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Abstract

In this paper, we investigate the asymptotic behavior of the portfolio diversification

ratio based on Value-at-Risk (quantile) under dependence uncertainty, which we refer to

as “worst-case diversification limit”. We show that the worst-case diversification limit is

equal to the upper limit of the worst-case diversification ratio under mild conditions on

the portfolio marginal distributions. In the case of regularly varying margins, we provide

explicit values for the worst-case diversification limit. Under the framework of depen-

dence uncertainty the worst-case diversification limit is significantly higher compared to

classic results obtained in the literature of multivariate regularly varying distributions.

The results carried out in this paper bring together extreme value theory and dependence

uncertainty, two popular topics in the recent study of risk aggregation.
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1 Introduction

Diversification issues are one of the main concerns for financial institutions, as pointed

out in BCBS (2006) (see also BCBS, 2012, 2013). Let (Ω,A,P) be an atomless probability

space and L0 be the set of all random variables in this space. The diversification ratio for

a portfolio X = (X1, . . . , Xd) ∈ (L0)d based on a Value-at-Risk (VaR) at level p ∈ (0, 1) is

defined as

∆X
p =

qp(X1 + · · ·+Xd)∑d
i=1 qp(Xi)

, (1.1)

where the VaR at probability level p, denoted by qp, is the left-continuous p-quantile of a

random variable,

qp(X) = inf{x ∈ R : P(X 6 x) > p}, p ∈ (0, 1].

We assume that qp(Xi) > 0, i = 1, . . . , d for the interpretation of X1, . . . , Xn as financial risks.

∆X
p represents the ratio between the aggregation risk and the sum of the individual risks, and

hence is a measure of the portfolio performance; see for instance Embrechts et al. (2014) and

Emmer et al. (2015) for diversification ratios in financial risk management.

Over the past decades, VaR has become the most widely used regulatory risk measure

for financial institutions such as banks, insurance companies and investment funds. It is well-

known that VaR is not subadditive, that is, for two random variables X and Y , it might be

possible that qp(X + Y ) > qp(X) + qp(Y ) for some p ∈ (0, 1). See Artzner et al. (1999) and

McNeil et al. (2015) for the discussion of non-subadditivity of VaR. The lack of subadditivity

implies that, portfolio diversification might be penalized when using VaR as the regulatory

risk measure, and it is considered one of the main drawbacks of VaR. If VaR is chosen as

the regulatory risk measure the financial institutions may split one risk to several dependent

risks to avoid or reduce the required risk capital reservation; further, VaR is additive on risks

that are comonotonic (i.e. risks that can be represented as increasing functions of a common

random variable), together with the non-subadditivity this implies an inconsistent order of

risks, where it might be possible to find a dependence structure which is more penalized

(higher capital required) than the comonotonic one which is often regarded as the worst-kind

of dependence.

In practice, regulators are most concerned with the tails (extreme behaviors) of the

risks. The capital requirement principle in Basel II is computed using VaR at a very high

probability level; this probability level has been lifted even further in the proposed Basel III∗.

As a consequence, there is an extensive literature on the asymptotic behavior (p→ 1−) of the

VaR diversification ratio for a portfolio risk:

the asymptotic behavior of ∆X
p , as p→ 1−. (1.2)

∗Quoting BCBS (2013): “To maintain consistency with the banking book treatment, the Committee has

decided to propose an incremental capital charge for default risk based on a VaR calculation using a one-year

time horizon and calibrated to a 99.9th percentile confidence level.”
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When a joint model of (X1, . . . , Xn) is specified, the study of (1.2) is often carried out vi-

a Extreme Value Theory (EVT) and under specific assumptions on the portfolio risks; see

Embrechts et al. (2009a) for the first-order asymptotic expansions under a model of multivari-

ate regular variation, and Degen et al. (2010), Mao and Hu (2013) and Mao and Ng (2015)

for second-order expansions under the assumption of independent distributed random vari-

ables. We refer to McNeil et al. (2015) for a classic treatment of EVT in quantitative risk

management.

It is often the case in practice, that financial companies have enough data/models to

properly fit the marginal distributions of their portfolio, while the dependence structure across

the portfolio risks is more difficult to be statistically estimated. This leads to the notion of

dependence uncertainty (DU) in risk aggregation. Formally, under dependence uncertainty,

the joint distribution FX of a given portfolio X = (X1, . . . , Xd), Xi ∼ Fi, i = 1, . . . , d remains

unspecified and varies in the Fréchet class

Fd(F1, . . . , Fd) = {joint distributions with margins F1, . . . , Fd}; (1.3)

see Joe (1997) for detailed discussion of Fréchet class, and Embrechts et al. (2013, 2015),

Bernard et al. (2014) for recent research under DU. Here and throughout, we write Sd =

X1 + · · ·+Xd and Fd = Fd(F1, . . . , Fd) when the margins F1, . . . , Fd are clear in the context.

For a random variable X and a distribution function F , we use X ∼ F to indicate that X

has the distribution function F , and for a random vector X and a Fréchet class Fd defined in

(1.3), we use X ∼ Fd to indicate FX ∈ Fd, where FX is the joint distribution function of X.

The goal of this paper is to investigate the worst asymptotic behavior of VaR diversifi-

cation ratio under dependence uncertainty. When the dependence structure is unknown, the

existence of a limit for (1.2) cannot be guaranteed; for this reason we seek the upper limit

which corresponds to the worst-case diversification limit, that is

∆
Fd := sup

X∼Fd
lim sup
p→1−

∆X
p . (1.4)

As a main contribution, we show that under mild conditions the two operations lim sup and

sup in (1.4) can be exchanged, that is,

∆
Fd = lim sup

p→1−
sup
X∼Fd

∆X
p . (1.5)

This allows us to calculate ∆
Fd via the worst-case diversification ratio of VaR at probability

level p for a Fréchet class Fd in (1.3), defined as

∆
Fd
p = sup

X∼Fd
∆X
p , p ∈ (0, 1). (1.6)

The worst-case diversification ratios ∆
Fd
p are used as a measure of dependence uncertainty;

it represents the ratio within the highest capital required by VaR under dependence uncer-

tainty and the sum of the stand alone risk capitals; see Kortschak and Albrecher (2009) for
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the discussion of non-existence of the limit of the diversification ratio, and Embrechts et al.

(2014) for existing results on the calculation ∆
Fd
p . The Rearrangement Algorithm introduced

in Embrechts et al. (2013) allows to compute (1.6) numerically for any kind of marginal dis-

tributions.

Heavy-tailed risks and their tails are the focus of regulators, especially after the recent

financial crisis. In EVT, heavy-tailed risks are often modeled by regular variation of their

survival functions due to the Fisher-Tippett-Gnedenko theorem (Gnedenko, 1943) and the

Pickands-Balkema-de Haan theorem (Balkema and de Haan, 1974). In this paper, we derive the

value of ∆
Fd for regularly varying margins. Specifically, it is shown that ∆

Fd only depends on

the maximum of the indexes of regular variation. In addition, we investigate the monotonicity

and the boundary values of ∆
Fd with respect to the dimension d and the maximum of the

indexes.

Our results suggest that ∆
Fd can be much larger than what is expected from existing

results based on mutilvariate regularly varying (MRV) distributions and specific families of

copulas, such as the ones presented in Barbe et al. (2006) and Embrechts et al. (2009a,b). If

X follows from a d-dimensional MRV distribution with index β > 0, one has that

lim
p→1−

∆X
p 6

{
d1/β−1, β 6 1

1, β > 1.

Thus, when dependence is unspecified, the upper limit of ∆X
p can be significantly larger than

the results based on MRV distributions. For instance, when d = 2, our results suggest that

∆
F2 = 21/β if F1 and F2 are asymptotically equivalent regularly varying distribution functions

with index β > 0. When d is large and β < 1, we show that

∆
Fd/(d1/β−1) ∼ (1− β)−1/β.

This implies that the assumption of MRV used in quantitative risk management could be overly

simplified, especially considering that the statistical evidence for multivariate dependence

structures including MRV is often limited.

The results in this paper are the first attempt to bring together EVT and DU, two popular

topics in the recent study of risk aggregation in quantitative risk management.

We let q0(X) = inf{x ∈ R : P(X 6 x) > 0} for notational simplicity. Sometimes it will

be more convenient to express the quantile of a random variable X with distribution F , as

the generalized inverse of F , defined as

F−1(p) = qp(X), for p ∈ [0, 1];

whichever is convenient will be used in the main sections of this paper.

The rest of the paper is organized as follows. In Section 2, some basic properties of ∆
Fd

are introduced and our main results on ∆
Fd are established. In Section 3 the case for Fréchet

classes with regularly varying margins is studied. Section 4 draws a conclusion and discusses

some future work. Some technical proofs are put in the Appendix.
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2 Worst-case diversification limit

2.1 Standard bounds

Let F1, . . . , Fd be d distribution functions and assume that qp(Xi) > 0 for each i =

1, . . . , d. Define ∆
Fd and ∆

Fd
p , p ∈ (0, 1), as in (1.4) and (1.6), respectively. It is immediate

to verify that

∆
Fd 6 lim sup

p→1−
∆
Fd
p , (2.1)

since

lim sup
p→1−

∆X
p 6 lim sup

p→1−
∆
Fd
p for every X ∼ Fd.

A useful observation that will be extensively used in the paper is listed below. To state the

proposition, we define the Expected Shortfall (ES) of an integrable random variable X at level

p ∈ [0, 1] as

ψp(X) =
1

1− p

∫ 1

p
qu(X)du, p ∈ [0, 1) and ψ1(X) = q1(X).

It is well-known that ψp(X) = E[X|X > qu(X)] if the distribution function of X is continuous

at qu(X). ψp subadditive, i.e., for any two integrable random variables X and Y , we have

ψp(X + Y ) 6 ψp(X) + ψp(Y ), p ∈ [0, 1],

and the equality holds if X and Y are comonotonic (i.e. they can be represented as increasing

functions of a common random variable).

Proposition 2.1. Let F1, . . . , Fd be d distribution functions with finite first moment. For any

X ∼ Fd,

1 6 ∆
Fd 6 lim sup

p→1−

∑d
i=1 ψp(Xi)∑d
i=1 qp(Xi)

. (2.2)

Proof. Let Xc = (Xc
1, . . . , X

c
d) be a vector of comonotonic risks with Xc ∼ Fd and denote

Scd = Xc
1 + . . .+Xc

d. Since qp is comonotonic additive, we have that

∆Xc

p =
qp(S

c
d)∑d

i=1 qp(Xi)
=

∑d
i=1 qp(X

c
i )∑d

i=1 qp(Xi)
= 1, for all p ∈ (0, 1)

and the first inequality follows. To show the second inequality, from (2.1),

∆
Fd 6 lim sup

p→1−
sup
X∼Fd

qp(Sd)∑d
i=1 qp(Xi)

6 lim sup
p→1−

sup
X∼Fd

ψp(Sd)∑d
i=1 qp(Xi)

= lim sup
p→1−

∑d
i=1 ψp(Xi)∑d
i=1 qp(Xi)

,

which concludes the proof.
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A result for rapidly varying distributions, an important subclass of light-tailed distribu-

tions, follows immediately from Proposition 2.1. Recall that a random variable X has a rapidly

varying distribution F on [0,∞) if limt→∞ F (tx)/F (t) = 0 for all x > 0. Two well-known

examples of rapidly varying distributions are the class of normal distributions and the class

of subexponential distributions (see Teugels (1975)); their tail probabilities decay faster than

those of exponential distributions.

Corollary 2.2. Let F1, . . . , Fd be d rapidly varying distribution functions. Then for any

X ∼ Fd, we have

∆
Fd = lim sup

p→1−
∆
Fd
p = 1. (2.3)

Proof. For any rapidly varying distribution F , we have

lim
p→1−

ψp(X)

qp(X)
= 1,

where X is a random variable having the distribution function F ; see McNeil et al. (2015,

Section 5.2). Hence, for any ε > 0, there exists p0 > 0 such that for p > p0,

0 < qp(Xi) 6 ψp(Xi) < qp(Xi)(1 + ε), i = 1, . . . , d.

Summing up the above inequalities from 1 to d and letting ε→ 0+ lead to

lim
p→1−

∑d
i=1 ψp(Xi)∑d
i=1 qp(Xi)

= 1.

The proof then follows by Proposition 2.1 and inequality (2.1).

Remark 2.1. Corollary 2.2 in particular implies that if all the distributions are bounded then

the asymptotic behavior of the worst-superadditivity ratio is trivially equal to 1. Hence, in

what follows we will always assume that F−1i (1) =∞ for at least one i ∈ {1, . . . , d}.

Before moving to the main results on the worst-case diversification limit, we present two

side-results on two related quantities: the exact diversification limit (if it exists)

lim
p→1−

∆X
p (2.4)

and the best-case diversification limit

lim inf
p→1−

inf
X∼Fd

∆X
p . (2.5)

The following two propositions show that the two limits in (2.4) and (2.5) are bounded and

often easy to calculate.
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Proposition 2.3. Let F1, . . . , Fd be d distributions with finite first moment. Then

lim
p→1−

∆X
p 6 1, (2.6)

for every X ∼ Fd(F1, . . . , Fd) such that ∆X
p has a limit as p→ 1−.

Proof. Since limp→1−
∫ 1
p qu(Sd)du = limp→1−

∫ 1
p qu(Xi)du = 0 for i = 1, . . . , d, we can apply

de l’Hospital’s Rule. Using the subadditivity of ψp, it immediately follows for all X ∼ Fd such

that ∆X
p has a limit as p→ 1−:

lim
p→1−

∆X
p = lim

p→1−

∫ 1
p qu(Sd)du∑d

i=1

∫ 1
p qu(Xi)du

= lim
p→1−

ψp(Sd)∑d
i=1 ψp(Xi)

6 1. (2.7)

When the limit for the diversification ratio exists (that is, its upper and lower limits

coincide) and all the components of X have finite mean, the asymptotic diversification ratio

is trivially equal to one; the more interesting cases are the ones for which an exact limit does

not exist.

A wide majority of papers that deal with risk aggregation under uncertainty (e.g. Chen

et al. (2012), Embrechts et al. (2013) and Wang et al. (2013)) has mainly focused on the

worst-case diversification limit. It might also be relevant to investigate the lower bound of the

diversification ratio of a portfolio X with fixed margins F1, . . . , Fd:

∆Fdp := inf
X∼Fd

∆X
p . (2.8)

The bounds ∆
Fd
p and ∆Fdp together measure the dependence uncertainty of VaR. We refer

to Kaas et al. (2009), Embrechts et al. (2003), Bernard et al. (2014), and Bignozzi et al.

(2015) for some related discussions. The following proposition gives a straightforward value

for ∆Fdp , from which we can see that the limit of ∆
Fd
p is mathematically different from that of

∆Fdp . This asymmetry is well noted in the literature; see for instance Embrechts et al. (2015).

Proposition 2.4. Let F1 = · · · = Fd =: F be distribution functions such that −∞ < F−1(0) <

F−1(1) =∞. Then

lim
p→1−

inf
X∼Fd

∆X
p =

1

d
.

Proof. First, it can be verified that for p ∈ (0, 1),

F−1(p) + (d− 1)F−1(0) 6 inf
X∼Fd

qp(Sd) 6 F−1(p) + (d− 1)F−1
(
d− 1

d

)
. (2.9)

The first inequality follows by noting that X1 + . . .+Xd > ess-infX1 + . . .+ ess-infXd−1 +Xd

a.s. For the second inequality, let U ∼ U[0, 1],

Ui = U +
i− 1

d
p mod (1), i = 1, . . . , d.
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and Ai = {(d− 1)p/d 6 Ui < p}, i = 1, . . . , d. It is obvious that Ui ∼ U[0, 1], i = 1, . . . , d, and

A1, . . . , Ad are disjoint sets. Define, for j = 1, . . . , d,

X∗j =


F−1((d− 1)(p− Ui)), on Ai, i 6= j,

F−1(Uj), on Aj ,

F−1(U), on A,

where A = Ω \ (∪di=1Ai) = {p 6 U 6 1}, and write S∗d = X∗1 + · · · + X∗d . One can verify by

definition that X∗j ∼ F , j = 1, . . . , d. Noting that

P
(
S∗d > F−1(p) + (d− 1)F−1 ((d− 1)p/d)

)
6 P(A) = 1− p,

we have

qp(S
∗
d) 6 F−1(p) + (d− 1)F−1 ((d− 1)p/d) 6 F−1(p) + (d− 1)F−1 ((d− 1)/d) .

Hence, (2.9) holds. Note that as p→ 1−, both the ratios of LHS and RHS of (2.9) to F−1(p)

converge to 1. The desired result follows.

Remark 2.2. For the general case when F1, . . . , Fd are possibly different, we have that

1/d 6 lim inf
p→1

∧
16i6d

F−1i (p) +
∑

j 6=i F
−1
j (0)∑d

j=1 F
−1
j (p)

6 lim inf
p→1

inf
X∼Fd

∆X
p

6 lim
p→1

F−1i (p) +
∑

j 6=i F
−1
j ((d− 1)p/d)∑d

j=1 F
−1
j (p)

6 1

and the extreme cases (1/d and 1) are obtained respectively for a homogeneous portfolio and

for a portfolio where one risk dominates all the others.

2.2 Main result in the general setting

In this subsection, we show that (1.5) holds under the condition that F1, . . . , Fd are

strictly increasing in a neighborhood of ∞. This is a very weak condition satisfied by almost

all models in quantitative risk management.

Theorem 2.5. Suppose that for each i = 1, . . . , d, Fi is a strictly increasing distribution

function on a left-neighborhood of F−1i (1). Then (1.5) holds, that is:

∆
Fd = sup

X∼Fd
lim sup
p→1−

∆
X
p = lim sup

p→1−
sup
X∼Fd

∆
X
p . (2.10)

First, notice that since we are working on the limit as p → 1−, we can conveniently

assume that F1, . . . , Fd are strictly increasing functions in whatever intervals we need.

To show Theorem 2.5 we need the two following lemmas. Lemma 2.6 is essentially

the same as Embrechts et al. (2015, Lemma A.4) and we restate it here without a proof.
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Lemma 2.7 is mainly a technical result. To state the lemmas, define the right-continuous

quantile q∗p : L0 → R as

q∗p(X) = inf{x ∈ R : F (x) > p}, for p ∈ [0, 1),

and q∗1(X) = q1(X) where F is the distribution function of X.

Lemma 2.6. Let F1, . . . , Fd be strictly increasing distribution functions such that F−1i (p) > 0

for i = 1, . . . , d and p ∈ (0, 1). Then

sup
X∼Fd

qp(Sd) = sup
X∼Fd

q∗p(Sd) = sup
X[p]∼F [p]

q∗p(S
[p]
d ),

where S
[p]
d is the sum of components of the random vector X[p], F [p] = F(F

[p]
1 , . . . , F

[p]
d ) is the

Fréchet class, defined by (1.3), with margins F
[p]
i , i = 1, . . . , d, and F

[p]
i is the distribution

function of F−1i (U)1{U>p}, U ∼ U[0, 1], i = 1, . . . , d.

For 0 6 p 6 r 6 1, we denote by FU the d-dimensional Fréchet class, defined by (1.3),

with uniform margins on [0, 1] and

F [p,r]
U = {FU ∈ FU : FU([p, r]d) = r − p, FU([r, 1]d) = 1− r}, (2.11)

i.e., for U ∼ F [p,r]
U , {Ui ∈ [p, r)} = {Uj ∈ [p, r)} a.s. and {Ui ∈ [r, 1]} = {Uj ∈ [r, 1]} a.s. for

all i, j = 1, . . . , d.

Lemma 2.7. Let F1, . . . , Fd be strictly increasing distribution functions and p ∈ (0, 1) such

that F−1i (1) =∞, F−1i (p) > 0 for i = 1, . . . , d. Define Wp(·) : [p, 1]→ R as

r 7→Wp(r) = sup
U∼F [p,r]

U

q∗p

(
d∑
i=1

F−1i (Ui)

)
.

Then Wp(r) is continuous at r = 1−.

The proof is similar to that of Bernard et al. (2014, Lemma 4.4) and is postponed to the

Appendix.

Proof of Theorem 2.5. Denote I = {i = 1, . . . , d : F−1i (1) = ∞}. If I = ∅, then it is

easy to verify that both sides of (2.10) equal 1. If I 6= ∅, denote FI the |I|-dimensional

Fréchet class with margins Fi, i ∈ I. Note that for each X ∼ Fd, limp→1− qp(
∑

i∈I Xi) =

limp→1−
∑

i∈I qp(Xi) =∞. It follows that for X ∼ Fd,

lim sup
p→1−

∆X
p = lim sup

p→1−

qp(
∑

i∈I Xi)∑
i∈I qp(Xi)

and lim sup
p→1−

∆
Fd
p = lim sup

p→1−
∆
FI
p .
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Hence, we only need to deal with the case F−1i (1) = ∞ for i = 1, . . . , d. Note that for any

p ∈ (0, 1) and ε > 0, there exists 0 < δ(p) < 1− p such that∑d
i=1 qp+δ(p)(Xi)∑d
i=1 qp(Xi)

< 1 + ε.

It follows that

lim sup
p→1−

qp(Sd)∑d
i=1 qp(Xi)

> lim sup
p→1−

qp(Sd)∑d
i=1 qp+δ(p)(Xi)

> lim sup
p→1−

q∗p(Sd)∑d
i=1 qp(Xi)(1 + ε)

holds for any ε > 0. Letting ε→ 0+ and noting (2.1), we have that, to show (2.10), it suffices

to show that

sup
X∼Fd

lim sup
p→1−

q∗p(Sd)∑d
i=1 qp(Xi)

> lim sup
p→1−

∆
Fd
p . (2.12)

By the definition of the upper limit, there exist pn → 1− as n → ∞ such that F−1i (pn) > 0

for i = 1, . . . , d and

lim
n→∞

∆
Fd
pn = lim sup

p→1−
∆
Fd
p .

For each n ∈ N, by Lemma 2.7, there exists rn ∈ [pn, 1) such that

Wpn(r) > Wpn(1)− 1

n
, r ∈ [rn, 1).

For each n ∈ N, choose `(n) such that p`(n+1) > r`(n) for n ∈ N. By the definition of the upper

limit again, there exist Un = (Un1, . . . , Und) ∼ F
[p`(n),p`(n+1)]

U , n ∈ N, such that

q∗p`(n)

(
d∑
i=1

F−1i (Uni)

)
>Wp`(n)(p`(n+1))−

1

n
> Wp`(n)(1)− 2

n
. (2.13)

Since Un ∼ F
[p`(n),p`(n+1)]

U , we can write

An := {p`(n) < Unk 6 p`(n+1), k = 1, . . . , d} = {p`(n) < Unj 6 p`(n+1)}, j = 1, . . . , d, a.s.

Further, since (2.13) only concerns the distributions of {Un, n ∈ N}, and
∑∞

n=1 P(An) 6 1,

we can take {Un, n ∈ N} such that An, n ∈ N are disjoint sets.

Define a random vector X = (X1, . . . , Xd) as

Xi = F−1i (U)I{U6p`(1)} +
∞∑
k=1

F−1i (Uki)I{p`(k)<Uki6p`(k+1)}, i = 1, . . . , d (2.14)

where U ∼ U[0, 1] satisfies {U 6 p`(1)} =
⋂
n∈NA

c
n. Then we have that Xi ∼ Fi, i = 1, . . . , d

and

lim sup
n→∞

q∗p`(n)(Sd)∑d
i=1 qp`(n)(Xi)

> lim sup
n→∞

Wp`(n)(1)− 2/n∑d
i=1 qp`(n)(Xi)

= lim sup
p→1−

∆
Fd
p ,

i.e., (2.12) holds. Thus, this completes the proof.
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Remark 2.3. (i) From the proof of Theorem 2.5, it is easy to see that we actually show

that

∆
Fd = max

X∼Fd
lim sup
p→1−

∆
X
p = lim sup

p→1−
sup
X∼Fd

∆
X
p . (2.15)

There is a random vector X ∼ Fd in (2.14) such that its upper asymptotic diversification

ratio indeed attains the worst-case diversification limit defined in (1.6).

(ii) Due to the relation between a distribution function and its quantile function, we can

show a similar results in terms of distribution functions as that in Theorem 2.5. More

specifically, assume that F1, . . . , Fd are asymptotic equivalent distribution functions such

that they are continuous in a neighborhood of ∞. We have

sup
X∼Fd

lim sup
x→∞

P(Sd > x)

F 1(x)
= lim sup

x→∞
sup
X∼Fd

P(Sd > x)

F 1(x)
. (2.16)

Theorem 2.5 states that the supremum and the upper limit in (2.10) can be exchanged

under mild conditions. Note that the RHS of (2.10) involves ∆
Fd
p , which have been studied

extensively by either numerical methods or analytical methods; see for instance Embrechts et

al. (2013), Wang et al. (2013) and Jakobsons et al. (2016). Therefore, Theorem 2.5 provides

a practical way to calculate ∆
Fd .

In the two-dimensional case d = 2, an analytical formula follows immediately from results

in Makarov (1981) and Rüschendorf (1982) where sup{P(X1 + X2 6 x) : X1 ∼ F1, X2 ∼ F2}
for x ∈ R was established.

Corollary 2.8. Assume that F1 and F2 are two distribution functions strictly increasing at a

neighborhood of ∞. We have that

∆
F2 = lim sup

p→1−
inf

x∈[0,1−p]

F−11 (p+ x) + F−12 (1− x)

F−11 (p) + F−12 (p)
. (2.17)

3 Regularly varying distributions

In this section, we focus on risks with regularly varying tails. Regular variation is a

crucial concept in modeling extreme risks (heavy-tailed risks). We first recall its definition

and its basic properties, and then present the main results of this section, i.e., determine the

value of ∆
Fd for regularly varying risks and investigate its properties.

3.1 Regular variation

Definition 3.1. An eventually non-negative (that is, f(x) > 0 for x large enough) measurable

function f is said to be regularly varying with a regularity index γ ∈ R, if

lim
t→∞

f(tx)

f(t)
= xγ , for all x > 0. (3.1)

Denote this by f ∈ RVγ .

11



We list some basic properties of regular variation; see Bingham et al. (1989) and de Haan

and Ferreira (2006). These properties are essential to the proof of the main results in this

section.

Lemma 3.1. Let F be a distribution function. Then for any β > 0, F (·) ∈ RV−β is equivalent

to F−1(1− 1/·) ∈ RV1/β. Moreover,

(i) the convergence in (3.1) for f = F is uniform with respect to x in any compact subset

of R;

(ii) the convergence in (3.1) for f(·) = F−1(1 − 1/·) is uniform with respect to x in any

subset of R ∪ {∞} bounded away from zero.

3.2 Two-dimensional analytical result

In this section, we start with the two-dimensional case where a nice analytical result is

available. The general result for d > 3, requires a different and more involved proof and is

presented in Section 3.3.

Theorem 3.2. Assume that F1 and F2 are asymptotically equivalent regularly varying distri-

bution functions with index β > 0. We have

∆
F2 = 21/β. (3.2)

Proof. By Corollary 2.8 and taking x = (1− p)/2 ∈ [0, 1− p] in (2.17) yields that

∆
F2 6 lim sup

p→1−

F−11 ((1 + p)/2) + F−12 ((1 + p)/2)

F−11 (p) + F−12 (p)
= 21/β.

Thus, it suffices to show that ∆
F2 > 21/β. There exist pn → 1− and xn ∈ [0, 1− pn] as n→∞

such that

lim
n→∞

inf
x∈[0,1−pn]

F−11 (pn + x) + F−12 (1− x)

F−11 (pn) + F−12 (pn)
= ∆

F2 (3.3)

and for all n ∈ N∣∣∣∣F−11 (pn + xn) + F−12 (1− xn)

F−11 (pn) + F−12 (pn)
− inf
x∈[0,1−pn]

F−11 (pn + x) + F−12 (1− x)

F−11 (pn) + F−12 (pn)

∣∣∣∣ 6 1

n
. (3.4)

We assert that there exist n0 and δ > 0 such that

xn/(1− pn) ∈ [δ, 1− δ], for all n > n0. (3.5)

To see it, assume that there exists a subsequence n′ such that xn′/(1 − pn′) → 0 as n′ → ∞.

Then by (3.3) and (3.4),

∆
F2 > lim

n′→∞

F−12 (1− (1− pn′)ε)
2F−12 (pn′)

=
1

2
ε−1/β

12



which goes to∞ as ε→ 0+ and this conflicts with the constraint ∆
F2 6 21/β. Similarly, there

exists no subsequence n′ such that xn′/(1− pn′)→ 1 as n′ →∞. Hence, (3.5) holds. Then by

the uniform convergence for regular variation on any compact set, we have

∆
F2 = lim

n→∞

((
1− pn − xn

1− pn

)−1/β
+

(
xn

1− pn

)−1/β)
> 21/β,

as desired.

Remark 3.1. The result in Theorem 3.2 does not distinguish whether β > 1 or β 6 1, as is

commonly the case in EVT. Classic results in EVT give

lim
p→1−

∆X
p 6

{
d1/β−1, β 6 1

1, β > 1,

if X follows from a multivariate regularly varying (MRV) distribution; see for instance Barbe

et al. (2006) and Embrechts et al. (2009a). Theorem 3.2 suggests that when dependence is

unspecified, the upper limit of ∆X
p when d = 2 and β 6 1 is two times as large as the above

results based on MRV distributions.

Example 3.1. (Pareto model) As an example of Theorems 2.5 and 3.2 consider two Pareto

distributions, Fi(x) = 1 − x−αi with xi > 1, αi > 0 for i = 1, 2 and assume without loss of

generality that α1 > α2. From Corollary 2.8,

∆
F2 = lim sup

p→1−
inf

x∈[0,1−p]

(1− p− x)
− 1
α1 + x

− 1
α2

(1− p)
1
α1 + (1− p)

1
α2

. (3.6)

For α1 = α2, the infimum on the right-hand-side of (3.6) is achieved for x = 1−p
2 and we have

∆
F2 = 2

1
α1 , (3.7)

as given in Theorem 3.2. When α2 < α1 < 1, the argument of the infimum in (3.6) is a

strictly convex function in x and the minimum can be obtained setting the first derivative

(with respect to x) equal to 0, for α1 > 1 a more detailed analysis is required. In Figures 1-4

we report the graphs of the quantity

inf
x∈[0,1−p]

(1− p− x)
− 1
α1 + x

− 1
α2

(1− p)
1
α1 + (1− p)

1
α2

,

as a function of p for different values of the parameters α1, α2. For α1 > α2, F
−1
1 (t)/F−12 (t)→ 0

as t→ 1−, and we obtain

sup
X∼F2

lim sup
p→1−

∆X
p = sup

Y∼F1

lim sup
p→1−

qp(Y )

qp(Y )
= 1.

It is interesting to note that the closer α1, α2 are, the slower is the convergence to 1.
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Figure 2: α1 = 1/2, α2 = 1/2
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Figure 4: α1 = 1/2, α2 = 3/5
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3.3 Main result in the general setting

We show that ∆
Fd defined by (1.4) only depends on the tail index of regular variation.

Specifically, we have the following result.

Theorem 3.3. Assume that F1, . . . , Fd, d > 3, are asymptotically equivalent regularly varying

distribution functions with index β > 0 and let ∆
Fd be defined by (1.4). We have that

∆
Fd =

1

d
x
− 1
β

d +
d− 1

d
(1− xd(d− 1))

− 1
β , (3.8)

where xd is the unique solution in (0, 1/d) to the following equation:

1

1− dx

∫ 1−x

(d−1)x
(1− u)

− 1
β du =

1

d
x
− 1
β +

d− 1

d
(1− (d− 1)x)

− 1
β . (3.9)

When β = 1, LHS of (3.9) is understood as its limit d
1−dx log 1−(d−1)x

x .

Proof. We prove the result in two steps. First we show that it holds in the homogeneous case

under the constraint that F1 = · · · = Fd =: F has monotone density. Then we extend it to

the general case. Before that, we verify a simple fact and give some notation.

(1) The limit of (3.8) is bounded by d1/β, since

∆
Fd = lim sup

p→1−
sup
X∼Fd

qp

(∑d
i=1Xi

)
∑d

i=1 qp(Xi)

6 lim sup
p→1−

∑d
i=1 q1−(1−p)/d (Xi)∑d

i=1 qp(Xi)
= d1/β. (3.10)

See (A.1) for the details of the proof of the inequality.

(2) For simplicity, denote

∆β =
1

d
x
− 1
β

d +
d− 1

d
(1− xd(d− 1))

− 1
β

and

H(x) :=
1

1− dx

∫ 1−x

(d−1)x
(1− u)

− 1
β du− 1

d
x
− 1
β − d− 1

d
(1− (d− 1)x)

− 1
β .

With the definition of H, (3.9) reads as H(x) = 0.

Step 1. Suppose that F1 = · · · = Fd =: F such that F has monotone density. For p ∈ (0, 1),

let Fp denote the distribution function of [F−1(U)|U > p] with U ∼ U[0, 1] and let x̂d,p be the

unique solution to the following equation:∫ 1−x

(d−1)x
F−1p (u)du =

d− 1

d
F−1p ((d− 1)x) +

1

d
F−1p (1− x). (3.11)
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We first recall some results in Wang et al. (2013). It is shown that there exists Up =

(Up1 , . . . , U
p
d ) ∼ F [p,1]

U , with F [p,1]
U defined in (2.11), such that

∑d
i=1 F

−1(Upi ) = d
∫ 1−x̂d,p
(d−1)x̂d,p F

−1
p (u)du, on A0,

Upj = p+ (d− 1)(1− Upi ), j 6= i, on Ai, i = 1, . . . , d,
(3.12)

where

A0 =
d⋂
i=1

{p+ (1− p)(d− 1)x̂d,p 6 Upi 6 1− (1− p)x̂d,p} ,

and

Ai = {Upi > 1− (1− p)x̂d,p}, i = 1, . . . , d.

With this construction, we have that

A0 =

d⋃
i=1

{p+ (1− p)(d− 1)x̂d,p 6 Upi 6 1− (1− p)x̂d,p} ,

and Xp attains the supremum of ∆
Fd
p with Xp = (F−1(Up1 ), . . . , F−1(Upd )), that is,

sup
X∼Fd

qp

(
d∑
i=1

Xi

)
= qp

(
d∑
i=1

Xp
i

)
= d

∫ 1−x̂d

(d−1)x̂d
F−1p (u)du,

and it equals
∑d

i=1 F
−1(Upi ) on A0. Details of the above results can be found in Wang et al.

(2013, Section 3). It follows that

∆
Fd = lim sup

p→1−

∫ 1−x̂d,p
(d−1)x̂d,p F

−1
p (u)du

F−1(p)
= lim sup

p→1−

(d− 1)F−1p ((d− 1)x̂d,p) + F−1p (1− x̂d,p)
dF−1(p)

.

(3.13)

We assert that there exists δ > 0 such that for large enough p, x̂d,p ∈ (δ, 1/d). Or else, there

exists a sequence pn → 1− such that x̂d,pn → 0+ as n → ∞. In this case, the upper limit in

RHS of (3.13) is infinity, which conflicts with (3.10). By Potter’s inequalities (see de Haan

and Ferreira, 2006, Proposition B.1.9 (5)), we have that for any ε > 0, there exits pε < 1 such

that

|Hp(x̂d,p)−H(x̂d,p)| = |H(x̂d,p)| < ε for all p > pε,

where

Hp(x) :=

∫ 1−x

(d−1)x

F−1p (u)

F−1(p)
du−

(d− 1)F−1p ((d− 1)x)− F−1p (1− x)

dF−1(p)
.

Then we have that

|H(x̂d,p)−H(xd)| = |H(x̂d,p)| < ε for all p > pε,
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where xd is the unique solution to the equation (3.9). It follows that x̂d,p → xd as p → 1−.

Finally by (3.13), we have that

∆
Fd = ∆β.

Step 2. The task is to show that (3.8) holds for general asymptotically equivalent regularly

varying functions F1, . . . , Fd. By de Haan and Ferreira (2006, Proposition B.1.9 (3)), we can

find a distribution function F with monotone density such that F is asymptotically equivalent

to F1, and hence also to F2, . . . , Fd. For p ∈ (0, 1), let (Up1 , . . . , U
p
d ) ∼ F [p,1]

U satisfy (3.12) and

let Xp
i = F−1i (Upi ), i = 1, . . . , d. Note that {Upi > p} = ∪dj=0Aj for i = 1, . . . , d. It follows

that

qp

(
d∑
i=1

Xp
i

)
= inf

06j6d
ess-inf

d∑
i=1

[Xp
i |Aj ]. (3.14)

First, it is easy to see that there exists (up1, . . . , u
p
d) in the support of the distribution function

of [(Up1 , . . . , U
p
d )|A0] such that

ess-inf

d∑
i=1

[Xp
i |A0] =

d∑
i=1

F−1i (upi ).

Note that p + (d − 1)xd 6 Upi 6 1 − xd(1 − p) almost surely on A0 for i = 1, . . . , d. Then by

the uniform convergence of regular variation on any compact set bounded away from zero, it

holds that

lim sup
p→1−

ess-inf
∑d

i=1[X
p
i |A0]∑d

i=1 F
−1
i (p)

= lim sup
p→1−

∑d
i=1 F

−1
i (upi )∑d

i=1 F
−1
i (p)

= lim sup
p→1−

1

d

d∑
i=1

(
1− upi
1− p

)−1/β

= lim sup
p→1−

ess-inf
∑d

i=1[F
−1(Upi )|A0]

dF−1(p)
(3.15)

= lim sup
p→1−

qp

(∑d
i=1 F

−1(Upi )
)

dF−1(p)
. (3.16)

The equality (3.15) follows from that
∑d

i=1 F
−1(Upi ) is a constant almost surely on A0, and

hence its essential infimum is equal to its value at any point in its support. The equality (3.16)

follows from the construction in (3.12).

Second, on Aj for j = 1, . . . , d, from the structure of (Up1 , . . . , U
p
d ), we have that

ess-inf

d∑
i=1

[Xp
i |Aj ] = inf

0<y6x̂d,p

F−1j (1− y(1− p)) +
∑
i 6=j

F−1i (p+ (d− 1)(1− p)y)

 .
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Since F−1(1) =∞, for each p ∈ (0, 1), the infimum is attained at yp ∈ (0, x̂d,p]. Then we have

that

ess-inf
d∑
i=1

[Xp
i |Aj ] = F−1j (1− yp(1− p)) +

∑
i 6=j

F−1i (p+ (d− 1)yp(1− p)).

By definition of regularly varying functions, we have that

lim sup
p→1−

ess-inf
∑d

i=1[X
p
i |Aj ]∑d

i=1 F
−1
i (p)

= lim sup
p→1−

1

d

y− 1
β

p +
∑
i 6=j

(1− (d− 1)yp)
− 1
β


> lim sup

p→1−

1

d

(
x
− 1
β

d + (d− 1) (1− (d− 1)xd)
− 1
β

)

= lim sup
p→1−

qp

(∑d
i=1 F

−1(Upi )
)

dF−1(p)
. (3.17)

The inequality follows from the fact that y
− 1
β + (d − 1) (1− (d− 1)y)

− 1
β is decreasing in

y ∈ (0, xd). Substituting (3.16) and (3.17) into (3.14) yields that

lim sup
p→1−

qp

(∑d
i=1X

p
i

)
∑d

i=1 qp (Xi)
= ∆β.

This means that

∆
Fd > ∆β. (3.18)

On the other hand, from Remark 2.3 (i), there exists a sequence pn → 1− and U = (U1, . . . , Ud) ∈⋂
n∈NF

[pn,1]
U , such that

lim sup
p→1−

∆Fdp = lim
n→∞

qpn(
∑d

i=1 F
−1
i (Ui))∑d

i=1 F
−1
i (pn)

= lim
n→∞

ess-inf{
∑d

i=1 F
−1
i (Ui)|Ui > 1− pn}∑d

i=1 F
−1
i (pn)

.

Then there exists (pn+λ0n1, . . . , pn+λ0nd) in the support of the joint distribution of [(U1, . . . , Ud)|pn 6

Ui < pn+1, i = 1, . . . , d] such that

ess-inf

{
d∑
i=1

F−1i (Ui)|Ui > 1− pn

}
=

d∑
i=1

F−1i (pn + λ0ni), (3.19)

and hence

lim sup
p→1−

∆Fdp = lim
n→∞

∑d
i=1 F

−1
i (pn + λ0ni)∑d

i=1 F
−1
i (pn)

= lim
n→∞

(
1− pn − λ0ni

1− pn

)−1/β
.

For any sequence of points (pn + λn1, . . . , pn + λnd) in the support of the joint distribution

function of [(U1, . . . , Ud)|pn 6 Ui < pn+1, i = 1, . . . , d], we have, from (3.19), that

lim inf
n→∞

∑d
i=1 F

−1
i (pn + λni)∑d

i=1 F
−1
i (pn)

> lim
n→∞

(
1− pn − λ0ni

1− pn

)−1/β
. (3.20)
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We assert that

lim
n→∞

qpn(
∑d

i=1 F
−1(Ui))∑d

i=1 F
−1(pn)

> lim
n→∞

(
1− pn − λ0ni

1− pn

)−1/β
. (3.21)

If (3.21) does not hold, from Remark 2.3 (i) again, there exists a sequence of points (pn +

λ∗n1, . . . , pn + λ∗nd) in the support of the joint distribution function of [(U1, . . . , Ud)|pn 6 Ui <

pn+1, i = 1, . . . , d] such that

lim
n→∞

∑d
i=1 F

−1(pn + λ∗ni)∑d
i=1 F

−1(pn)
< lim

n→∞

(
1− pn − λ0ni

1− pn

)−1/β
. (3.22)

Then we have that

lim
n→∞

∑d
i=1 F

−1(pn + λ∗ni)∑d
i=1 F

−1(pn)
= lim

n→∞

d∑
i=1

(
1− pn − λ∗ni

1− pn

)−1/β
= lim

n→∞

∑d
i=1 F

−1
i (pn + λ∗ni)∑d

i=1 F
−1
i (pn)

,

which conflicts with (3.20) and (3.22). Hence, (3.21) holds, that is,

lim sup
p→1−

∆Fdp 6 lim sup
p→1−

∆Fd(F,...,F )
p = ∆β. (3.23)

Combining (3.18) and (3.23) completes the proof.

Remark 3.2. (i) Equations of the type (3.9) are used in Wang and Wang (2011) and Wang

et al. (2013) to calculate the value of sup{qp(Sd) : X ∈ Fd} for a fixed p.

(ii) If β = 1/2, (3.9) has an explicit solution xd = (d − 1)−1/2 for d > 3. In this case,

Theorem 3.3 gives the explicit value ∆
Fd = 4(d− 1). Note that this is also true for d = 2

by Theorem 3.2.

From the proof of Theorem 3.3 and the upper bound established by Barbe et al. (2006)

and Embrechts et al. (2009a), we have the following corollary immediately.

Corollary 3.4. Under the assumptions of Theorem 3.3, we have that

d1/β−1 < ∆
Fd 6 d1/β, d ∈ N. (3.24)

Note that although (3.8) in Theorem 3.3 is not in an explicit form, it can be calculated

easily via standard numerical methods. Below we compare the worst-case diversification limits

with the upper bound of the diversification ratio for MRV in Embrechts et al. (2009a) for

several choices of parameters d and β. The numerical values are obtained via the command

uniroot in R. Note that in the case β = 1/2 the numerical values are slightly different from

the explicit values in Remark 3.2 (ii) due to computational errors in high dimensions (d = 50

and d = 100). The results are reported in Table 1.
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β = 0.95 β = 0.8 β = 0.5 β = 0.3

∆
Fd λd,β ∆

Fd λd,β ∆
Fd λd,β ∆

Fd λd,β

d = 2

d = 3

d = 5

d = 10

d = 50

d = 100

2.07 2.00

2.90 2.74

3.85 3.53

5.05 4.47

7.74 6.30

9.00 7.06

2.38 2.00

3.58 2.72

5.14 3.43

7.45 4.19

14.30 5.38

18.31 5.79

4.00 2.00

8.00 2.67

16.00 3.20

36.00 3.60

195.93 3.92

399.01 3.99

10.09 2.00

34.01 2.62

128.84 3.01

692.06 3.21

30282.94 3.29

151694.9 3.27

Table 1: Numerical results for ∆
Fd and the ratio λd,β = ∆

Fd/(d1/β−1)

From Table 1, we can see that as β becomes smaller, i.e., the tail of the marginal distribu-

tions becomes heavier, the worst-case diversification ratio ∆
Fd , i.e., the impact of dependence

uncertainty, becomes larger. However, the difference between the worst-case diversification

ratio ∆
Fd and the upper bound of the diversification ratio for MRV (d1/β−1) reduces. In the

meanwhile, as d increases, both the impact of dependence uncertainty and the ratio between

the worst-case diversification ratio ∆
Fd and the upper bound of the diversification ratio for

MRV (d1/β−1) become more significant.

3.4 Relevance of ∆
Fd

on d and β

In this section, we study the relevance of ∆
Fd defined by (1.4) with respect to d and β

when Fi, i = 1, . . . , d, are asymptotically equivalent and regularly varying with index β > 0.

For a study of the relevance of ∆X
p with respect to β when the dependence structure of X is

modelled by Archimedean copulas, see Embrechts et al. (2009b).

Proposition 3.5. Assume that F1, . . . , Fd, d > 3, are asymptotically equivalent regularly

varying distribution functions with index β > 0 and let ∆
Fd be defined by (1.4). We have

(i) For a fixed β, ∆
Fd is increasing in d ∈ N and satisfies

lim
d→∞

∆
Fd =


β
β−1 , β > 1,

∞, 0 < β 6 1.

Moreover, for β < 1, we have that

lim
d→∞

∆
Fd

d1/β−1
=

(
1

1− β

) 1
β

. (3.25)

(ii) For a fixed d, ∆
Fd is decreasing in β ∈ (0,∞), and satisfies limβ→0+ ∆

Fd = ∞ and

limβ→∞∆
Fd = 1.
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Proof. (i) Let xd be the solution to (3.9) and let yd = (1− (d− 1)xd)/xd > 1 for d ∈ N. We

assert that yd is decreasing in d ∈ N. To see it, for d ∈ N, define hd : (1,∞)→ R as

hd(y) =
β

β − 1

y−1/β+1 − 1

y − 1
− 1

d
− d− 1

d
y−1/β.

It can be verified by taking derivatives of h with respect to d and y that hd(y) is increasing

in d ∈ N and decreasing in y ∈ (1,∞). Also, note that (3.9) is in fact hd(yd) = 0. It

follows that yd is increasing in d ∈ N, and hence xd is decreasing in d ∈ N. Next, we

show that ∆
Fd is increasing in d ∈ N in this case. For some d ∈ N, and for x ∈ (0, 1/d),

define

Hx(d) =
1

d
x
− 1
β +

d− 1

d
(1− x(d− 1))

− 1
β , d ∈ R+.

It can be easily verified that

∂Hx(d)

∂d
=

1

d2

(
(1− x(d− 1))

− 1
β − x−

1
β + d(d− 1)

x

β
(1− x(d− 1))

− 1
β
−1
)

> 0.

That is, Hx(d) > Hx(d− 1) for x ∈ (0, 1/d). Then we have that

∆
Fd = Hxd(d) > Hxd(d− 1) > Hxd−1

(d− 1) = ∆
Fd−1 ,

where the second inequality follows from that Hx(d) is decreasing in x and xd < xd−1.

This completes the proof that ∆
Fd is increasing in d.

Note that ∆
Fd is actually the d−1 supX∼Fd q0(Sd) where Fd is the Fréchet class with

margins F1 = · · · = Fd being the Pareto distribution and given by F1(x) = 1−x−β, x >

1. Let X ∼ F1 be a random variable. For any given M > 0, [X|X 6M ] is d-completely

mixable for large enough d ∈ N (Wang and Wang, 2011). Thus, we have dxd goes to 0

as d→∞. When β > 1, it is easy to see that ∆
Fd = E[F−1(U)|(d− 1)xd 6 U 6 1− xd]

converges to the mean of X, i.e., β/(β−1) as d→∞. For the case that β 6 1, it suffices

to note that ∆
Fd is decreasing in β ∈ (0,∞) in (ii). To show (3.25), define yd as above

and γ := 1/β − 1. Then the equation hd(yd) = 0 reduces to

1− y−γd
γ(yd − 1)

=
1

d
+
d− 1

d
y−γ−1d = y−γ−1d +

1

d

(
1− y−γ−1d

)
,

i.e.,

d = γyd
1− y−1d − y

−γ−1
d + y−γ−2d

1− (γ + 1)y−γd + γy−γ−1d

Since yd →∞ as d→∞, we have that limd→∞ yd/d = 1/γ. It follows that

∆
Fd = (yd + d− 1)γ+1 1− y−γd

γ(yd − 1)
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and hence,

lim
d→∞

∆
Fd

dγ
= lim

d→∞

(
1 +

yd − 1

d

)γ+1 d

γ(yd − 1)
(1− y−γd ) =

(
1 +

1

γ

)γ+1

=

(
1

1− β

)1/β

.

This competes the proof of (3.25).

(ii) We also use the fact that ∆
Fd is actually the d−1 supX∼Fd q0(Sd) where Fd is the Fréchet

class with margins F1 = · · · = Fd being the Pareto distribution and given by F1(x) =

1 − x−β, x > 1. Then the monotonicity in β follows immediately from that F−11 (x) is

decreasing β ∈ (0,∞) for all x. For d = 2,

lim
β→0+

∆
Fd = lim

β→0+
21/β =∞.

Then by monotonicity in d, we have that limβ→0+ ∆
Fd =∞ for all d ∈ N. By (3.10) in

the proof of Theorem 3.3, we have that

lim
β→∞

∆
Fd 6 lim

β→∞
d1/β = 1.

This completes the proof.

Remark 3.3. (i) It is well-known that for a random variable X having regularly varying

tail with index β > 0, then

lim
p→1−

ψp(X)

qp(X)
=


β
β−1 , β > 1

∞, β 6 1,

which is exactly the limit of Proposition 3.5 (i) as d → ∞. This means that the upper

bound of (2.2) is achieved as d → ∞. For fixed p ∈ (0, 1), similar result holds under

weak conditions; see Embrechts et al. (2015).

(ii) From Proposition 3.5 (ii), we can find that a more heavy-tailed marginal distribution

leads to a higher impact of dependence uncertainty. This is in accordance with the

numerical results in Table 1.

We give an example to show that if the margins F1, . . . , Fd have heavier tailed compared

to regularly varying (power-type) distributions, then ∆
Fd defined by (1.4) is possibly infinity.

Example 3.2. Let F be a distribution function given by F (x) = (1 − 1/ log x)I{x>e}. Then

from Corollary 2.8 we have that

∆
F2 = lim sup

p→1−
inf

x∈[0,1−p]

e1/(1−p−x) + e1/x

2e1/(1−p)
= lim sup

p→1−

2e2/(1−p)

2e1/(1−p)
= lim sup

p→1−
e1/(1−p) =∞.
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4 Conclusion

In the present paper, we studied the worst-case diversification limit

∆
Fd = sup

X∼Fd
lim sup
p→1−

qp(Sd)∑d
i=1 qp(Xi)

under dependence uncertainty. As the main contribution of this paper, we showed that the

above two operators can be exchanged, that is

∆
Fd = lim sup

p→1−
sup
X∼Fd

qp(Sd)∑d
i=1 qp(Xi)

,

and the right-hand-side of the above equation can be calculated either numerically or explicitly

in most practical cases. Furthermore, the upper bound is sharp, since it can be achieved by

a specific random vector. In the case of regularly varying margins, explicit values of ∆
Fd are

given.

The main results in the paper tell us that the impact of dependence uncertainty might

be substantial, especially when the number of risks is large and the quantile levels are far in

right tail, often the case in practice. The literature on EVT already highlighted the relevance

of non-subadditivity of VaR when handling heavy-tailed risks, however we showed that under

the framework of dependence uncertainty ∆
Fd is significantly larger than the limit of the

diversification ratio obtained in models of multivariate regularly varying distributions as shown

in Table 1. Beside emphasizing once more the non-subadditivity of VaR, the results in the

paper stress that the effort posed in the construction of models in EVT might not be sufficient

to characterize the worst non-subadditive behavior, obtained for dependence structures that

are generally unknown and difficult to understand. This work hopefully serves as a first brick

to connect Extreme Value Theory and Dependence Uncertainty, two popular topics in the

recent study of risk aggregation in quantitative risk management.
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A Appendix

Proof of Lemma 2.7. First we show that for any p ∈ (0, 1), Wp(1) is finite. To see

it, for each p ∈ (0, 1), let xi(p) = F−1i (1 − (1 − p)/(d + 1)), i = 1, . . . , d. Note that for any
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X ∼ Fd, we have that

P

(
d∑
i=1

Xi >

d∑
i=1

xi(p)

)
6 P

(
∪di=1{Xi > xi(p)}

)
6

d∑
i=1

P (Xi > xi(p)) 6 1− dp

d+ 1
.

It follows that

q∗p

(
d∑
i=1

Xi

)
6

d∑
i=1

xi(p) for all X ∼ Fd. (A.1)

On the other hand, note that, by Lemma 2.6, it suffices to show the lemma for the case when

F−1i (0) > 0 for i = 1, . . . , n, since Wp(q), q ∈ (p, 1] do not depend on the values of F−1i (u),

u 6 p, as long as they are equal to or less than F−1i (p), i = 1, . . . , d. Since Wp(1) is finite and

limp→1− qp(Xi) =∞ for i = 1, . . . , d, there exists δ ∈ (0, 1− p) such that

q1−2δ(Xi) > Wp(1), i = 1, . . . , d. (A.2)

Take ε ∈ (0, δ) and F
(ε)
i being the distribution function of F−1i (U)1{U61−ε}, i = 1, . . . , d,

U ∼ U[0, 1]. Then it holds that

q∗u−ε(Xi) = q∗u(F−1i (U)1{U61−ε}), ∀ u ∈ (ε, 1). (A.3)

On the other hand, there exists U∗ ∼ FU with copula C∗ such that

Wp(1) > q∗p

(
d∑
i=1

F−1i (U∗i ))

)
> Wp(1)− ε. (A.4)

Note that, by Lemma 2.6,

Wp(1− ε) = sup
X∼F(ε)

q∗p

(
d∑
i=1

Xi

)
> q∗p

(
d∑
i=1

(F
(ε)
i )−1(U∗i )

)
.

It follows from (A.4) that

0 6Wp(1)−Wp(1− ε) 6 q∗p

(
d∑
i=1

F−1i (U∗i ))

)
− q∗p

(
d∑
i=1

(F
(ε)
i )−1(U∗i )

)
+ ε

= q∗p

(
d∑
i=1

F−1i (U∗i ))

)
− q∗p

(
d∑
i=1

F−1i ((U∗i − ε)+)

)
+ ε

6 sup
ui61−δ

{(
d∑
i=1

qui(Xi)

)
−

(
d∑
i=1

q(ui−ε)+(Xi)

)}
+ ε

6
d∑
i=1

sup
06ui61−δ

(
qui(Xi)− q(ui−ε)+(Xi)

)
+ ε, (A.5)
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where the second equality and the third inequality follow from (A.3) and (A.2), respectively.

The right hand side of (A.5) converges to 0 as ε ↓ 0 by the monotone convergence theorem

and q(·)(Xi), i = 1, . . . , d are continuous function and hence a uniformly continuous function

on [0, 1− δ]. Hence, we have that Wp(·) is left continuous at 1.
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Ann. Math., 44, 423–453.

Jakobsons, E., Han, X. and Wang, R. (2016). General convex order on risk aggregation.

Forthcoming in Scand. Actuar. J., DOI: http://dx.doi.org/10.1080/03461238.2015.

1012223.

Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. CRC Press.

Kaas, R., Laeven, R. and Nelsen, R. (2009). Worst VaR sce- narios with given marginals and

measures of association. Insurance: Mathematics and Economics, 44, 146–158.

Kortschak, D. and Albrecher, H. (2009). Asymptotic results for the sum of dependent non-

identically distributed random variables. Methodology and Computing in Applied Probability,

11(3), 279–306.

Makarov, G. D. (1981). Estimates for the distribution function of a sum of two random vari-

ables when the marginal distributions are fixed. Theory Probab. Appl., 26(4), 803–806.

Mao, T. and Hu, T. (2013). Second-order properties of risk concentrations without the condi-

tion of asymptotic smoothness. Extremes, 16(4), 383–405.

Mao, T. and Ng, K. W. (2015). Second-order properties of tail probabilities of sums and

randomly weighted sums. Extremes, 18(3), 403–435.

McNeil, A., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts,

Techniques, and Tools. Princeton University Press, Revised version.
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