,λ∗∪Eh∗,λ∗ (x) g ◦ SX(x)dx.
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On the contrary, since hn◦SX(x)
λ(hn) ≥ infm≥n{hm◦SX(x)}

supm≥n{λ(hm)} , we have

p ≥
∫ X̄

0

IGhn,λ(hn)
(x) g ◦ SX(x)dx ≥

∫ X̄

0

IGhn,λ̄n (x) g ◦ SX(x)dx,

where hn = infm≥n{hm ◦ SX(x)} and λ̄n = supm≥n{λ(hm)}. Taking the limit leads to

p ≥
∫ X̄

0

IGh∗,λ∗ (x) g ◦ SX(x)dx.

Therefore, λ∗ = λ(h∗). It further implies that

lim
n→∞

fλ(hn)(Ihn,λ(hn), hn) ≤
∫
Gh∗,λ(h∗)

(λ(h∗) + c)g ◦ SX(x)dx+

∫
Gc
h∗,λ(h∗)

h∗ ◦ SX(x)dx+ lim sup
n→∞

−β(hn)

≤
∫
Gh0,λ(h∗)

(λ(h∗) + c)g ◦ SX(x)dx+

∫
Gc
h∗,λ(h∗)

h∗ ◦ SX(x)dx− β(h∗).

Thus, (33) is solved that

max
λ≥0

min
I∈I

{
ρ(R(X) + ρ(1+θ)g(I(X))) + λρ(1+θ)g(I(X))− λp

}
= fλ(h∗)(Ih∗,λ(h∗), h

∗)− λ(h∗)p.

The optimal reinsurance policy I∗ satisfying I∗(x) =
∫ x

0
(IGh∗,λ∗ (t) +α(t)IEh∗,λ∗ (t))dt, where α : R+ → [0, 1]

is any measurable function such that ρ(1+θ)g(I
∗(X)) = p.
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Föllmer, H. and A. Schied (2002). Convex measures of risk and trading constraints. Finance and Stochas-

tics 6(4), 429–447.
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