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Abstract

In this paper, we study the worst-case scenarios of a general class of risk measures, the Range

Value-at-Risk (RVaR), in single and aggregate risk models with given mean and variance, as

well as symmetry and/or unimodality of each risk. For different types of partial information

settings, sharp bounds for RVaR are obtained for single and aggregate risk models, together with

the corresponding worst-case scenarios of marginal risks and the corresponding copula functions

(dependence structure) among them. Different from the existing literature, the sharp bounds

under different partial information settings in this paper are obtained via a unified method

combining convex order and the recently developed notion of joint mixability. As particular

cases, bounds for Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) are derived directly.

Numerical examples are also provided to illustrate our results.

Keywords: model uncertainty, risk aggregation, Range Value-at-Risk, Value-at-Risk, Tail

Value-at-Risk, convex order.

1 Introduction

1.1 Problem formulation and related literature

Quantification of risky positions held by a financial institution under model uncertainty is of

crucial importance from both viewpoints of external regulation and internal management. Very
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often, the problem of interest is of the following type: to find

sup ρ(X1 +X2 + · · ·+Xn)

over Xi ∈ Pi, i = 1, 2, . . . , n.
(1)

where ρ is a risk measure, and for each i = 1, . . . , n the set Pi is a class of random variables with

some given partial distributional information. With a partially specified model, the value of the

risk measure ρ varies in a range over the set of all possible models. The largest value in such a

range is referred to a worst-case value, and the corresponding model is called a worst scenario. In

this paper, the distributional information we consider includes specified moments such as mean and

variance, and descriptive information such as symmetry and unimodality.

For single risk models, that is, n = 1 in (1), an early source is Royden (1953). There are more

developments in the recent few decades. Kaas and Goovaerts (1986) calculated the distribution-free

bound of P(X ≤ t) under partial information including the mean and the variance with the duality

method, and later De Schepper and Heijnen (2010) extended the bound of P(X ≤ t) with more

partial information on the mode of the distribution besides the original mean and variance. See

Hurlimann (2002) for applications of the problem in actuarial science. Popescu (2005) incorporated

symmetry into the problem and used an operational method called semidefinite programming to

determine the best-possible bounds on P(X ≤ t) with additional assumption including symmetry

and unimodality, and He et al. (2010) obtained upper bounds on P(X ≤ t) with partial information

of the first four moments of X by using the same method. A generalized semidefinite programming

method to calculate the probability of a random vector falling outside a polytope based on moment

and shape information is recently given in Van Parys et al. (2016). For a single random variable

X with partial information, literature of finding distribution-free bounds on quantities of the form

E[φ(X)] for some functions φ dates back to De Vylder (1982) and De Vylder and Goovaerts (1982).

For aggregate risk models, that is, n > 1 in (1), finding bounds for quantities related to the

sum of random variables with the knowledge of marginal distributions is typically called the Fréchet

problem, where the complete uncertainty of the dependence is typically assumed. For recent research

on Fréchet problems for VaR and convex risk measures, see Embrechts et al. (2013), Wang et al.

(2013), Bernard et al. (2014) and Cai et al. (2017). For VaR bounds with partial dependence

information in addition to the marginal information, see Bernard et al. (2016b, 2017a), Bernard

and Vanduffel (2015) and Puccetti et al. (2016, 2017), amongst others. We refer to Embrechts et al.

(2014) for general discussions on this problem. Besides the assumption of the complete uncertainty
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dependence, there is also recent literature studying the optimization problem (worst-case) of the risk

measures under partial information with some information of dependence; see Zhu and Fukushima

(2009), Zymler et al. (2013) and Cambou and Filipovic (2017).

Diffierent from the existing literature which mainly focus on worst-case values of the Value-

at-Risk (VaR) and the Tail Value-at-Risk (TVaR), this paper discusses a more general class of

risk measures: the Range Value-at-Risk (RVaR), which was proposed by Cont et al. (2010) as a

generalization of VaR and TVaR.

Robustness of risk measures is a central issue in recent years. Heyde et al. (2006) is one of

the earliest papers that discusses the robustness of risk measures. Heyde et al. (2006), Cont et al.

(2010) and Kou and Peng (2016) pointed out that VaR is more robust than TVaR, in the sense

that VaR is continuous with respect to convergence in distribution at random variables with a

continuous quantile function, whereas TVaR is not continuous at any random variables in the same

sense. Embrechts et al. (2014) contains a comprehensive discussion on recent issues related to the

robustness of VaR and TVaR; see Krätschmer et al. (2014) for various notions of robustness for

general convex risk measures. RVaR, which can be seen as a bridge between VaR and RVaR, is

robust in the sense that it is continuous with respect to weak convergence of random variables,

whereas neither VaR or TVaR is continuous in general. Bignozzi and Tsanakas (2016) studied

residual estimation risk for various risk measures including RVaR. Given the great generality and

nice properties of RVaR, we discuss RVaR with the model uncertainty of the underlying risks in

this paper, and the results can be naturally transferred to VaR and TVaR by taking limits.

1.2 Main contribution of this paper

For both single risk models and aggregate risk models, this paper derives worst-case values and

worst-case scenarios for RVaR under partial information assumption.

For the partial information settings, we address model uncertainty by assuming that the mean,

variance, and additionally symmetry and/or unimodality of each risk are known. Note that the

mean and the variance are among the most traditional non-parametric statistics, thus the partial

information assumption is fairly reasonable from the practical view. This paper only considers the

first two moments for mathematical tractability, which is a standard setup in the distributional

optimization literature (Van Parys et al., 2016). On the other hand, the shape assumptions such

as unimodality and symmetry are also reasonable for that most parametric univariate distributions

are symmetric or unimodal. For example, exponential, Beta, Gamma, log-normal, uniform Chi-
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square, Pareto and Weibull distribution are unimodal distributions, and normal, Cauchy, logistic

and student’s t-distribution are unimodal and symmetric distributions. Moreover, in the modeling

of credit portfolio’s Loss Given Default (LGD), LGD is often assumed to be a unimodal distribution

on [0, 1] (Gupton and Stein, 2005). Some unimodal and symmetrical distributions are completely

or jointly mixable (Wang and Wang, 2011, 2016), and this fact leads to the analytical solutions for

risk aggregation in this paper.

For single risk models, we derive worst-case values and worst-case scenarios for RVaR under

four different settings of partial information. Different from most of the literature in which different

methods are designed for various settings, we establish a unified approach for all settings of partial

information and for all RVaR risk measures including VaR and TVaR by using stochastic orders. For

some recent work using stochastic orders to derive bounds on risk measures with partial information,

please see Jakobsons and Vanduffel (2015) and Bernard et al. (2016a, 2017b).

For aggregate risk models, we consider a setting as in (1) by combining marginal uncertainty and

dependence uncertainty. Worst-case values for RVaR and their corresponding dependence structures

are obtained. The results mainly rely on the recently developed notion of joint mixability. Different

from the classical Fréchet problem where marginal distributions are assumed to be known, we only

assume partial information on each individual risk. This, in particular, addresses one question

proposed by Embrechts et al. (2014): the combination of marginal (statistical) uncertainty and

dependence uncertainty. Our results for the aggregate risk model show that if there is no single

risk whose standard deviation dominates the sum of the other risks in the portfolio, then the

worst-case scenario for RVaR in risk aggregation can be obtained via the worst-case distributions

of individual risks, combined with a dependence structure of conditional joint mixability, which

is consistent with the VaR moment bounds in Wang et al. (2013) and Puccetti and Rüschendorf

(2013); for the case that a single risk has a dominating standard deviation comparing to other risks,

we show that the worst-case dependence follows a specific structure whose special bivariate case was

considered in Embrechts et al. (2005). These conservative bounds obtained in this paper generalize

the existing results in the literature and provide a valuable reference to help make financial and

insurance decisions. Different from the traditional approaches of duality method and semidefinite

programming, our method is based on the stochastic comparison, and we provide analytical formulas

for the worst-case values of RVaR. The worst scenario and the corresponding distribution of the

underlying risk can be determined simultaneously.

The rest of the paper is organized as follows. In Section 2, we give our main results on the
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worst scenarios of RVaR on single risks. In Section 3, we analyze the worst scenarios of RVaR on

aggregate risks via basing on the results in Section 2. Detailed proofs of the main results are put

in Section 4. A conclusion is drawn in Section 5.

2 Worst scenarios for RVaR of single risks

2.1 Definitions and some notations

For a random variable X, its right-continuous VaR is defined as

VaRα[X] = inf {x ∈ R |P(X ≤ x) > α} , α ∈ (0, 1).

The difference between the right- and left-continuous versions of VaR is inessential and usually

they are indistinguishable in practice; see Embrechts and Hofert (2013) for details on generalized

quantiles. Due to technical convenience we use the right-continuous version in this paper.

Range-VaR (RVaR) was proposed in Cont et al. (2010) as a robust risk measure, defined as

RVaRα,β[X] =
1

β − α

ˆ β

α
VaRu[X]du, 0 < α < β < 1.

Range-VaR includes TVaR and VaR as its limiting cases. Denote by Lp, p ∈ [0,∞] the set of

random variables with finite p-th moment. The TVaR of a risk X ∈ L1 is defined as

TVaRα[X] =
1

1− α

ˆ 1

α
VaRu[X]du, α ∈ (0, 1).

Obviously

RVaRα,1[X] := lim
β↑1

RVaRα,β[X] = TVaRα[X].

If P(X = VaRα[X]) = 0, one may write TVaRα[X] = E[X|X > VaRα[X]]. As for VaR, by the

right-continuity of VaRα[X], one has

lim
β↓α

RVaRα,β[X] = VaRα[X].

Also note that the choice of right- or left-continuous version of VaR is irrelevant to the quantity of

TVaR and RVaR, since the two versions of VaR for a risk only differ at countably many points.

We say a random variable X (or its corresponding distribution) is unimodal if there is a constant
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m such that its distribution function FX is convex on (−∞,m) and concave on (m,∞), and we

call m the mode of X. In particular, if X is unimodal and continuous, then its density function

fX is increasing on (−∞,m) and decreasing on (m,∞). A unimodal random variable can be

written as the mixture of a point mass at its mode and a continuous unimodal random variable

with the same mode (see for instance Feller, 1971, Section 5.9). On the other hand, we say a

random variable X (or its corresponding distribution) is symmetric if there is a constant m such

that P(X ≤ x) = P(X ≥ 2m− x) for any x ∈ R, and we call m the symmetric center. Obviously, if

X is unimodal-symmetric (unimodal and symmetric), then its mode coincides with its symmetric

center.

For (µ, σ) ∈ R×R+, we denote by V (µ, σ) the set of random variables with mean µ and variance

σ2, and denote by VS(µ, σ), VU (µ, σ), VUS(µ, σ) the sets of symmetric, unimodal, and unimodal-

symmetric random variables in V (µ, σ), respectively. We omit µ and σ when µ = 0 and σ = 1; for

instance VU represents VU (0, 1).

2.2 Main results for the worst scenarios on single risk

Our aim is to determine

sup
X∈V(µ,σ)

RVaRα,β[X] , (2)

where V(µ, σ) is one of V (µ, σ), VS(µ, σ), VU (µ, σ) or VUS(µ, σ). Denote

RVaR
V(µ,σ)
α,β = sup

X∈V(µ,σ)
RVaRα,β[X] .

It is easy to verify that all the upper bounds are linear functions of µ and σ, i.e.

RVaR
V(µ,σ)
α,β = µ+ σ · RVaR

V(0,1)
α,β

for V(µ, σ) ∈ {V (µ, σ), VS(µ, σ), VU (µ, σ), VUS(µ, σ)}. Note that the problem (2) only concerns the

distribution of random variable in V(0, 1). If a random variableX∗ ∈ V(µ, σ) satisfies RVaRα,β[X∗] =

RVaR
V(µ,σ)
α,β , we say that its distribution FX∗ is a worst-case distribution relative to V(µ, σ).

First we introduce some special families of random variables for the candidates of the worst-case

distributions. Denote x ∈ R 7→ U(x; a, b) as the distribution function of a uniform random variable

over [a, b]. Note that for some a ∈ R, the indicator function I[x ≥ a], x ∈ R is the distribution

function of a point mass concentrated at a. Using the above two functions, we define the following
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mixture distributions (see Figure 1 below)

Gθ(x) = θI

[
x ≥ −

√
1−θ
θ

]
+ (1− θ)I

[
x ≥

√
θ

1−θ

]
, θ ∈ (0, 1);

GSθ (x) = (1− θ)I
[
x ≥ −

√
1

2(1−θ)

]
+ (2θ − 1)I[x ≥ 0] + (1− θ)I

[
x ≥

√
1

2(1−θ)

]
, θ ∈ (12 , 1);

GUθ (x) = 3−3θ
2 U

(
x;−

√
9−9θ
9θ−1 ,

1+3θ√
(1−θ)(9θ−1)

)
+ 3θ−1

2 I
[
x ≥ −

√
9−9θ
9θ−1

]
, θ ∈ [23 , 1);

GUSθ (x) = (3− 3θ)U
(
x;−

√
1

1−θ ,
√

1
1−θ

)
+ (3θ − 2)I[x ≥ 0], θ ∈ [56 , 1),

where x ∈ R. Here Gθ is a two-point distribution, GSθ is a three-point distribution, and GUθ and

GUSθ are mixtures of uniform and one-point distributions.

The distributions Gθ, G
S
θ , GUθ and GUSθ are associated with the sets V, VS , VU and VUS , re-

spectively, as summarized in the following lemma. Figure 1 illustrates the above four families of

distributions through their quantile functions.

Gθ

0 1

GS
θ

0 1

GU
θ

0 1

GUS
θ

0 1

Figure 1: Quantile functions of Gθ, G
S
θ , GUθ and GUSθ .

The following lemma can be checked directly and the proof is omitted.
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Lemma 1. We have that X ∈ V (0, 1) if X ∼ Gθ for some θ ∈ (0, 1), X ∈ VS(0, 1) if X ∼ GSθ for

some θ ∈ (12 , 1), X ∈ VU (0, 1) if X ∼ GUθ for some θ ∈ [23 , 1), and X ∈ VUS(0, 1) if X ∼ GUSθ for

some θ ∈ [23 , 1).

The following theorem gives the worst-case values of RVaR and their corresponding worst-case

distributions. The proof of Theorem 1 will be given in Section 4.

Theorem 1. (a) For (µ, σ) ∈ R× R+, we have

RVaR
V(µ,σ)
α,β =



µ+ σ
√

α
1−α , V = V, 0 < α < β < 1;

µ+ σ
√

1
2(1−α) , V = VS ,

1
2 < α < β < 1;

µ+ σ
√

8
9(2−α−β) − 1 , V = VU ,

5
6 ≤ α < β < 1;

µ+ σ
√

4
9(2−α−β) , V = VUS ,

5
6 ≤ α < β < 1.

(3)

(b) The first equality holds if X ∼ Gα
(x−µ

σ

)
, the second equality holds if X ∼ GSα

(x−µ
σ

)
, the third

equality holds if X ∼ GUα+β−1
(x−µ

σ

)
, and the last equality holds if X ∼ GUSα+β−1

(x−µ
σ

)
.

From the above theorem we can see that for the two sets V = V (µ, σ) and V = VS(µ, σ)

the worst-case distributions are discrete distributions, and for the two sets V = VU (µ, σ) and

V = VUS(µ, σ) the worst-case distributions are the mixtures of uniform and one-point distributions.

The restriction α ≥ 5/6 is relevant in practice, for instance VaR is often considered for α ≥ 95%.

By setting β ↓ α in Theorem 1, sharp upper bounds for VaR are obtained, and letting β ↑ 1, sharp

upper bounds for TVaR are obtained.

Remark 1. In the cases of X ∈ V (µ, σ), the VaRα(X) bound is straightforward from the Cantalli

inequality. For X ∈ VS(µ, σ) and X ∈ VUS(µ, σ), the best-possible bounds on P(X ≤ t) with a

certain t ∈ R have been provided in Popescu (2005), from which the corresponding VaR bounds

under the same settings can be also derived. As far as we are aware, bounds on risk measures

over VU (µ, σ) have not been considered in existing literature. Note that the set VU (µ, σ) includes

Pareto, Log-normal, Gamma and many other common distributions in risk management, hence the

study of bounds for VU (µ, σ) provide great complement to those for V (µ, σ) and VS(µ, σ).

Remark 2. The results in Theorem 1 are intuitive. With the information of the mean and variance,

maximizing VaR requires a flat quantile function in the right tail and moreover, for a given mean,

minimum variance is then obtained by making the quantile function flat on the other part of

8



the support too. Combining these two features leads to two-point distributions when maximizing

VaR with mean and variance given. Under the assumption of unimodality, the distribution/quantile

function needs one concave part and one convex part. It is then intuitive to find that the worst-case

distributions should behave as a mixture of a uniform distribution and a single-point distribution.

Remark 3. Bernard et al. (2016a) derive bounds on VaR, a limit case of RVaR, when higher order

moment information is available; see also Bernard et al. (2017b) for a related application. With

higher moments available, bounds on VaR are derived using moment inequalities (rather than

equalities). Without assuming unimodality, our results can be naturally extended to the case of

higher order moment inequalities, since the worst-case distributions are a combination of point-

masses. The case with unimodality and higher moment information may be more complicated, and

we leave it for future work.

2.3 Some remarks on VaR and TVaR

Since VaRα and TVaRα are limits of RVaRα,β as β ↓ α and β ↑ 1, respectively, bounds on

VaR and TVaR can be directly derived from Theorem 1 by taking limits, as long as we justify the

exchange of the order of limit and supremum, as in the following lemma. The proof will be given

in Section 4.

Lemma 2. For (µ, σ) ∈ R× R+, V ∈ {V, VS , VU , VUS} and α ∈ (5/6, 1), we have

sup
X∈V(µ,σ)

VaRα[X] = lim
β↓α

sup
X∈V(µ,σ)

RVaRα,β[X],

sup
X∈V(µ,σ)

TVaRα[X] = lim
β↑1

sup
X∈V(µ,σ)

RVaRα,β[X].

A summary of the VaR and TVaR bounds are given in Table 1. Notice the fact that if the

underlying risk is not assumed to be unimodal, i.e. X ∈ V (µ, σ) or X ∈ VS(µ, σ), the VaR bound

is equal to the corresponding TVaR bound; while in the other two cases that the underlying risk is

assumed to be unimodal, VaR bound is less than the corresponding TVaR bound.

A numerical report of the sharp bounds for VaR and TVaR are plotted in Figure 2. Intuitively,

more restrictions on probabilistic information would lead to a smaller bound. Comparing the worst-

case values for VaR and TVaR under different settings in Figure 2, it shows that the additional

restriction of unimodality has a significant impact on the sharp VaR bounds, but the impact on

the sharp TVaR bounds is minor. However, the additional restriction of symmetry has a relatively
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Table 1: The worst-case values (WV) of VaR and TVaR with partial information.

Restriction Property WV of VaRα[X] WV of TVaRα[X]

X ∈ V (µ, σ) general µ+ σ ·
√

α
1−α µ+ σ ·

√
α

1−α

X ∈ VS(µ, σ) symmetric µ+ σ ·
√

1
2(1−α) µ+ σ ·

√
1

2(1−α)

X ∈ VU (µ, σ) unimodal µ+ σ ·
√

4
9(1−α) − 1 µ+ σ ·

√
8

9(1−α) − 1

X ∈ VUS(µ, σ) unimodal-symmetric µ+ σ ·
√

2
9(1−α) µ+ σ ·

√
4

9(1−α)

significant impact on both VaR and TVaR worst-case values.
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Figure 2: The VaR worst-case values (left) and TVaR worst-case values (right) under different
settings of partial information, in which the underlying risks are assumed to be zero mean and unit
variance.

As an application, we show standardized (setting mean 0 and variance 1) VaR of some para-

metric families and the corresponding worst-case values in Table 2. We also compute ratios of the

upper bound over each parametric VaR. This ratio measures the magnitude of model uncertainty

caused by assuming specific parametric models. From Table 2, we can see that this ratio is around

2 and 3, which gives an theoretical support to the regulations by the Basel Committee where 3 is

set as the minimum multiplication factor in Basel Committee (1996).

3 Worst scenarios for RVaR of aggregate risks

This section discusses worst scenarios for RVaR on aggregate risk models. To illustrate the de-

pendence structure among individual risks explicitly, we use the language of copulas and describe
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Table 2: Standardized VaR of some parametric families and the corresponding worst-case values.

VaRα[X]− E[X]√
Var(X)

Ratio of worst-case value

over parametric VaR

Family / Level α 95% 99% 99.5% 95% 99% 99.5%

Worst-case value (unimodal-symmetric) 2.98 6.67 9.43 - - -

Gaussian 1.65 2.33 2.58 1.81 2.86 3.66

Student-T (freedom = 3) 1.36 2.62 3.37 2.20 2.55 2.80

Worst-case value (unimodal) 4.10 9.37 13.30 - - -

Exponential (parameter = 1) 2.00 3.61 4.30 2.05 2.60 3.10

Gamma (shape = 0.1, scale = 1) 1.52 4.71 6.31 2.70 2.00 2.11

the tail dependence structure by joint mixability (Wang et al., 2013). First, we list some prelim-

inaries on copulas and joint mixability. Then we provide our main results of sharp RVaR bounds

and the corresponding worst scenarios on aggregate risks. Finally, we focus on the worst scenarios

of VaR and TVaR of aggregate risks.

3.1 Preliminaries: copulas and joint mixability

A copula is a joint distribution function whose all margins are uniform distributions on [0, 1]. A

copula is used to characterize the dependence structure of a random vector; see Nelsen (2006) for

an introduction to copulas. An important copula that we will use later is the comonotonic copula

defined as

Mn(u1, . . . , un) = min{u1, . . . , un}, (u1, . . . , un) ∈ [0, 1]n.

Nelsen (2006, p. 63-64) introduced a method to construct copulas by uniting several different

copulas. Here we apply the construction by using two copulas. Suppose α ∈ (0, 1) and C1, C2 are

two arbitrary n-variate copulas, then for (u1, . . . , un) ∈ Rn the function

C(u1, . . . , un) = αC1

(
TLα (u1), . . . , T

L
α (un)

)
+ (1− α)C2

(
TRα (u1), . . . , T

R
α (un)

)
(4)

is also a n-variate copula called an ordinal sum of C1 and C2, in which

TLα (x) = min
{x
α
, 1
}

and TRα (x) = max

{
x− α
1− α

, 0

}
, x ∈ [0, 1]. (5)
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The two functions satisfy that

αTLα (x) + (1− α)TRα (x) = x, x ∈ [0, 1].

We write TL
α(u1, . . . , un) = (TLα (u1), . . . , T

L
α (un)) and TR

α = (TRα (u1), . . . , T
R
α (un)).

Remark 4. If a random variable X satisfies P(X = VaRα[X]) = 0, then for any x ∈ R we have

TLα (FX(x)) = P (X ≤ x|X ≤ VaRα[X]) and TRα (FX(x)) = P (X ≤ x|X > VaRα[X]) . (6)

Moveover, if a random vector (X1, . . . , Xn) with P(Xi = VaRα[Xi]) = 0, i = 1, . . . , n satisfies that

its copula can be expressed as (4), then from (6) it can be derived that

P(X1 > VaRα[X1], . . . , Xn > VaRα[Xn] |Xi > VaRα[Xi]) = 1 , ∀ i = 1, . . . , n ,

which means that the events that each individual risk exceeds its own VaR at level α occur simul-

taneously.

The tail part of the sum X1 +X2 + · · ·+Xn is essential to the calculation of the worst case of

the aggregate risk (Bernard et al., 2014). To describe the dependence structure of the tail part in

the worst scenario, we use the concept of joint mixability (Wang et al., 2013), a generalization of

complete mixability (Wang and Wang, 2011).

We say n univariate distribution functions F1, . . . , Fn are jointly mixable if there exist n random

variables Z1, . . . , Zn such that Zi ∼ Fi, i = 1, . . . , n and

P(Z1 + · · ·+ Zn = c) = 1 for some c ∈ R. (7)

It is easy to see that if Zi ∈ L1, i = 1, . . . , n, then the above constant c =
∑n

i=1 E[Zi]. For any

vector Z = (Z1, . . . , Zn) satisfying (7), we call Z a joint mix. For n uniform distributions, joint

mixability is equivalent to condition (8) on their lengths in Proposition 1 below. This result is

Theorem 3.1 of Wang and Wang (2016), which is key to the existence of the dependence structure

of the worst scenarios. This will be used to model the tail dependence structure in later sections.

Proposition 1. For ti > 0, i = 1, . . . , n, the uniform distributions U(x; 0, t1), . . . ,U(x; 0, tn) are

jointly mixable if and only if

max{t1, . . . , tn} ≤
n∑
i=1

ti/2. (8)
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Proposition 1 implies that if (8) holds, then there exists a random vector (Z1, . . . , Zn) satisfying

Zi ∼ U(x; 0, ti), i = 1, . . . , n and P
(
Z1 + · · ·+ Zn = 1

2(t1 + · · ·+ tn)
)

= 1. Denote F JMt1,...,tn as the

joint distribution function of (Z1, . . . , Zn), then their copula can be represented as

CJMt1,...,tn(u1, . . . , un) = F JMt1,...,tn(t1u1, . . . , tnun) , (u1, . . . , un) ∈ [0, 1]n . (9)

Throughout the rest of this paper, denote µ = µ1 + · · ·+µn, σ = σ1 + · · ·+σn, ~µ = (µ1, . . . , µn)

~σ = (σ1, . . . , σn) and let M ∈ {1, . . . , n} be such that σM = max{σ1, . . . , σn}. Next we define a

specific copula family which will be used to describe the tail part of the aggregate risks. Let

C∗~σ(u1, . . . , un) =


CJMσ1,...,σn(u1, . . . , un), σM ≤ σ/2;

max {0, uk + mini 6=k ui − 1} , σM = σk > σ/2

(10)

for (u1, . . . , un) ∈ [0, 1]n. One may directly check that (10) defines a copula. Denote

Cα~σ =
{
αC

(
TL
α(·)

)
+ (1− α)C∗~σ

(
TR
α (·)

)∣∣ C ∈ Cn} , (11)

where Cn is the set of n-variate copulas. As we shall see in the following sections, the copula family

Cα~σ represents the worst-case dependence scenarios for aggregate risk models.

Remark 5. Copulas in the family Cα~σ is indeed a convex combination of copula C(u1, · · · , un) and

copula C∗~σ(u1, · · · , un), where C(u1, · · · , un) is used to model the non-tail part of the aggregate risk

and C∗~σ(u1, · · · , un) is used to model the tail part of the aggregate risk.

3.2 Main results on aggregate risks

Let X1, . . . , Xn be individual risks with known means and variances. Additional information

such as symmetry and/or unimodality of the individual risks is also considered. For the given partial

information, we will discuss the worst-case values of RVaR on the aggregate risk S = X1 + · · ·+Xn

when the dependence structure is unspecified. The results on univariate risks in the previous section

will be applied.

For the sake of convenience, we define the following two special functions that will be frequently

used later. For V ∈ {V, VS , VU , VUS} and 0 < α < β < 1, define

WRV(0,1)(α, β;~σ) = σM · RVaR
V(0,1)
α,β + (σ − σM ) · RVaR

V(0,1)
1+α−β,1, (12)
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where RVaR
V(0,1)
α,β and RVaR

V(0,1)
1+α−β,1 are given in Theorem 1, and let

γ∗V(0,1) = arg minγ∈[β,1]WRV(0,1)(α, γ;~σ).

One can easily check that the above minimum is always attained by some γ∗V(0,1) due to the conti-

nuity of RVaRα,β with respect to α and β.

For simplicity, we write for V ∈ {V, VS , VU , VUS},

V(~µ, ~σ) = {X1 + · · ·+Xn : Xi ∈ V(µi, σi), i = 1, . . . , n}.

The main results, as summarized in the following theorem and Corollary 1 below, give the worst-case

values of RVaR and the corresponding worst scenarios.

Theorem 2. Given (µ1, . . . , µn, σ1, . . . , σn) ∈ Rn × Rn+ and 5
6 ≤ α < β < 1, we have

max
S∈V(~µ,~σ)

RVaRα,β[S] = µ+ WRV(0,1)(α, γ∗V(0,1);~σ) = µ+ min
γ∈[β,1]

WRV(0,1)(α, γ;~σ). (13)

Moreover, the upper bound in (13) is attained by (X1, · · · , Xn) satisfying the following two condi-

tions:

(1) Marginal distributions: the marginal distributions of (X1, · · · , Xn) are given in (b) of Theorem

1 satisfying that RVaRα,γ∗V (0,1)
[XM ] = RVaR

V(µM ,σM )
α,γ∗V(0,1)

and for i 6= M ,

RVaR1+α−γ∗V(0,1),1[Xi] = RVaR
V(µi,σi)
1+α−γ∗V (0,1),1

.

(2) Copula function: the copula Cw of (X1, · · · , Xn) can be written as

Cw(·) =


Mn(·), V = V or VS

αC(TL
α(·)) + (1− α)C∗~σ(TR

α (·)) , V = VU or VUS ,

where C is any copula.

For i = 1, 2, · · · , n the exact distribution of Xi in Theorem 2 can be found in Theorem 1.

Theorem 2 states that the copula family Cα~σ leads to the worst scenarios. As is clarified in Remark

5, the copula C∗~σ is used to model the dependence of the tail part.

(a) In the case σM
σ ≤

1
2 , C∗~σ allows n univariate risks with variance σ21, σ

2
2, · · · , σ2n to be joint mixable,
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which leads to the worst case of the aggregate risks.

(b) In the case σM
σ > 1

2 , C∗~σ in (10) implies that the risk with largest variance is countermonotonic

to the other risks that are comonotonic. Precisely, if the copula of (Z1, Z2, · · · , Zn) can be expressed

as

C∗~σ(u1, u2, · · · , un) = max

{
0, uM + min

i 6=M
ui − 1

}
,

then there exists an uniform [0, 1] random variable U such that

(Z1, . . . , Zn)
d
=
(
F−1Z1

(U), . . . , F−1ZM−1
(U), F−1ZM

(1− U), F−1ZM+1
(U), . . . , F−1Zn

(U)
)
.

Remark 6. As was discussed in Wang et al. (2013) and Embrechts et al. (2014), the joint mixability

of tail-marginal distributions is the key property to finding worst-case VaR values under dependence

uncertainty. It is noted that even when the marginal distributions of X1, . . . , Xn are known, finding

the worst-case value of VaRp(X1 + · · ·+Xn) is generally an open question. Therefore, Theorem 2

can also be used as an approximation of the worst-case RVaR when the marginal distributions are

known (but explicit values of worst-case RVaR are not available), as considered in Embrechts et

al. (2014) for worst-case VaR. Another further research direction on this topic is to let n vary; see

Embrechts et al. (2015).

The explicit values of RVaR
V

determined in Theorem 2 are expressed in the following corollary.

Corollary 1. Given (µ1, . . . , µn, σ1, . . . , σn) ∈ Rn × Rn+, for 5
6 ≤ α < β < 1, we have

max
S∈V (~µ,~σ)

RVaRα,β[S] = µ+ σ
√

α
1−α ,

max
S∈VS(~µ,~σ)

RVaRα,β[S] = µ+ σ
√

1
2(1−α) ,

max
S∈VUS(~µ,~σ)

RVaRα,β[S] =



µ+ σ
√

4
9(1−α) ,

σM
σ ≤

1
2 ;

µ+
√

1
2

(
σ
2/3
M + (σ − σM )2/3

)3/2√
4

9(1−α) ,
1
2 <

σM
σ ≤

1

1+( β−α
2−α−β )

3/2
;

µ+ σM
√

4
9(2−α−β) + (σ − σM )

√
4

9(β−α) ,
σM
σ > 1

1+( β−α
2−α−β )

3/2
,

and

max
S∈VU (~µ,~σ)

RVaRα,β[S] =


µ+ σ

√
8

9(1−α) − 1 , σM
σ ≤

1
2 ;

µ+ min
γ∈[β,1]

(σM
√

8
9(2−α−γ) − 1 + (σ − σM )

√
8

9(γ−α) − 1) , σM
σ > 1

2 .
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3.3 Special cases of VaR and TVaR

From the perspective of capital regulation, VaR and TVaR are the most commonly used risk

measures in practice. The sharp bounds on RVaRα,β[S], as obtained in Theorem 2 and Corollary

1, can be applied for VaR and TVaR with the help of Lemma 2.

Before presenting the main conclusions in this subsection, we give some properties of comono-

tonicity. It is known that if (X1, . . . , Xn) is comonotonic, then there exists a [0, 1] uniform random

variable U such that

(X1, . . . , Xn)
d
=
(
F−1X1

(U), F−1X2
(U) . . . , F−1Xn

(U)
)
,

in which the inverse function F−1Xi
(u) = inf {x ∈ R |FXi(x) > u}, i = 1, . . . , n. Moreover, when

n = 2, we say (X1, X2) is countermonotonic if (X1,−X2) is comonotonic. If (X1, . . . , Xn) is

comonotonic, then

RVaRα[S] =

n∑
i=1

RVaRα[Xi] ∀α ∈ (0, 1), (14)

i.e. RVaR is comonotone additive (see Kusuoka, 2001).

Since TVaR is subadditive, the worst-case value of aggregate TVaR is the sum of corresponding

worst-case values of each individual TVaR. This well-known result can also be obtained by letting

β ↑ 1 in Theorem 2. The dependence structure which leads to the worst-case value of aggregate

TVaR can always be chosen as comonotonicity. We summarize this result in the following corollary.

Corollary 2. Let (~µ, ~σ) ∈ Rn × Rn+. Then

max
S∈V(~µ,~σ)

TVaRα[S] =



µ+ σ
√

α
1−α , V = V, 0 < α < 1;

µ+ σ
√

1
2(1−α) , V = VS ,

1
2 < α < 1;

µ+ σ
√

8
9(1−α) − 1 , V = VU ,

5
6 ≤ α < 1;

µ+ σ
√

4
9(1−α) , V = VUS ,

5
6 ≤ α < 1.

(15)

In the next we will discuss aggregate VaR in each of the four settings. Letting β ↓ α in Theorem

2, by basic calculus it is easy to find γ∗V(0,1) solving the minimum value of the right side of (13) by

using the value of RVaR
V

derived in Theorem 1. Then we can derive the results on the aggregate

VaR.
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Corollary 3. (i) For α ∈ (0, 1),

max
S∈V (~µ,~σ)

VaRα[S] = µ+ σ
√

α
1−α ; (16)

(ii) For α ∈ (12 , 1),

max
S∈VS(~µ,~σ)

VaRα[S] = µ+ σ
√

1
2(1−α) ; (17)

(iii) For α ∈ [56 , 1),

max
S∈VU (~µ,~σ)

VaRα[S]

=


µ+ σ

√
8

9(1−α) − 1 , σM
σ ≤

1
2 ;

µ+ min
β∈[α,1]

(
σM
√

8
9(1−2α+β) − 1 + (σ − σM )

√
8

9(1−β) − 1
)
, σM

σ > 1
2 .

(18)

(iv) For α ∈ [56 , 1),

max
S∈VUS(~µ,~σ)

VaRα[S] =


µ+ σ

√
4

9(1−α) ,
σM
σ ≤

1
2 ;

µ+
√

1
2

(
σ
2/3
M + (σ − σM )2/3

)3/2√
4

9(1−α) ,
σM
σ > 1

2 .

(19)

Remark 7. The formula (16) on S ∈ V (~µ, ~σ) was shown in Mesfioui and Quessy (2005, Proposition

4.2), and that part S ∈ VS(~µ, ~σ) of (17) can be directly shown from Chebyshev’s Inequality.

Next we will compare the optimal bounds for VaR and TVaR under different classes. From the

above theorem we see that in each of the cases S ∈ V (~µ, ~σ) and S ∈ VS(~µ, ~σ), the worst-case values

of VaRα[S] are equal to the corresponding values of TVaRα[S], which is consistent with the fact

that VaR and TVaR are equal for distribution with two or three point-masses. These results are

similar to that of the single risk (see the discussions in Section 2.2).

We analyze the other two cases S ∈ VU (~µ, ~σ) and S ∈ VUS(~µ, ~σ) separately. First, consider the

case S ∈ VUS(~µ, ~σ). From (15) and (19) we can see that

maxS∈VUS(~µ,~σ) VaRα[S]− µ
maxS∈VUS(~µ,~σ) TVaRα[S]− µ

= RUS

(σM
σ

)
,
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where the function RUS is defined as

RUS(x) =


1 , x ≤ 1

2 ;√
1
2

(
x2/3 + (1− x)2/3

)3/2
, x > 1

2 .

(20)

This result implies that if S ∈ VUS(~µ, ~σ), the ratio of the standardized worst-case value of aggregate-

VaR over aggregate-TVaR is determined by σM/σ. Figure 3 shows that the function RUS is

decreasing, which implies that the worst-case value of aggregate-VaR will be small when there is

an individual risk with a relatively large variance. This result shows that the superadditivity of

aggregate-VaR is highly relevant to the relative sizes of the individual risks.

For the case S ∈ VU (~µ, ~σ), although the bound in (18) for σM > σ/2 does not have an explicit

expression, we know that the following ratio

maxS∈VU (~µ,~σ) VaRα[S]− µ
maxS∈VU (~µ,~σ) TVaRα[S]− µ

is determined by σM/σ and α, and hence we denote it by RU (σM/σ, α).

Moreover, by numerical calculation we find that RU (x, α) ≈ RUS(x) when α is close to 1. Figure

3 shows the effect of this approximation when α = 0.95. Based on the above analysis, (19) can be

rewritten as

max
S∈VUS(~µ,~σ)

VaRα[S] ≈ µ+RUS

(σM
σ

)
· σ
√

8
9(1−α) − 1 .
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Figure 3: The dotted line is the function RUS(x), x ∈ [0, 1] defined in (20); the dashed line is
RU (x, 0.95), x ∈ [0, 1].

To summarize, one can see that the values maxS∈V(~µ,~σ) VaRα[S] and maxS∈V(~µ,~σ) TVaRα[S]
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are quite close for many choices of V, α, ~µ and ~σ. This phenomenon is similar to the VaR/ES

asymptotic equivalence under dependence uncertainty; see Embrechts et al. (2015).

4 Proofs of main results

4.1 Proof of Theorem 1

In this subsection, we first recall the definition and some lemmas on convex order, then we give

the proof of Theorem 1.

A random variable X is said to be smaller than another random variable Y in convex order,

written as X ≤cx Y , if E[φ(X)] ≤ E[φ(Y )] for any convex function φ : R 7→ R provided that the

expectations exist.

Lemma 3. (Shaked and Shanthikumar, 2007, p.109–120)

(i) For X ∈ L1, E[X] ≤cx X;

(ii) Let X,Y ∈ L2. If Y ≤cx X, then E[X] = E[Y ], Var(Y ) ≤ Var(X), −Y ≤cx −X and

RVaR0,p[Y ] ≥ RVaR0,p[X] for any p ∈ (0, 1);

(iii) Suppose αi ≥ 0, i = 1, . . . , n with α1 + · · · + αn = 1 and Yi ≤cx Xi for i = 1, . . . , n. If

X ∼
∑n

i=1 αiFXi and Y ∼
∑n

i=1 αiFYi, then Y ≤cx X.

The following lemma gives a convenient criterion for convex order.

Lemma 4. (Shaked and Shanthikumar, 2007, p.133) For X,Y ∈ L1 with E[X] = E[Y ], if FX

up-crosses FY , i.e. there exists x0 ∈ R such that


FX(x) ≤ FY (x), x < x0;

FX(x) ≥ FY (x), x > x0,

then X ≤cx Y .

Applying the above criterion, we have the following lemma.

Lemma 5. Supposing that X is a nonnegative continuous random variable with mean µ > 0,

and its density function fX is decreasing on [0,∞). Let Y ∼ U(x; 0, 2µ), then Y ≤cx X and

fX(0) ≥ 1/(2µ).
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Proof. The proof of Y ≤cx X can be found in Theorem 3.A.46 of Shaked and Shanthikumar (2007).

Moreover, if fX(0) < 1/(2µ), then fX(x) < 1/(2µ) for any x ∈ [0, 2µ], so

EX − µ =

ˆ ∞
2µ

xfX(x)dx−
ˆ 2µ

0
x

(
1

2µ
− fX(x)

)
dx

≥ 2µ

ˆ ∞
2µ

fX(x)dx− 2µ

ˆ 2µ

0

(
1

2µ
− fX(x)

)
dx = 0,

which is contradictory to EX = µ. Hence we conclude that fX(0) ≥ 1/(2µ).

To begin with the proof of Theorem 1, we introduce some notation. Denote

Dγ(x; a, b) = γI[x ≥ a] + (1− γ)I[x ≥ b], D = {Y : Y ∼ Dγ(x; a, b), a ≤ b, γ ∈ [0, 1]} ;

DM
γ (x; a, b) = γD 1

2
(x, a, b) + (1− γ)I[x ≥ a+b

2 ], DM =
{
Y : Y ∼ DM

γ (x; a, b), a ≤ b, γ ∈ [0, 1]
}

;

ULγ (x; a, b) = γU(x; a, b) + (1− γ)I[x ≥ a], UL = {Y : Y ∼ ULγ (x; a, b) , a ≤ b, γ ∈ [0, 1]};

URγ (x; a, b) = γU(x; a, b) + (1− γ)I[x ≥ b], UR = {Y : Y ∼ URγ (x; a, b) , a ≤ b, γ ∈ [0, 1]};

UMγ (x; a, b) = γU(x; a, b) + (1− γ)I[x ≥ a+b
2 ], UM = {Y : Y ∼ UMγ (x; a, b) , a ≤ b, γ ∈ [0, 1]}.

Hence Dγ(x; a, b) and DM
γ (x; a, b) are discrete distributions, and D and DM are the families of

the corresponding discrete random variables. Moreover, ULγ (x; a, b), URγ (x; a, b) and UMγ (x; a, b)

respectively are mixture distributions of uniform distribution and a point mass, and UL,UR and

UM denote the families of the corresponding random variables.

It is easy to verify that if Y ∼ Gθ (resp. GSθ , G
U
θ , G

US
θ ), then Y ∈ D (resp. DM ,UL,UM ). We

will prove in Proposition 2 below that the random variable in V (µ, σ) (resp. VS(µ, σ), VU (µ, σ),

VUS(µ, σ)) with the largest value of RVaR belongs to the family D (resp. DM , UL ∪UR, UM ). First

we need the following lemma.

Lemma 6. Let a ∈ R and X be a continuous unimodal random variable with support [a,∞). If

Y ∼ URγ (x; a, b) for some b > a, γ ∈ [0, 1] satisfies E[Y ] = E[X] and fX(a) ≥ γ
b−a , then Y ≤cx X.

Proof. Let m denote the mode of X, then m ≥ a. The following proof is divided into the two cases

m ≥ b and m < b.

Case 1 : m ≥ b. Since X is unimodal, fX(x) ≥ fX(a) ≥ γ
b−a for x ∈ [a, b). Then

FX(x) =

ˆ x

a
fX(s)ds ≥ γ(x− a)

b− a
= URγ (x; a, b), x ∈ [a, b).
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On the other hand, FX(x) ≤ 1 = URγ (x; a, b) for x ∈ (b,∞). Therefore URγ (x; a, b) up-crosses FX

at b, and from Lemma 4 we conclude Y ≤cx X.

Case 2 : m < b. Similarly, we have FX(x) ≥ γ(x−a)
b−a = URγ (x; a, b) for x ∈ [a,m] and FX(x) ≤

1 = URγ (x; a, b) for x ∈ [b,∞). Note that by the unimodality of X we know that FX(x) is a

concave function on [m, b]. Together with the fact that URγ (x; a, b) is a convex function on [m, b],

we know that URγ (x; a, b) up-crosses FX(x) at some point in [m, b], and hence by Lemma 4 we have

Y ≤cx X.

Given α ∈ (0, 1) and a random variable X, we define two random variables XL
α , X

R
α as

XL
α ∼ TLα (FX(x)) and XR

α ∼ TRα (FX(x)), (21)

where the functions

TLα (x) = min
{x
α
, 1
}

and TRα (x) = max

{
x− α
1− α

, 0

}
, x ∈ [0, 1]

are introduced in (5). It is easy to verify

FX(x) = αFXL
α

(x) + (1− α)FXR
α

(x), (22)

and for any 0 < α < β < 1,

VaRβ[X] = VaR(β−α)/(1−α)[X
R
α ]. (23)

Particularly, if X ∈ L1 and P(X = VaRα[X]) = 0, from (6) we know that

FXL
α

(x) = P(X ≤ x|X < VaRα[X]) and FXR
α

(x) = P(X ≤ x|X > VaRα[X]).

Moreover, for any α ∈ (12 , 1) we let

XM
α ∼ FXM

α
(x) =

1

2α− 1

(
FX(x)− (1− α)TL1−α(FX(x))− (1− α)TRα (FX(x))

)
. (24)

It is easy to check that the function in the right side above is a distribution function. Note that if

X is symmetric, then XM
α is also symmetric. Particularly, if X ∈ L1 and P(X = VaRα[X]) = 0,

then

FXM
α

(x) = P(X ≤ x|VaR1−α[X] ≤ X ≤ VaRα[X]).
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The following lemma establishes the relationship between convex order and RVaR.

Lemma 7. (i) Given α ∈ (0, 1), if X,Y ∈ L2 satisfy that Y L
α ≤cx XL

α and Y R
α ≤cx XR

α , then

Var(Y ) ≤ Var(X) and RVaRα,β[Y ] ≥ RVaRα,β[X] for any β ∈ (α, 1).

(ii) Given α ∈ (12 , 1), if X,Y ∈ L2 satisfy that Y L
1−α ≤cx XL

1−α, YM
α ≤cx XM

α and Y R
α ≤cx XR

α ,

then Var(Y ) ≤ Var(X) and RVaRα,β[Y ] ≥ RVaRα,β[X] for any β ∈ (α, 1).

Proof. (i) By the definition of XL
α , X

R
α in (21) and equation (22), applying Lemma 3(iii) we conclude

that Y ≤cx X according to Y L
α ≤cx XL

α and Y R
α ≤cx XR

α . Hence Var(Y ) ≤ Var(X) follows.

On the other hand, Y R
α ≤cx XR

α implies that RVaR0,p[Y
R
α ] ≥ RVaR0,p[X

R
α ] holds for any p ∈

(0, 1) by applying Lemma 3(ii). Together with (23), we have that for any β ∈ (α, 1),

RVaRα,β[Y ] = RVaR0,(β−α)/(1−α)[Y
R
α ] ≥ RVaR0,(β−α)/(1−α)[X

R
α ] = RVaRα,β[X]. (25)

(ii) From (24) we have

FX(x) = (1− α)FXL
1−α

(x) + (2α− 1)FXM
α

(x) + (1− α)FXR
α

(x).

Similarly, we can conclude Y ≤cx X by Lemma 3(iii). Hence Var(Y ) ≤ Var(X) follows. Moreover,

by the same argument in (25) we also have RVaRα,β[Y ] ≥ RVaRα,β[X] for β ∈ (α, 1) in this case.

Proposition 2. (i) For any random variable X ∈ L2 and α ∈ (0, 1), there exists Y ∈ D such that

Var(Y ) ≤ Var(X) and RVaRα,β[Y ] ≥ RVaRα,β[X] for any β ∈ (α, 1).

(ii) For any symmetric random variable X ∈ L2 and α ∈ (12 , 1), there exists Y ∈ DM such that

Var(Y ) ≤ Var(X) and RVaRα,β[Y ] ≥ RVaRα,β[X] for any β ∈ (α, 1).

(iii) For any continuous unimodal random variable X ∈ L2 and α ∈ (0, 1), there exists Y ∈

UL ∪ UR such that Var(Y ) ≤ Var(X) and RVaRα,β[Y ] ≥ RVaRα,β[X] for any β ∈ (α, 1).

(iv) For any continuous unimodal-symmetric random variable X ∈ L2 and α ∈ (12 , 1), there

exists Y ∈ UM such that Var(Y ) ≤ Var(X) and RVaRα,β[Y ] ≥ RVaRα,β[X] for any β ∈ (α, 1).

Proof. (i) Recall XL
α and XR

α defined in (21). Let Y ∼ Dα(x; E[XL
α ], E[XR

α ]), then Y ∈ D. From

the facts Y L
α = E[XL

α ] ≤cx XL
α and Y R

α = E[XR
α ] ≤cx XR

α , we get the conclusions by Lemma 7.

(ii) Let Y ∼ D2−2α(x; E[XL
1−α], E[XR

α ]), then Y ∈ DM . Notice that Y L
1−α = E[XL

1−α] ≤cx XL
1−α,

Y R
α = E[XR

α ] ≤cx XR
α and YM

α = µ = E[XM
α ] ≤cx XM

α owing to the symmetry of X. Then applying

Lemma 7, we can get the conclusion.
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(iii) We first prove the following inequality

fX (VaRα[X]) ≥ min{gL, gR}, (26)

where

gL =
α

2
(VaRα[X]− E[XL

α ])−1 and gR =
1− α

2
(E[XR

α ]−VaRα[X])−1.

Denote by m the mode of X. If m ≤ VaRα[X], then Z = XR
α − VaRα[X] is a nonnegative

continuous random variable with decreasing density over [0,∞). Applying Lemma 5 we get

(2E[XR
α ]− 2VaRα[X])−1 ≤ fZ(0) = fX(VaRα[X])/(1− α),

hence fX (VaRα[X]) ≥ gR follows. Otherwise, in the case m > VaRα[X], VaRα[X] − XL
α is a

nonnegative continuous random variable with decreasing density over [0,∞). Similarly, we can

derive fX(VaRα[X]) ≥ gL by applying Lemma 5. Thus combining the above two cases, we get (26).

Next we set

Y ∼ FY (x) =


ULd1

(
x; VaRα[X]− 1−

√
1−gR/gL
gR/α

, 2E[XR
α ]−VaRα[X]

)
, gR ≤ gL;

URd2

(
x; 2E[XL

α ]−VaRα[X], VaRα[X] +
1−
√

1−gL/gR
gL/(1−α)

)
, gR > gL,

(27)

where

d1 = (1− α) + α(1−
√

1− gR/gL)

if gR ≤ gL, and

d2 = α+ (1− α)(1−
√

1− gL/gR)

if gR > gL. Then Y ∈ UL ∪ UR. If Y L
α ≤cx XL

α and Y R
α ≤cx XR

α , then we can get the conclusion

by applying Lemma 7. Thus in the next, we will show Y L
α ≤cx XL

α and Y R
α ≤cx XR

α by considering

the two cases gR ≤ gL and gR > gL respectively.

Case 1 : gR ≤ gL. According to (27), we can check that

FY Rα (x) = U
(
x; VaRα[X], 2E[XR

α ]−VaRα[X]
)
,

hence E[Y R
α ] = E[XR

α ] follows. Note that XR
α is a continuous unimodal random variable on
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[VaRα[X],∞). Furthermore, from (26) we can derive that the density of XR
α satisfies that

fXR
α

(VaRα[X]) =
1

1− α
fX (VaRα[X]) ≥ gR

1− α
=

1

2(E[XR
α ]−VaRα[X])

.

Then applying Lemma 6 we conclude Y R
α ≤cx XR

α . On the other hand, we can also check

FY Lα (x) = ULd∗1

(
x; VaRα[X]− 1−

√
1−gR/gL
gR/α

, VaRα[X]

)
with d∗1 = 1−

√
1− gR/gL

and E[Y L
α ] = E[XL

α ]. Note that XL
α is a continuous unimodal random variable on (−∞,VaRα[X]]

and its density at point VaRα[X] satisfies

fXL
α

(VaRα[X]) =
1

α
fX (VaRα[X]) ≥ gR

α
.

Thus applying Lemma 6 we have −Y L
α ≤cx −XL

α , hence Y L
α ≤cx XL

α follows.

Case 2 : gR > gL. Similarly, according to (27) we can check that

FXR
α

(x) = URd∗2

(
x; VaRα[X], VaRα[X] +

1−
√

1− gL/gR
gL/(1− α)

)
with d∗2 = 1−

√
1− gL/gR

and E[Y R
α ] = E[XR

α ]. Since XR
α is a continuous unimodal random variable on [VaRα[X],∞) with

fXR
α

(VaRα[X]) ≥ gR
1−α , then we can derive Y R

α ≤cx XR
α by Lemma 6.

On the other hand, we can also check

FXL
α

(x) = U
(
x; 2E[XL

α ]−VaRα[X], VaRα[X]
)

= UL1
(
x; 2E[XL

α ]−VaRα[X], VaRα[X]
)
,

and hence E[Y L
α ] = E[XL

α ]. Since XL is a continuous unimodal random variable on (−∞,VaRα[X]]

with fXL (VaRα[X]) ≥ gL
α , we can derive −Y L

α ≤cx −XL
α by Lemma 6, hence Y L

α ≤cx XL
α follows.

(iv) By the same argument as in the proof of (26), we note that Z = XR
α − VaRα[X] is

a nonnegative continuous random variable with decreasing density over [0,∞). Then applying

Lemma 5 we have

fX(VaRα[X]) = (1− α)fZ(0) ≥ 1− α
2(E[XR

α ]−VaRα[X])
= gR.
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Combining with that X is unimodal and symmetric, we get

fX(x) ≥ fX (VaRα[X]) ≥ gR , ∀ VaR1−α[X] ≤ x ≤ VaRα[X] . (28)

Denote d∗3 = 2gR(VaRα[X]− E[X])/(2α− 1). Note that

2α− 1 = FX(VaRα[X])− FX(VaR1−α[X]) =

ˆ VaRα[X]

VaR1−α[X]
fX(x)dx ≥ 2gR(VaRα[X]− E[X]),

in which the last inequality is due to the symmetry of X and (28). Therefore, d∗3 ∈ [0, 1].

Set d3 = 2(1− α) + (2α− 1)d∗3 ∈ [0, 1] and

Y ∼ FY (x) = UMd3
(
x; 2E[XL

1−α]−VaR1−α[X], 2E[XR
α ]−VaRα[X]

)
,

then Y ∈ UM . If Y L
1−α ≤cx XL

1−α, YM
α ≤cx XM

α and Y R
α ≤cx XR

α , we obtain the conclusion by

Lemma 7. Thus in the next we show Y L
1−α ≤cx XL

1−α, YM
α ≤cx XM

α and Y R
α ≤cx XR

α separately.

First we show YM
α ≤cx XM

α . It is easy to check YM
α ∼ UMd∗3 (x; VaR1−α[X], VaRα[X]) . Moreover,

FXM
α

(x) =

ˆ x

VaR1−α[X]

fX(y)

2α− 1
dy ≥ gR(x−VaR1−α[X])

(2α− 1)
= FYMα (x), x ∈ (VaR1−α[X], E[X]) ,

where the second inequality is due to (28). By the same argument, we have FXM
α

(x) ≤ FYMα (x) for

x ∈ (E[X], VaRα[X]). Therefore FYMα up-crosses FXM
α

once at E[X], and hence YM
α ≤cx XM

α by

Lemma 4.

Next we show Y R
α ≤cx XR

α and Y L
1−α ≤cx XL

1−α. We can also check Y R
α ∼ U(x; VaRα[X], 2E[XR

α ]−

VaRα[X]). Thus by Lemma 5 we know Y R
α ≤cx XR

α . Owing to the symmetry of X, we also know

that Y L
1−α ≤cx XL

1−α. Thus the proof is finished.

Finally, we arrive at a proof of Theorem 1.

Proof of Theorem 1. (i) Consider the case X ∈ V (µ, σ). We claim that for any 0 < α < β < 1,

max
X∈V (µ,σ)

RVaRα,β[X] = max
Y ∈D∩V (µ,σ)

RVaRα,β[Y ]. (29)

Note that D ∩ V (µ, σ) j V (µ, σ). Thus in order to prove (29), it is sufficient to prove that

for any X∗ ∈ V (µ, σ), there exists Y ∈ D ∩ V (µ, σ) such that RVaRα,β[Y ] ≥ RVaRα,β[X∗]. If
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RVaRα,β[X∗] ≤ µ, we can choose Y ∼ Gα(x−µσ ), then Y ∈ D ∩ V (µ, σ) and

RVaRα,β[Y ] = µ+ σ

√
α

1− α
≥ RVaRα,β[X∗]

follows. Else if RVaRα,β[X∗] > µ, by Proposition 2 there exists some Z ∈ D such that Var(Z) ≤ σ2

and RVaRα,β[Z] ≥ RVaRα,β[X∗], and for Y = µ+σ(Z−µ)/
√

Var(Z) ∈ D∩V (µ, σ) we can calculate

RVaRα,β[Y ] = RVaRα,β[Z] +

(
σ√

Var(Z)
− 1

)
(RVaRα,β[Z]− µ) ≥ RVaRα,β[X∗].

Thus (29) holds.

Finally we can calculate

max
Y ∈D∩V (µ,σ)

RVaRα,β[Y ] = µ+ σ
√

α
1−α , ∀ 0 < α < β < 1,

and the equality holds when Y ∼ Gα
(x−µ

σ

)
.

(ii) Consider the case X ∈ VS(µ, σ). Similarly, we have for any 1
2 ≤ α < β < 1,

max
X∈VS(µ,σ)

RVaRα,β[X] = max
Y ∈DM∩V (µ,σ)

RVaRα,β[Y ] = µ+ σ
√

1
2(1−α) ,

in which the second equality holds when X ∼ GSα
(x−µ

σ

)
.

(iii-iv) Consider the cases X ∈ VU (µ, σ) and X ∈ VUS(µ, σ). Since each unimodal distribution

can be approximated by a sequence of continuous unimodal distributions, here without loss of

generality we assume that X is continuous and unimodal distributed. By the same argument as in

part (i), we have that for any 5
6 ≤ α < β < 1,

max
X∈VU (µ,σ)

RVaRα,β[X] = max
Y ∈(UL∪UR)∩V (µ,σ)

RVaRα,β[Y ] = µ+ σ
√

8
9(2−α−β) − 1 ,

and

max
X∈VUS(µ,σ)

RVaRα,β[X] = max
Y ∈UM∩V (µ,σ)

RVaRα,β[Y ] = µ+ σ
√

4
9(2−α−β) ,

where the equalities hold when X ∼ GUα+β−1
(x−µ

σ

)
and X ∼ GUSα+β−1

(x−µ
σ

)
respectively.
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4.2 Proof of Lemma 2

By (3) in Theorem 1, the value of RVaR
V(µ,σ)
α,β is continuous in β for β > α, therefore we can

explicitly calculate the limit

lim
β↓α

sup
X∈V(µ,σ)

RVaRα,β[X] =



µ+ σ
√

α
1−α , V = V, 0 < α < 1;

µ+ σ
√

1
2(1−α) , V = VS ,

1
2 < α < 1;

µ+ σ
√

4
9(1−α) − 1 , V = VU ,

5
6 ≤ α < 1;

µ+ σ
√

2
9(1−α) , V = VUS ,

5
6 ≤ α < 1,

(30)

which is equal to the right-hand side of (3) by setting β = α. Since RVaRα,β[X] ≥ VaRα[X] for

β > α, we have

lim
β↓α

sup
X∈V(µ,σ)

RVaRα,β[X] ≥ sup
X∈V(µ,σ)

VaRα[X]. (31)

To show the converse direction of (31), take X∗ as a random variable with distribution Gα(x−µσ ),

GSα(x−µσ ), GU2α−1(
x−µ
σ ), or GUS2α−1(

x−µ
σ ) under each of the four settings of V as V , VS , VU , or VUS

respectively. One can directly calculate that VaRα[X∗] is also equal to the right-hand side of (30)

as reported in Table 1. Therefore,

sup
X∈V(µ,σ)

VaRα[X] ≥ VaRα[X∗] = lim
β↓α

sup
X∈V(µ,σ)

RVaRα,β[X],

and together with (31) we obtain equality.

The proof of the TVaR equality in this lemma is obtained by a similar argument.

4.3 Proof of Theorem 2

We first give an inequality on RVaR for the sum of two risks and then generalize it to the sum

of n risks.

Lemma 8. For two random variables X1, X2 and 0 < α < β ≤ 1, the following inequality holds

RVaRα,β[X1 +X2] ≤ RVaRα,β[X1] + TVaR1+α−β[X2].
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Proof. Let V ∼ U [0, 1] such that X1 = F−1X1
(V ). For some m < VaRα(X1), let

Y = X1I{V≤β} +mI{V >β}.

We have TVaR1−β+α[Y ] = RVaRα,β[X1].

Note that for t ∈ R, {X1 +X2 > t} ⊂ {Y +X2 > t} ∪ {Y 6= X1}, and hence

P(X1 +X2 > t) ≤ P(Y +X2 > t) + P(Y 6= X1) ≤ P(Y +X2 > t) + (1− β).

It follows that

P(Y +X2 ≤ t) ≤ P(X1 +X2 ≤ t) + (1− β). (32)

By the definition of VaR, (32) implies that for p ∈ (0, 1− β),

VaRp[X1 +X2] ≤ VaRp+1−β[Y +X2]. (33)

Therefore, we have

RVaRα,β[X1 +X2] =
1

β − α

ˆ β

α
VaRp[X1 +X2]dp

≤ 1

β − α

ˆ β

α
VaRp+1−β[Y +X2]dp

= TVaR1−β+α[Y +X2]

≤ TVaR1−β+α[Y ] + TVaR1−β+α[X2]

= RVaRα,β(X1) + TVaR1−β+α[X2],

where the first inequality is due to (33) and the second inequality is due to the subadditivity of

TVaR.

Proposition 3. Let 0 < α < β ≤ γ ≤ 1. Then

RVaRα,β[S] ≤ RVaRα,γ [X1] +

n∑
i=2

TVaR1+α−γ [Xi] . (34)

Proof. This proposition follows immediately from RVaRα,β[S] ≤ RVaRα,γ [S] and Lemma 8.

Remark 8. Letting β ↓ α and γ = 1 in Proposition 3, the inequality is simplified as the well-known
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inequality

VaRα[S] ≤
n∑
i=1

TVaRα[Xi] . (35)

It is obvious that inequality (34) is stronger than (35).

We are ready to give a proof of Theorem 2.

Proof of Theorem 2. We first show the upper bound in the right side of (13), then we show that

the upper bound is attainable. Without loss of generality we assume σ1 = max{σ1, . . . , σn}.

By Proposition 3, we have that for every γ ∈ [β, 1) and Xi ∈ V(µi, σi), i = 1, . . . , n,

RVaRα,β[S] ≤RVaRα,γ [X1] +
n∑
i=2

TVaR1+α−γ [Xi]

≤µ+ σ1 · RVaR
V(0,1)
α,γ +

n∑
i=2

σi · RVaR
V(0,1)
1+α−γ,1.

Thus

max
S∈V(~µ,~σ)

RVaRα,β[S] ≤ µ+ min
γ∈[β,1]

{
σ1 · RVaR

V(0,1)
α,γ +

n∑
i=2

σi · RVaR
V(0,1)
1+α−γ,1

}
= µ+ WRV(0,1)(α, γ∗V(0,1);~σ) (36)

follows. In the next we will see that the bound in (36) is attainable for each choice of V.

(a). Consider S ∈ V (~µ, ~σ) and S ∈ VS(~µ, ~σ). In the case S ∈ V (~µ, ~σ), it is easy to verify

that γ∗V(0,1) = 1 gives the minimum of (36). Hence we set Xi ∼ Gα(x−µσ ), i = 1, . . . , n and let

(X1, . . . , Xn) be comonotonic, then from (14) and Theorem 1 we know the bounds are attained. A

similar argument can be used for the case S ∈ VS(~µ, ~σ).

(b). Consider S ∈ VU (~µ, ~σ). We discuss the two separate cases for S ∈ VU (~µ, ~σ). For simplicity,

we write γ∗VU (0,1) as γ∗.

Case 1 : σM ≤ σ/2. From simple analysis, γ∗ = 1 solves the minimum of the right side of (13).

Combined with RVaR
V
α,1 in Theorem 1, we know the upper bound

µ+ WRV(0,1)(α, γ∗;~σ) = µ+ σ

√
8

9(1− α)
− 1.
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Take a uniform random variable W on [0, 1] and

Y = (Y1, . . . , Yn) ∼ C
(
TLα

(
GUα

(
x− µ1
σ1

))
, . . . , TLα

(
GUα

(
x− µn
σn

)))
,

Z = (Z1, . . . , Zn) ∼ CJMσ1,...,σn

(
TRα

(
GUα

(
x− µ1
σ1

))
, . . . , TRα

(
GUα

(
x− µn
σn

)))
,

and let W,Y,Z be independent. Denote

Xi = Yi · I[W ≤ α] + Zi · I[W > α], i = 1, . . . , n.

Then it is obvious to see that Xi ∼ GUα (x−µiσi
), i = 1, . . . , n and their copula belongs to Cα~σ . Note

that

S = I[W ≤ α]
n∑
i=1

Yi + I[W > α]
n∑
i=1

Zi.

Next we prove that RVaRα,β[S] attains its upper bound in this case. From the definition of GUα ,

we can check

TRα

(
GUα

(
x−µi
σi

))
= U(x; µi + σiB1, µi + σiB2) (37)

in which the constants B1 =
(

1− 4
9α−1

)√
8

9(1−α) − 1 and B2 =
(

1 + 4
9α−1

)√
8

9(1−α) − 1. There-

fore, we know (Zi − µi)/σi ∼ U(x;B1, B2), i = 1, . . . , n. From the definition of CJMσ1,...,σn , we know

Z1 + · · ·+ Zn = µ+ σ · (B1 +B2)/2 = µ+ σ

√
8

9(1− α)
− 1.

Since Yi ≤ Zi, i = 1, . . . , n according to the definition of TLα , T
R
α in (6), we have

RVaRα,β[S] = Z1 + · · ·+ Zn = µ+ σ

√
8

9(1− α)
− 1 = µ+ WRV(0,1)(α, γ∗;~σ).

Case 2 : σM > σ/2. Define Y = (Y1, Y2, · · · , Yn) with distribution

C

(
TLα (GUα+γ∗−1(

x− µ1
σ1

)), TLα (GU1+α−γ∗(
x− µ2
σ2

)), . . . , TLα (GU1+α−γ∗(
x− µn
σn

))

)

and Z = (Z1, Z2, · · · , Zn) with distribution

max

{
0, TRα

(
GUα+γ∗−1

(
x− µ1
σ1

))
+ min

2≤i≤n
TRα

(
GU1+α−γ∗

(
x− µi
σi

))
− 1

}
.
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Let W be a [0, 1] uniform random variable, and W,Y,Z be independent and

Xi = Yi · I{W≤α} + Zi · I{W>α}, i = 1, . . . , n.

Then

S = I{W≤α}

n∑
i=1

Yi + I{W>α}

n∑
i=1

Zi.

Next we will analyze Z1+· · ·+Zn. Note that the copula of Z1, . . . , Zn is max{0, u1+min2≤i≤n ui−1},

thus Z2, . . . , Zn are comonotonic and Z1, Z2 are countermonotonic. Then Z1+ · · ·+Zn has identical

distribution with VaRV [Z1]+VaR1−V [Z2]+ · · ·+VaR1−V [Zn], in which V is a [0, 1] uniform random

variable. By definition and simple analysis, VaRV [Z1 + · · · + Zn] has the same distribution with

VaRV [Z1]+VaR1−V [Z2]+ · · ·+VaR1−V [Zn]. In the next we focus on γ∗ = β and γ∗ > β separately.

(i). If γ∗ = β, from above analysis we have

RVaRα,β[S] = RVaR
0,β−α

1−α
[Z1 + Z2 + · · ·+ Zn]

= RVaR
0,β−α

1−α
[Z1] +

n∑
i=2

TVaR 1−β
1−α

[Zi]

= RVaRα,β[X1] +
n∑
i=2

TVaR1+α−β[Xi],

then the proof completes.

(ii). If γ∗ > β, then γ∗ = arg minγ∈(β,1] WRVU (0,1)(α, β;~σ), in which

WRVU (0,1)(α, β;~σ) = σ1

√
8

9(2− α− β)
− 1 + (σ − σ1)

√
8

9(β − α)
− 1.

By simple calculation we have

d

dβ
WRVU (0,1)(α, β;~σ)

∣∣∣∣
β=1

> 0.

Hence from the definition of γ∗ and the assumption that γ∗ > β, we have

d

dβ
WRVU (0,1)(α, β;~σ) |β=γ∗=

4

3

 σ1

(2− α− γ∗)2
√
−9 + 8

2−α−γ∗
− σ − σ1

(α− γ∗)2
√
−9 + 8

γ∗−α

 = 0.
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Thus we get

σ1
(9(α+ γ∗) + 8)(2− α− γ∗)

√
8

9(2− α− γ∗)
− 1 =

σ − σ1
(9(α− γ∗) + 8)(γ∗ − α)

√
8

9(γ∗ − α)
− 1. (38)

Note that X1 ∼ GUα+γ∗−1 and Xi ∼ GU1+α−γ∗ for i = 2, . . . , n. For ξ ∼ GUθ (x) with θ ∈ [23 , 1),

VaRu[ξ] =


(

1 + 8
9θ−1 ·

u−(θ+1)/2
1−θ

)√
8

9(1−θ) − 1 , u ≥ 3θ−1
2 ;

−
√

9(1−θ)
9θ−1 , u < 3θ−1

2 ,

thus

VaRu[ξ] ≥
(

1 + 8
9θ−1 ·

u−(θ+1)/2
1−θ

)√
8

9(1−θ) − 1, ∀ u ∈ (0, 1). (39)

As a consequence of (39), we have for any p ∈ [0, 1],

VaRp[Z1] = VaRα+p(1−α)[X1]

≥ µ1 + σ1

(
1 + 8

9(α+γ∗−1)−1 ·
α+p(1−α)−(α+γ∗)/2

2−α−γ∗
)√

8
9(2−α−γ∗) − 1, (40)

and for i = 2, . . . , n,

VaR1−p[Zi] = VaRα+(1−p)(1−α)[Xi]

≥ µi + σi

(
1 + 8

9(α−γ∗)+8 ·
α+(1−p)(1−α)−(2+α−γ∗)/2

γ∗−α

)√
8

9(γ∗−α) − 1 . (41)

Integrating (40) and (41), together with (38), we have for any p ∈ [0, 1],

VaRp[Z1] +

n∑
i=2

VaR1−p[Zi]

≥ µ+ WRVU (0,1)(α, γ∗;~σ) + 8(α+ p(1− α− (α+ γ∗)/2))×(
σ1

(9(α+γ∗)+8)(2−α−γ∗)

√
8

9(2−α−γ∗) − 1− σ−σ1
(9(α−γ∗)+8)(γ∗−α)

√
8

9(γ∗−α) − 1
)

= µ+ WRVU (0,1)(α, γ∗;~σ). (42)

Since (42) holds for any p ∈ [0, 1], we obtain

Z1 + · · ·+ Zn ≥ µ+ WRVU (0,1)(α, γ∗;~σ).
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Applying the property of TLα , T
R
α in (6), we know Yi ≤ Zi, i = 1, . . . , n, hence RVaRα,β[S] ≥

µ+WRVU (0,1)(α, γ∗;~σ). On the other hand, µ+WRVU (0,1)(α, γ∗;~σ) is the right side of (13). Hence

proof completes.

(c) For the case S ∈ VUS(~µ, ~σ), the proof is similar to that of the case S ∈ VU (~µ, ~σ).

5 Conclusion

In this paper, we study worst-case values of the risk measure RVaR in the presence of model

uncertainty with known mean and variance of the risks in individual and aggregate models. De-

scriptive information such as symmetry and unimodality of the univariate risks is incorporated in

the analysis. Analytical formulas for sharp worst-case values, and their corresponding marginal

distributions and dependence structures are obtained based on stochastic comparison and joint

mixability. The two most relevant limit cases of RVaR, VaR and TVaR, are analyzed in details.

The results in this paper can be used to deliver conservative capital requirement calculation and

provide an analytical reference for stress testing.
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