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Abstract

Copula function has been widely used in insurance and finance for modeling inter-

dependency between risks. Inspired by the Bernstein copula (BC) put forward by

Sancetta and Satchell (2004), we introduce a new class of multivariate copulas, the

composite Bernstein copula (CBC), generated from a composition of two copulas.

This new class of copula functions is able to capture tail dependence, and it has a

reproduction property for the three important dependency structures: comonotonic-

ity, countermonotonicity and independence. We introduce an estimation procedure

based on the empirical composite Bernstein copula (ECBC) which incorporates both

prior information and data into the estimation. Simulation studies and an empirical

study on financial data illustrate the advantages of the ECBC estimation method,

especially in capturing tail dependence.
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1 Introduction

A copula (or a copula function) is a multivariate distribution function with uniform

[0,1] marginal distributions. Sklar’s Theorem shows that for each joint distribution func-

tion H with marginal distributions F1, . . . , Fn, there exists an n-dimensional copula C

such that

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)),

and the copula C is unique when the marginal distributions F1, . . . , Fn are continuous.

For a detailed introduction of copulas, the readers are referred to the introductory book

Nelsen (2006). Copulas have been widely used in insurance and finance during the past

few decades, and the related research is developing extensively in statistics, probability

and other quantitative fields, including financial mathematics and actuarial science in

particular. The reader is also referred to the books Cherubini et al (2004) for copula

methods in finance and McNeil et al (2005) for copula methods in quantitative risk

management.

New constructions of copulas have become an important research direction for the

past few years, including recently introduced copula families such as the vine copula

(Czado, 2009) and the nested copula (Hofert, 2009). In order to provide a general ap-

proach in statistical estimation and to study the properties of some parametric copulas

with complicated forms, Sancetta and Satchell (2004) introduced a new family of cop-

ulas called the Bernstein copula (BC). For a given copula C, based on the Bernstein

polynomials, the BC is defined as

CB(u1, . . . , un) =

m1∑
v1=0

· · ·
mn∑
vn=0

C(
v1
m1

, . . . ,
vn
mn

)Pv1,m1(u1) . . . Pvn,mn(un), (1)

where Pvj ,mj (uj) :=
(
mj
vj

)
u
vj
j (1− uj)

mj−vj and m1, . . . ,mn are positive integers. More

discussions on the motivation of the BC can be found in Sancetta and Satchell (2004).
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Among many recent research papers on the Bernstein copula, the readers are referred

to Janssen et al (2012), Baker (2008), Dou et al (2013), Sancetta (2007), and Weiβ and

Scheffer (2012) from probabilistic and statistical perspectives, and Diers et al (2012) and

Tavin (2012) from the perspective of applications in non-life insurance and finance.

Inspired by the BC, we will construct a new family of copulas. By looking at the

BC from another prospective, a new construction will be revealed. Let FBin(m,u) be the

binomial distribution function with parameters (m,u), m ∈ N, u ∈ [0, 1] and denote

by F−1
Bin(m,u) the left-continuous inverse function of FBin(m,u). Note that Pvj ,mj (uj) =

P(F−1
Bin(m,uj)

(U) = vj) for a random variable U ∼ U[0, 1], thus the expression (1) can be

written in another form as

CB(u1, . . . , un) = E

[
C

(
F−1
Bin(m1,u1)

(U1)

m1
, . . . ,

F−1
Bin(mn,un)

(Un)

mn

)]
,

where ui ∈ [0, 1], i = 1, . . . , n, and U1, . . . , Un are independent uniform [0,1] random

variables. Using this representation, a natural generalization would be

Cm1,...,mn(u1, . . . , un|C,D) := E

[
C

(
F−1
Bin(m1,u1)

(UD
1 )

m1
, . . . ,

F−1
Bin(mn,un)

(UD
n )

mn

)]
(2)

for (u1, . . . , un) ∈ [0, 1]n, where D is a copula function, and (UD
1 , . . . , UD

n ) is a random

vector with distribution D̄, the survival copula of D. The reason why we use D̄ instead

of D will be revealed later in Section 2. When D is chosen as the independent copula,

i.e.

D(u1, u2, . . . , un) = D̄(u1, u2, . . . , un) =
n∏

i=1

ui, ui ∈ [0, 1], i = 1, . . . , n,

(2) becomes the Bernstein copula (1). Note that the above expression (2) involves two

copula functions C and D. Here the copula function C is called the target copula and the

copula D is called the base copula. (2) can be used to construct new family of copulas.

For example, with a given target copula C, by choosing different copula functions D one

obtains a family of copulas. The generalization (2) leads to interesting properties that

are not shared by the BC, such as capturing tail dependence, as explained later.
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This paper will focus on the function (2). First we will prove that for each copula

functionD and given positive integersm1, . . . ,mn, the function Cm1,...,mn(u1, . . . , un|C,D)

is a copula function. The function is called a composite Bernstein copula (CBC) since it

is based on a composition of the target copula C and the base copula D. The properties

of CBC for fixed m1, . . . ,mn and for mi → ∞, i = 1, . . . , n will be discussed. It will

be shown that the CBC converges to the target copula C as mi → ∞, i = 1, . . . , n,

regardless of the base copula D. We will also prove that for finite m1, . . . ,mn the CBC is

equal to the target copula with some special choices of target copulas and base copulas,

such as Fréchet upper copula M(u1, . . . , un) = min{ui, i = 1, . . . , n}, u1, . . . , un ∈ [0, 1],

the independent copula Π(u1, . . . , un) =
∏n

i=1 ui, u1, . . . , un ∈ [0, 1] and the bivariate

Fréchet lower copula W (u, v) = max{u+ v− 1, 0}, u, v ∈ [0, 1]. The above reproduction

property is very important for application in insurance and finance, since Fréchet upper

copula, the independent copula and the bivariate Fréchet lower copula corresponds to

the three important dependency structures in insurance: comonotonicity, independence

and countermonotonicity (Dhaene et al, 2002a, 2002b).

As pointed out in Sancetta and Satchell (2004), a limitation of the Bernstein cop-

ula is that it fails to capture extreme tail behavior, a relevant and challenging issue in

insurance and finance (Donnelly and Embrechts, 2010). Fortunately, the CBC allows us

to exhibit the tail dependence by choosing proper base copulas D. We will show that

the tail dependence coefficient of CBC is given by a combination of the tail dependence

coefficient of the base copula and that of the target copula.

Based on CBC, we will also provide a copula estimation method using the empirical

CBC (ECBC). The new method is a flexible non-parametric estimation as it incorporates

both prior information and data. A simulation study will show how the choices of base

copula affect the estimation results and an empirical study for financial data highlights

the features of the new method.
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The rest of the paper is organized as follows. In Section 2, we define the CBC and

discuss the theoretical properties of CBC, concerning monotonicity, continuity, symmetry,

reproduction and tail dependence. In Section 3, we introduce the ECBC, provide an

estimation method based on the ECBC and show its asymptotic properties. Simulation

studies and a real data analysis are provided to show the advantage of the new estimation

method proposed in Section 4. In Section 5, we draw a conclusion. Some proofs are put

in the Appendix.

2 General Theory of Composite Bernstein Copulas

Throughout, let FBin(m,u) be the binomial distribution function with parameter

(m,u),m ∈ N, u ∈ [0, 1] and F−1
Bin(m,u) be the left-continuous inverse function of FBin(m,u),

that is, F−1
Bin(m,u)(v) := inf{x ∈ R : FBin(m,u)(x) ≥ v}, v ∈ [0, 1]. Moreover, let Nm,u be

a binomial random variable with distribution FBin(m,u). For any copula C, its survival

copula is denoted as C̄ :

C̄(u1, . . . , un) = P(1− Vi ≤ ui, i = 1, . . . , n),

where (V1, . . . , Vn) is a random vector with distribution function C.

2.1 Definition of the composite Bernstein copula

For a given n-copula C, by incorporating the information of another n-copula D,

with the given positive integers mi, i = 1, . . . , n, we can construct a new function

Cm1,...,mn(u1, . . . , un|C,D), ui ∈ [0, 1], i = 1, . . . , n as follows,

Cm1,...,mn(u1, . . . , un|C,D)

=E

[
C

(
F−1
Bin(m1,u1)

(UD
1 )

m1
, . . . ,

F−1
Bin(mn,un)

(UD
n )

mn

)]

=

m1∑
l1=0

· · ·
mn∑
ln=0

C(
l1
m1

, . . . ,
ln
mn

)P(F−1
Bin(m1,u1)

(UD
1 ) = l1, . . . , F

−1
Bin(mn,un)

(UD
n ) = ln), (3)
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where (UD
1 , . . . , UD

n ) is a random vector with distribution function D̄. As mentioned

in the introduction, (3) can be seen as a generalization of the Bernstein copula, with

possibly different features.

The function Cm1,...,mn(u1, . . . , un|C,D) can also be written in an alternative form.

By letting (V1, . . . , Vn) be a random vector with distribution function C, we have

Cm1,...,mn(u1, . . . , un|C,D)

= E

[
P

(
Vi ≤

F−1
Bin(mi,ui)

(UD
i )

mi
, i = 1, . . . , n|UD

1 , . . . , UD
n

)]
= E[P(FBin(mi,ui)(miVi) ≤ UD

i , i = 1, . . . , n|V1, . . . , Vn)]

= E[D(1− FBin(m1,u1)(m1V1), . . . , 1− FBin(mn,un)(mnVn))]. (4)

Note that (3) and (4) are equivalent. Throughout the paper, in different places we will

use either (3) or (4), whichever is more convenient.

Remark 2.1. We can see that as long as C is a distribution function, (3) is properly

defined and (4) holds. Definition 4 will be used in Section 3 for the estimation purpose,

where C is replaced by the empirical copula, which is not a copula function in general.

We will first show that Cm1,...,mn(u1, . . . , un|C,D) is a copula function with nice

properties as long as C,D are copulas.

Theorem 2.1. Suppose C and D are two n-copulas. Then the following holds:

(i) Cm1,...,mn(u1, . . . , un|C,D), u1, . . . , un ∈ [0, 1] is a copula function.

(ii) C1,...,1(u1, . . . , un|C,D) = D(u1, . . . , un) for u1, . . . , un ∈ [0, 1].

(iii) As m := min{m1, . . . ,mn} → ∞, for u1, . . . , un ∈ [0, 1] we have that

Cm1,...,mn(u1, . . . , un|C,D) → C(u1, . . . , un) (5)

uniformly and the convergence rate is bounded by

|Cm1,...,mn(u1, . . . , un|C,D)− C(u1, . . . , un)| ≤
n∑

i=1

√
ui(1− ui)

mi
. (6)

6



(iv) Cm1,...,mn(·|C,D) admits a density on [0, 1]n if D admits a density on [0, 1]n.

Proof. (i) Let 1 ≥ u2,i ≥ u1,i ≥ 0, i = 1, . . . , n. Then from (4) we know that for li = 0

or li = 1, i = 1, 2, . . . , n,

Cm1,...,mn(u1,1 + l1(u2,1 − u1,1), . . . , u1,n + ln(u2,n − u1,n)|C,D)

= P(1− U1 ≤ 1− FBin(m1,u1,1+l1(u2,1−u1,1))(m1V1), . . . ,

1− Un ≤ 1− FBin(mn,u1,n+ln(u2,n−u1,n))(mnVn)).

Thus

1∑
l1=0

. . .
1∑

ln=0

(−1)l1+···+ln

×Cm1,...,mn(u1,1 + l1(u2,1 − u1,1), . . . , u1,n + ln(u2,n − u1,n)|C,D)

= E[
1∑

l1=0

. . .

1∑
ln=0

(−1)l1+···+lnP(1− U1 ≤ 1− FBin(m1,u1,1+l1(u2,1−u1,1))(m1V1), . . . ,

1− Un ≤ 1− FBin(mn,u1,n+ln(u2,n−u1,n))(mnVn))]

= P(1− FBin(m1,u1,1)(m1V1) ≤ 1− UD
1 ≤ 1− FBin(m1,u1,2)(m1V1), . . . ,

1− FBin(mn,un,1)(mnVn) ≤ 1− UD
n ≤ 1− FBin(mn,un,2)(mnVn)) ≥ 0,

due to the property that for fixed k the function FBin(mi,x)(k) is decreasing about

x. Also, we can easily verify that

Cm1,...,mi,...,mn(1, . . . , 1, ui, 1, . . . , 1|C,D)

= E[C(1, . . . , 1,
F−1
Bin(mi,ui)

(UD
i )

mi
, 1, . . . , 1)] = E

[
F−1
Bin(mi,ui)

(UD
i )

mi

]
= ui.

Thus Cm1,...,mn(u1, . . . , un|C,D) is a copula function.

(ii) Using (4) we have

C1,...,1(u1, . . . , un|C,D) = E[D(1− FBin(1,u1)(V1), . . . , 1− FBin(1,un)(Vn))]

= D(u1, . . . , un).
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(iii) Using the definition (3) one can verify that

|Cm1,...,mn(u1, . . . , un|C,D)− C(u1, . . . , un)|

≤ E|C(
F−1
Bin(m1,u1)

(UD
1 )

m1
, . . . ,

F−1
Bin(mn,un)

(UD
n )

mn
)− C(u1, . . . , un)|

≤
n∑

i=1

E|
F−1
Bin(mi,ui)

(UD
i )

mi
− ui|

≤
n∑

i=1

√
Var(F−1

Bin(mi,ui)
(UD

i ))

mi
=

n∑
i=1

√
ui(1− ui)

mi
.

Thus the inequality (6) follows. (5) is implied by (6).

(iv) Note that for fixed v ∈ (0, 1) the function FBin(m,u)(mv) is differentiable with re-

spect to u ∈ [0, 1] . Thus, ifD admits a bounded density, then we know that for each

v1, . . . , vn ∈ (0, 1), the functionD(1−FBin(m1,u1)(m1v1), . . . , 1−FBin(mn,un)(mnvn))

has a bounded ∂n

∂u1...∂un
derivative for u1, . . . , un ∈ [0, 1]. Thus, by (4) we can see

that C(·|C,D) also has a bounded density.

The copula Cm1,...,mn(u1, . . . , un|C,D) defined in (3) becomes the Bernstein copula

whenD is the independent copula. Hence, in this paper, we call Cm1,...,mn(u1, . . . , un|C,D)

a composite Berstein copula (CBC), as a generalization of the Bernstein copula. By Theo-

rem 2.1, the copula function Cm1,...,mn(·|C,D) is close to C as min{mi, i = 1, . . . , n} → ∞,

hence the copula Cm1,...,mn(·|C,D) can be used to approximate the copula C, as men-

tioned in Sancetta and Satchell (2004). On the other hand, when m1, . . . ,mn are close

to 1, the defined CBC Cm1,...,mn(·|C,D) is close to the copula D. For the above reasons,

we call C a target copula and D a base copula.

Remark 2.2. By the proof of Theorem 2.1 we know that even if C is not continuous,

Cm1,...,mn(. . . |C,D) is continuous as long as D is continuous. This would provide a good

tool for density estimation. From the proof of the theorem we can also find that the

marginal density of Cm1,...,mn(·|C,D) exists if the corresponding marginal density of D

8



exists. On the contrary, since the function F−1
Bin(m,u)(v) in (3) is not continuous with

respect to u, the condition that C admits a density is not sufficient for Cm1,...,mn(·|C,D)

to admit a density.

The following proposition shows that for a CBC with the base copula D and the

target copula C, every marginal distribution of the CBC can also be expressed as a CBC,

where the corresponding base copula and target copula can be chosen as the marginal

distribution of the base copula D and the target copula C. This simple property is

essential to a copula family.

Proposition 2.1. For any n-copulas C,D and each i = 1, . . . , n,

Cm1,...,mn(u1, . . . , ui−1, 1, ui+1, . . . , un|C,D)

= Cm1,...,mi−1,mi+1,...,mn(u1, . . . , ui−1, ui+1, . . . , un|Ci, Di), uj ∈ [0, 1], j ̸= i,

where

Ci(u1, . . . , ui−1, ui+1, . . . , un) = C(u1, . . . , ui−1, 1, ui+1, . . . , un), uj ∈ [0, 1], j ̸= i,

and

Di(u1, . . . , ui−1, ui+1, . . . , un) = D(u1, . . . , ui−1, 1, ui+1, . . . , un), uj ∈ [0, 1], j ̸= i,

are the (n− 1)-marginal copulas of C and D respectively.

Proof. It can be verified directly with (3).

The above proposition states the relationship between the marginal copulas of a

CBC and the marginal distributions of the corresponding target copula and base copula.

2.2 Properties of the composite Bernstein copula

In this section, we study several properties of CBC concerning continuity, linearity

and symmetry.

9



Proposition 2.2.

(i) If the sequence of copulas Ck converges to a copula C uniformly as k goes to infinity,

then Cm1,...,mn(·|Ck, D) converges to Cm1,...,mn(·|C,D) uniformly.

(ii) If the sequence of copulas Dk converges to a copula D uniformly as k goes to infinity,

then Cm1,...,mn(·|C,Dk) converges to Cm1,...,mn(·|C,D) uniformly.

(iii) Suppose that two target copulas C1 and C2 satisfy that C1 ≤ C2, then we have that

Cm1,...,mn(·|C1, D) ≤ Cm1,...,mn(·|C2, D).

(iv) Suppose that two base copulas D1 and D2 satisfy that D1 ≤ D2, then we have that

Cm1,...,mn(·|C,D1) ≤ Cm1,...,mn(·|C,D2).

Proof. For any two copula functions C1 and C2, applying equation (3) we have

Cm1,...,mn(u1, . . . , u2|C1, D)− Cm1,...,mn(u1, . . . , u2|C2, D)

= E[C1(
F−1
Bin(m1,u1)

(UD
1 )

m1
, . . . ,

F−1
Bin(mn,un)

(UD
n )

mn
)]

−E[C2(
F−1
Bin(m1,u1)

(UD
1 )

m1
, . . . ,

F−1
Bin(mn,un)

(UD
n )

mn
)].

Thus part (i) and part (iii) can be proved directly from the above equality. For any two

copula functions D1 and D2, applying equation (4) we have

Cm1,...,mn(u1, . . . , un|C,D1)− Cm1,...,mn(u1, . . . , un|C,D2)

= E[D1(1− FBin(m1,u1)(m1V1), . . . , 1− FBin(mn,un)(mnVn))]

−E[D2(1− FBin(m1,u1)(m1V1), . . . , 1− FBin(mn,un)(mnVn))].

Thus part (ii) and part (iv) can be proved directly from the above equality.

From the above proposition, we can see that the CBC is quite robust with respect

to the target and base copulas. For a given target (base) copula, different base (target)

copulas can be chosen to adjust the value of CBC. Moreover, a linear combination of
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base copulas can be chosen to further adjust the value of CBC conveniently, as shown in

the following proposition. It is a straightforward consequence of (3) and (4), so we omit

the proof here.

Proposition 2.3. Suppose λ ∈ [0, 1] is a constant.

(i) Suppose C1, C2 are two n-copulas and C = λC1 + (1 − λ)C2, then for any base

copula D,

Cm1,...,mn(·|C,D) = λCm1,...,mn(·|C1, D) + (1− λ)Cm1,...,mn(·|C2, D).

(ii) Suppose D1, D2 are two n-copulas and D = λD1 + (1 − λ)D2, then for any target

copula C,

Cm1,...,mn(·|C,D) = λCm1,...,mn(·|C,D1) + (1− λ)Cm1,...,mn(·|C,D2).

Remark 2.3. We can see that Cm1,...,mn is a mapping from Cn×Cn to Cn, where Cn is the

space of n-copulas. The above proposition shows that the CBC admits linearity in terms

of base copulas and target copulas. In summary, Cm1,...,mn : Cn×Cn → Cn is a monotone,

bi-linear and continuous functional.

The next proposition studies the symmetry of the CBC. An n-copula C is symmetric,

if C(u) = C(σ(u)) for all u ∈ [0, 1]n where σ is any n-permutation. And an n-copula C

is radially symmetric, if C(u) = C̄(u) for all u ∈ [0, 1]n where C̄ is the survival copula

of C.

Proposition 2.4. (i) If C and D are both symmetric n-copulas, then Cm,...,m(·|C,D)

is also symmetric;

(ii) For any n-copulas C and D, we have

C̄m1,...,mn(·|C,D) = Cm1,...,mn(·|C̄, D̄).
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In particular, if C and D are both radially symmetric, then Cm1,...,mn(·|C,D) is also

radially symmetric.

Proof. (i) We only show the case n = 2 as the general case n ≥ 3 is similar. Let

(UD
1 , UD

2 ) be a random vector with distribution function D̄. By the definition of

CBC and the symmetry of C and D (and hence D̄) we have that

Cm,m(u2, u1|C,D) = E[C(
F−1
Bin(m,u2)

(UD
1 )

m
,
F−1
Bin(m,u1)

(UD
2 )

m
)]

= E[C(
F−1
Bin(m,u2)

(UD
2 )

m
,
F−1
Bin(m,u1)

(UD
1 )

m
)]

= E[C(
F−1
Bin(m,u1)

(UD
1 )

m
,
F−1
Bin(m,u2)

(UD
2 )

m
)] = Cm,m(u1, u2|C,D),

thus Cm,m(u2, u1|C,D) is symmetric.

(ii) For n fixed and any n-copula C, we define a linear operator S[C] = 1+
∑n

i=1(−1)iSi(C)

where Si(C) is the sum of all i-marginal copulas of C, that is,

Si(C)(u1, . . . , un) =
∑

1≤j1<j2<···<ji≤n

P(Vj1 ≤ uj1 , . . . , Vji ≤ uji),

where (V1, . . . , Vn) follows copula C. Using Poincare Formula it is easy to check that

S[C](1−u1, . . . , 1−un) = C̄(u1, . . . , un) holds for any copula C. Let (UD
1 , . . . , UD

n )

follow copula D̄ and denote

gi :=
F−1
Bin(mi,1−ui)

(UD
i )

mi
, hi :=

F−1
Bin(mi,ui)

(1− UD
i )

mi
.

Note that it is easy to verify gi + hi = 1 almost surely.

By the definition of CBC we know that E[C(g1, . . . , gn)] = Cm1,...,mn(1−u1, . . . , 1−

un|C,D). We first verify that

E[S[C](g1, . . . , gn)] = S[Cm1,...,mn(·|C,D)](1− u1, . . . , 1− un).

This can be seen from Proposition 2.1, by noting that each term of the form

Cm1,...,mn(1− u1, . . . , 1− ui−1, 1, 1− ui+1, . . . , 1− un|C,D)
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in S[Cm1,...,mn(·|C,D)](1− u1, . . . , 1− un) is equal to the term

E[Ci(g1, . . . , gi−1, gi+1, . . . , gn)]

= Cm1,...,mi−1,mi+1,...,mn(1− u1, . . . , 1− ui−1, 1− ui+1, . . . , 1− un|Ci, Di)

in E[S[C](g1, . . . , gn)], where Ci and Di are defined in Proposition 2.1. Other

marginal copula terms are similar. Therefore,

Cm1,...,mn(u1, . . . , un|C̄, D̄)

=E[Ĉ(h1, . . . , hn)] = E[S(C(1− h1, . . . , 1− hn))]

=E[S[C](g1, . . . , gn)]

=S[Cm1,...,mn(·|C,D)](1− u1, . . . , 1− un) = Ĉm1,...,mn(u1, . . . , un|C,D).

A typical radially symmetric family is elliptically contoured distributions (Fang et

al, 1990), including multivariate normal distributions, Student-t distributions, and mul-

tivariate symmetric stable distributions. Sometimes radial symmetry restricts the use

of elliptically contoured distributions in finance or insurance (Frahm et al, 2003). By

Proposition 2.4, choosing different base copulas leads to a CBC with or without this

symmetry.

2.3 Reproduction property

For a given target copula C, it is interesting to see whether there exists base copula

D such that the corresponding CBC can reproduce the target copula C, i.e.

Cm1,...,mn(·|C,D) = C

holds for some positive integers m1, . . . ,mn. For the simplest case m1 = · · · = mn = 1,

D = C is equivalent to C1,...,1(·|C,D) = C by Theorem 2.1(ii). However, for the other

values of m1, . . . ,mn, D = C is not sufficient for Cm1,...,mn(·|C,D) = C in general.
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We find that in the case m1 = · · · = mn = m, for the three fundamental copula

functions: Fréchet upper copula M(u1, . . . , un) = min{ui, i = 1, . . . , n}, u1, . . . , un ∈

[0, 1], independent copula Π(u1, . . . , un) =
∏n

i=1 ui, u1, . . . , un ∈ [0, 1] and Fréchet lower

copula W (u, v) = max{u+ v − 1, 0}, u, v ∈ [0, 1] (Fréchet lower copula is a copula only

in the bivariate case), the condition D = C is sufficient.

Proposition 2.5. In (i) and (ii), all copulas are n-copulas. In (iii), all copulas are

2-copulas.

(i) Cm,...,m(·|M,D) = M if D = M ;

(ii) Cm1,...,mn(·|Π, D) = Π if D = Π;

(iii) Cm,m(·|W,D) = W if D = W .

Proof. (ii) can be directly verified and so we only verify that of (i) and (iii).

(i) We have

Cm...,m(u1, . . . , un|C,D) = E[C(
F−1
Bin(m,u1)

(U)

m
, . . . ,

F−1
Bin(m,un)

(U)

m
)]

= E[min{
F−1
Bin(m,ui)

(U)

m
, i = 1, . . . , n}]

= E[
F−1
Bin(m,min{u1,...,un})(U)

m
]

=
mmin{u1, . . . , un}

m
= min{u1, . . . , un}.

The above proof process uses the fact that F−1
Bin(m,u)(x) is increasing about u when

x is fixed since the function FBin(m,u)(x) is strictly decreasing about u when x is

fixed.

(iii) Consider the case C(u1, u2) = D(u1, u2) = max{u1 + u2 − 1, 0}. Note that the

left-continuous inverse function F−1
Bin(m,u) can be expressed as

F−1
Bin(m,u)(x) = k, FBin(m,u)(k − 1) < x ≤ FBin(m,u)(k), k = 0, 1, 2, . . . ,m,
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where FBin(m,u)(−1) ≡ 0. It is easy to see that for k = 0, 1, 2, . . . ,m,

FBin(m,u)(k) + FBin(m,1−u)(m− k − 1) = 1. (7)

So by the equation (7), if FBin(m,u)(k − 1) < x < FBin(m,u)(k), k = 0, 1, 2, . . . ,m,

we have that

FBin(m,1−u)(m− k − 1) < 1− x < FBin(m,1−u)(m− k)

and

F−1
Bin(m,1−u)(1− x) = m− k = m− F−1

Bin(m,u)(x), u ∈ [0, 1]. (8)

Thus for x ̸= FBin(m,ui)(k), k = −1, 0, 1, 2, . . . ,m, i = 1, 2,

F−1
Bin(m,u1)

(x) + F−1
Bin(m,u2)

(1− x)−m = F−1
Bin(m,u1)

(x)− F−1
Bin(m,1−u2)

(x)

according to the equation (8). Note that the fact that F−1
Bin(m,u)(x) is increasing

about u when x is fixed, we finally have

Cm,m(u1, u2|C,D)

= E[max{
F−1
Bin(m,u1)

(U)

m
+

F−1
Bin(m,u2)

(1− U)

m
− 1, 0}]

= E[max{
F−1
Bin(m,u1)

(U) + F−1
Bin(m,u2)

(1− U)−m

m
, 0}

(
I{u1≥1−u2} + I{u1<1−u2}

)
]

= E[
F−1
Bin(m,u1)

(U) + F−1
Bin(m,u2)

(1− U)−m

m
]I{u1+u2−1≥0}

=
mu1 +mu2 −m

m
I{u1+u2−1≥0} = max{u1 + u2 − 1, 0}.

Remark 2.4. Proposition 2.5 states that CBC has the reproduction property for Fréchet

upper copula, the independent copula and the bivariate Fréchet lower copula, which cor-

respond to the three important dependency structures in insurance and finance: comono-

tonicity, independence and countermonotonicity (Dhaene et al, 2002a, 2002b). Thus CBC

shows its advantage for modeling these special dependency structures.
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2.4 Bivariate tail dependence

Tail dependence (see e.g. Joe, 1997) describes the significance of dependence in

the tail of a bivariate distribution; see also Schmidt (2004). The lower tail dependence

coefficient of a copula C is defined as λC
L := limu↓0

C(u,u)
u and upper tail dependence

coefficient of a copula C is defined as λC
U := limu↓0

C̄(u,u)
u . Gaussian copula is widely

applied in finance due to its relatively simple estimation procedure and computational

ease. However, it is often criticized for not being able to characterize tail dependence

between assets because of its tail independence property. As mentioned in Sancetta and

Satchell (2004), the BC is also unable to capture tail dependence (note that |Cm−C| → 0

uniformly as m → ∞ does not imply λCm
L → λC

L or λCm
U → λC

U ).

CBC is able to capture tail dependence by choosing appropriate base copulas. We

have the following theorem.

Theorem 2.2. Assume that the tail dependence coefficients λD
L and λD

U of the base copula

D exist.

(i) The lower tail dependence coefficient

λ
Cm,m(·|C,D)
L = m× C(

1

m
,
1

m
)× λD

L .

(ii) The upper tail dependence coefficient

λ
Cm,m(·|C,D)
U = m× C̄(

1

m
,
1

m
)× λD

U .

(iii) Assume that the tail dependence coefficients λC
L and λC

U of the target copula C also

exist. Then, as m → ∞,

λ
Cm,m(·|C,D)
L → λC

Lλ
D
L , λ

Cm,m(·|C,D)
U → λC

Uλ
D
U .

16



Proof. First, write

λ
Cm,m(·|C,D)
L = lim

u↓0

Cm,m(u, u|C,D)

u

= lim
u↓0

1

u

[
m∑

n1=1

m∑
n2=1

C(
n1

m
,
n2

m
)P(F−1

Bin(m,u)(U
D
1 ) = n1, F

−1
Bin(m,u)(U

D
2 ) = n2)

]
,

where (UD
1 , UD

2 ) follows D̄.

If n1 > 1 or n2 > 1, we have

lim
u↓0

1

u
P(F−1

Bin(m,u)(U
D
1 ) = n1, F

−1
Bin(m,u)(U

D
2 ) = n2)

≤ lim
u↓0

[
(mn1

)un1(1− u)m−n1

u
+

(mn2
)un2(1− u)m−n2

u

]
= 0. (9)

As a result, we have

λ
Cm,m(·|C,D)
L = C(

1

m
,
1

m
) lim
u↓0

1

u
P(F−1

Bin(m,u)(U
D
1 ) = 1, F−1

Bin(m,u)(U
D
2 ) = 1).

Observe that

P(UD
1 > (1− u)m, UD

2 > (1− u)m)− P(F−1
Bin(m,u)(U

D
1 ) = 1, F−1

Bin(m,u)(U
D
2 ) = 1)

≤ 2(1− FBin(m,u)(1)) = o(u),

and

lim
u↓0

P(UD
1 > (1− u)m, UD

2 > (1− u)m)

u

= lim
u↓0

P(UD
1 > 1−mu+ o(u), UD

2 > 1−mu+ o(u))

u
= m× λD

L . (10)

Then we obtain λ
Cm,m(·|C,D)
L = m× C( 1

m , 1
m)× λD

L .

For (ii), note that by Proposition 2.4 (ii), C̄m,m(·|C,D) = Cm,m(·|C̄, D̄). Thus

λ
Cm,m(·|C,D)
U = λ

C̄m,m(·|C,D)
L = m× C̄(

1

m
,
1

m
)× λD̄

L = m× C̄(
1

m
,
1

m
)× λD

U .

(iii) is directly implies by (i) and (ii).
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Remark 2.5. Theorem 2.2 implies the fact that the BC always have zero tail dependence

coefficients since the base copulaD of a BC is the independent copula, with λD
U = λD

L = 0.

In the CBC family, we can choose base copulas D with λD
U = λD

L = 1 (such as the Fréchet

upper copula M) to preserve the tail dependence coefficients asymptotically.

2.5 Numerical example

In this section, we provide a numerical example for CBC as m → ∞ to exhibit the

influence of base copulas on the difference between CBC and its target copula. Since

the expression for CBC is not explicit in general, we use a Monte-Carlo simulation with

sample size 10000 for the definition (3) to approximate CBC in this section.

From Theorem 2.1, we know that no matter which base copula we choose, the CBC

Cm,m(u1, u2|C,D) will converge to C(u1, u2) as m → ∞. In the following, we choose Cρ,

a Gaussian copula with correlation parameter ρ, as the target copula, and the Fréchet

upper copula M , the Fréchet lower copula W , the independent copula Π and the target

copula Cρ itself are chosen as the base copula to report the numerical values when m is

finite. We would like to see how close CBC is to the target copula.

The absolute distance is approximated by

T (Cm,m(·|C,D)) =
1

K2

K∑
i=1

K∑
j=1

|C(
i

K
,
j

K
)− C∗

m,m(
i

K
,
j

K
|C,D)|, (11)

here C∗
m,m(·|C,D) is the Monte-Carlo simulation of Cm,m(·|C,D), which we treat as the

true value of Cm,m(·|C,D).

From Table 2.1, we find that when the target copula has a highly positive corre-

lation, the Fréchet upper copula as a base copula leads to faster convergence than the

independent and the Fréchet lower copula copulas. Opposite observation can be found

in the case of negative correlation. At the same time, it is clear that the target copula

itself as base copula leads to the fastest convergence. However when m is large enough

the effect of M or W is similar to that of the target copula itself.
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Table 2.1: Approximate distance measured in (11)

Target Copula: Gaussian (ρ = 0.7) Target Copula: Gaussian (ρ = −0.7)

m Base copula m Base copula

M Π W C0.7 M Π W C−0.7

10 0.0039 0.0112 0.0252 0.0024 10 0.0238 0.0100 0.0052 0.0025

20 0.0027 0.0059 0.0132 0.0022 20 0.0118 0.0057 0.0033 0.0023

30 0.0025 0.0042 0.0091 0.0021 30 0.0078 0.0042 0.0030 0.0022

40 0.0022 0.0034 0.0071 0.0020 40 0.0058 0.0035 0.0025 0.0021

100 0.0021 0.0023 0.0034 0.0021 100 0.0032 0.0024 0.0022 0.0020

200 0.0020 0.0021 0.0026 0.0020 200 0.0023 0.0020 0.0020 0.0021

3 Empirical Composite Bernstein Copula

3.1 Definition of empirical composite Bernstein copula

In this section we discuss statistical inference using the composite Bernstein copula.

An estimation procedure will be provided below. We propose to estimate a copula C

based on CBC.

As discussed in Sancetta and Satchell (2004), the Bernstein copulas can be used to

estimate unknown copulas by constructing the empirical Bernstein copulas (EBC). The

CBC serves in the same procedure with even more flexibility by allowing to choose the

base copula D. In what follows, we will introduce the empirical composite Bernstein

copula (ECBC).

Let CN (u), u ∈ [0, 1]n be the empirical copula of sample data V1, . . . ,VN ∈ [0, 1]n

from a copula C, i.e.,

CN (u) =
1

N

N∑
j=1

1{Vj≤u},

where the “≤” is a component-wise inequality.
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Remark 3.1. Here we assume that the data are sampled from a copula, and hence the

marginal distributions are known to be U[0, 1]. If the marginal distributions are unknown,

the empirical copula should be defined as 1
N

∑N
j=1 1{Ṽj≤u}, where Ṽi = (Ṽi,1, . . . , Ṽi,n)

with Ṽi,j = FNj(Vi,j) and FNj is the marginal empirical distribution function of the jth

component.

CN is not a copula for finite N ; it is only a copula asymptotically (as N → ∞).

Note that the empirical copula CN does not have a density. As mentioned in Remark

2.1, the definition (3) does not require C to be a copula. Hence, the following empirical

composite Bernstein copula (ECBC) is properly defined as

C̃m1,...,mn(u|N,D) := Cm1,...,mn(u|CN , D), u ∈ [0, 1]n.

Note that this definition only involves the information of CN on the points ( v1
m1

, . . . , vn
mn

)

for vi ∈ {0, . . . ,mi}, i = 1, . . . , n.

From (4) we can see that the function C̃m1,...,mn(u|N,D) can be easily calculated

by using

C̃m1,...,mn(u1, . . . , un|N,D)

=
1

N

N∑
j=1

D(1− FBin(m1,u1)(m1Vj1), . . . , 1− FBin(mn,un)(mnVjn)), (12)

where Vj = (Vj1, . . . , Vjn), j = 1, . . . , N are the sample data. Moreover, we can express

C̃m1,...,mn(u1, . . . , un|N,D) as

C̃m1,...,mn(u1, . . . , un|N,D)

=

m1∑
l1=0

· · ·
mn∑
ln=0

CN (
l1
m1

, . . . ,
ln
mn

)P(F−1
Bin(m1,u1)

(U1) = l1, . . . , F
−1
Bin(mn,un)

(Un) = ln). (13)

Remark 3.2. ECBC defined in this paper is one generalization of the empirical Bernstein

copula in Sancetta and Satchell (2004). When the base copula D is chosen as the inde-

pendent copula, ECBC becomes the empirical Bernstein copula. As for the density of
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copula function, by Theorem 2.1 we know that the ECBC always has a density if D has

a density. Thus the density of C̃m,...,m(u|N,D), denoted as c̃CB, exists whenever D has

a density.

3.2 Limit theorems for the empirical composite Bernstein copula

The following asymptotic property holds for ECBC. A proof will be given in the

Appendix.

Theorem 3.1. Denote m = min{mi : i = 1, . . . , n}.

(1) We have

lim
m→∞

lim
N→∞

C̃m1,...,mn(u|N,D) = C(u) a.s., u ∈ [0, 1]n. (14)

(2) As m → ∞ and N → ∞,

sup
u∈[0,1]n

|C̃m1,...,mn(u|N,D)− C(u)| = OP

(
1

min{
√
N,

√
m}

)
. (15)

The above theorem provides the influence of the sample size N and the parameters

mi, i = 1, . . . , n on the convergence rate of ECBC.

In the following we consider the asymptotic normality of the ECBC. For simplicity

we consider the bivariate case with m1 = m2 = m. For u1, u2 ∈ (0, 1), we denote

σ2(u1, u2) = C(u1, u2)(1− C(u1, u2)),

V (u1, u2) =
2√
π

(
∂C(u1, u2)

∂u1

√
u1(1− u1) +

∂C(u1, u2)

∂u2

√
u2(1− u2)

)
and

b(u1, u2) =
1

2

[
∂2C(u1, u2)

∂u21
u1(1− u1) +

∂2C(u1, u2)

∂u22
u2(1− u2)

]
+
∂2C(u1, u2)

∂u1∂u2

√
u1(1− u1)

√
u2(1− u2)

∫ ∞

−∞

∫ ∞

−∞
st dD̄(Φ(s),Φ(t)),

where we assume that the corresponding partial derivatives exist.
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Theorem 3.2. Assume that C(u1, u2), (u1, u2) ∈ (0, 1)2 has uniformly bounded third

order partial derivatives and N1/2m−1 → a ∈ [0,∞) as m → ∞. Then for (u1, u2) ∈

(0, 1)2,

Var(N1/2(C̃m,m(u1, u2|N,D)− C(u1, u2))) = σ2(u1, u2)−
1√
m
V (u1, u2) + o

(
1√
m

)
,

as m → ∞. Moreover, for (u1, u2) ∈ (0, 1)2,

N1/2(C̃m,m(u1, u2|N,D)− C(u1, u2))
d→ N(ab(u1, u2), σ

2(u1, u2)), m → ∞.

Remark 3.3. (1) Note that

Var(N1/2(C̃m,m(u1, u2|N,D)− C(u1, u2))) < σ2(u1, u2)

if N is large enough. Thus comparing to the empirical copula function we can reduce the

error of the estimator.

(2) In the case a = 0, the limiting distribution does not depend on the base copula

D. If a > 0, the mean of the limit distribution depends on D, whereas the asymptotic

variance σ2(u1, u2) does not depend on D.

(3) By comparing with the empirical copula function, ECBC can reduce the estima-

tion error and has the same asymptotic variance. In the case N1/2m−1 → a > 0, ECBC

leads to some bias ab(u1, u2).

Remark 3.4. Similarly to the discussion in Janssen et al. (2012, Remark 4), different

choices of m will influence the estimation effect. For instance, the optimal m could be

chosen to minimize the following asymptotic mean squared error (AMSE)

AMSE(C̃m,m) = N−1σ(u1, u2)−m−1/2N−1V (u1, u2) +m−2b2(u1, u2),

leading to an optimal choice

m(N) =

(
4b2(u1, u2)

V (u1, u2)

)2/3

N2/3.

Therefore, one may choose m(N) = cN2/3 for some c > 0.
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3.3 Some remarks on ECBC

The most important advantage of the estimation procedure using ECBC is that we

are able to incorporate both prior information and data into estimation by choosing the

base copula D, which allows flexibility in the estimation. For examples, we can use five

scenarios for choosing the base copula D:

(i) If we have a good guess of the real copula C of the data, we can use it as the base

copula.

(ii) If we do not have a good guess for the real copula, but we guess the real copula is in

a parametric family, we can first perform MLE or other classic estimation method

to find the parametric estimation, and use it as the base copula.

(iii) If we do not have a parametric family, but we observe that each vector of the data

is positively correlated, then we can use M as the base copula. On the other hand,

when n = 2, if we observe that the components of each data point are negatively

correlated, we can use W as the base copula.

(iv) If we do not have any information, then we can use the empirical copula as the base

copula, which gives a completely non-parametric estimation.

(v) When n = 2, if we want to capture the tail dependence information, we can choose

a copula with a large tail dependence coefficient as the base copula.

An accurate guess or prior information of the real copula, chosen as the base copula,

will enhance the estimation significantly (see Section 4 below). Even if the prior guess is

wrong, Theorem 3.1 shows that the ECBC still converges to the real copula asm,N → ∞.

In the above estimation procedure, mi needs to be determined beforehand; see

Sancetta and Satchell (2004) and Janssen et al (2012). Some suggestions on choosing

the optimal mi are given in Remark 3.4. To simplify the procedure, as in Sancetta and
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Satchell (2004) and Janssen et al (2012), we often assume that m1 = m2 = · · · = mn = m

in our simulation studies. The parameter m measures the preference between the base

copula and the data. If m is small, the base copula is trusted. As m increases, the data is

more trusted (see also Remark 2.3). Thus, it is reasonable to choose m → ∞ as N → ∞.

It is worth pointing out that this logic coincides with the classic Bayesian statistics: the

more data we have, the more we trust the data; the less data we have, the more we trust

the prior. This also provides an explanation for the assumption that m → ∞ as N → ∞

in the EBC estimation in Sancetta and Satchell (2004). From Theorem 3.2 we can see

that as N1/2m−1 → 0, ECBC converges to the target copula C. Thus in the statistical

estimation, the parameters mi, i = 1, . . . , n can be chosen as a function of the sample

N , such as satisfying N = O(m
3/2
i ) as suggested in Remark 3.4.

In summary, one can choose the copula function D first, which shows the prior

opinion about our consideration, and then choose the numbers mi, i = 1, . . . , n based on

the size of the sample, and finally the statistical estimation of the parameters in estimator

can be carried out.

4 Simulation Studies and Real Data Analysis

4.1 Simulation studies

In this section, we carry out some simulation studies in the bivariate case to com-

pare the empirical copula estimator CN (u1, u2) with the empirical composite Bernstein

copula estimator C̃m,m(u1, u2|N,D) for different choices of base copula D, parameter m

, including the empirical Bernstein copula estimator (i.e., D = Π). Choices of the base

copula D and the parameter m allow flexibility in the estimation.

In the study, the estimation quality is evaluated by empirically calculating their
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mean discrete L1-norm between the real copula C and an estimator CE , denoted by

R(CE , C) = E

 1

K2

K∑
i=1

K∑
j=1

|C(
i

K
,
j

K
)− CE(

i

K
,
j

K
)|

 . (16)

Here we take K = 100, the repetition r = 10000. The candidates for CE include

(a) The empirical copula CN .

(b) The parametric MLE of a Gaussian copula: ĈG.

(c) The ECBC based on M , Π, W : C̃m,m(·|N,M), C̃m,m(·|N,Π), C̃m,m(·|N,W ). Note

that C̃m,m(·|N,Π) is the empirical Bernstein copula (EBC) introduced in Sancetta

and Satchell (2004).

(d) The ECBC based on the estimated Gaussian copula: C̃m,m(·|N, ĈG).

(e) The ECBC based on the real copula C: C̃m,m(·|N,C).

(f) The ECBC based on the empirical copula CN : C̃m,m(·|N,CN ).

In the first simulation, we focus on the influence of the base copula. We choose

the above estimators CE (a)-(f), and generate N (N = 50, 200) iid random vectors

from a bivariate Gaussian copula C with θ = 0.7. The Gaussian copula with parameter

θ ∈ (−1, 1) is defined as: for (u, v) ∈ [0, 1]2,

Cθ(u, v) = Φθ(Φ
−1(u),Φ−1(v)),

where Φ is the standard Normal distribution function, and Φθ is a two-dimensional normal

distribution function with mean zero and covariance matrix
(
1 θ
θ 1

)
.

In the second simulation, we simulate samples from different copula families. We

choose the above estimators CE (a)-(d), and generate N = 50 iid random vectors from

Gumbel, t- and Clayton copulas with different parameters.
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• The Clayton copula with parameter θ ∈ [−1,∞)\{0} is defined as: for (u, v) ∈

[0, 1]2,

Cθ(u, v) =
[
max

(
u−θ + v−θ − 1, 0

)]− 1
θ
.

• The t-copula with parameters ρ ∈ [−1, 1] and ν > 0 is defined as: for (u, v) ∈ [0, 1]2,

C(u, v) =

∫ t−ν (u)

−∞

∫ t−ν (v)

−∞

1

2π(1− ρ2)1/2
{1 + x2 − 2ρxy + y2

ν(1− ρ2)
}−(ν+2)/2 dydx,

where tν is the distribution function of a t-distribution with ν degrees of freedom

and t−ν denotes the generalized inverse function of tν .

• The Gumbel copula with parameter θ ∈ [1,∞) is defined as: for (u, v) ∈ [0, 1]2,

Cθ(u, v) = exp

{
−
[
(− lnu)θ − (− ln v)θ

] 1
θ

}
.

The results from the first simulation are reported in Table 4.2 and the results from

the second simulation are reported in Table 4.3.

We observe some interesting facts:

(i) The parametric MLE ĈG performs the best for all four samples. This confirms that

a parametric Gaussian estimation can be a quite good approximation to the three

parametric copula families.

(ii) Among the non-parametric methods, ECBC and EBC generally perform better

than the empirical copula CN .

(iii) From Table 4.2, it is clear that C̃m,m(·|N,C) outperforms the other ECBC type of

estimators, and C̃m,m(·|N, ĈG) also preforms quite well. This suggests that a more

accurate base copula leads to a better estimation.

(iv) C̃m,m(·|N,W ) performs poorly for small m because W is very far away from the

real copula C. C̃m,m(·|N,M) performs pretty well, almost always better than the

EBC C̃m,m(·|N,Π) since our choices of real copula all have a positive ρ.
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Table 4.2: R(CE , Cθ) for different choices of C
E . Here we omit N in the ECBC.

N = 50

m C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|W ) C̃m,m(·|ĈG) C̃m,m(·|Cρ) C̃m,m(·|CN )

3 0.0250 0.0374 0.0718 0.0234 0.0227 0.0408

7 0.0304 0.0327 0.0442 0.0301 0.0297 0.0402

14 0.0343 0.0347 0.0383 0.0342 0.0340 0.0407

30 0.0374 0.0373 0.0381 0.0373 0.0372 0.0415

50 0.0387 0.0386 0.0390 0.0387 0.0386 0.0418

R(CN , Cθ) = 0.0438 R(ĈG, Cθ) = 0.0051

N = 200

m C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|W ) C̃m,m(·|ĈG) C̃m,m(·|Cρ) C̃m,m(·|CN )

3 0.0151 0.0337 0.0713 0.0123 0.0120 0.0216

7 0.0166 0.0209 0.0364 0.0157 0.0155 0.0216

14 0.0180 0.0189 0.0243 0.0177 0.0176 0.0217

30 0.0192 0.0193 0.0206 0.0191 0.0190 0.0217

50 0.0198 0.0198 0.0202 0.0197 0.0197 0.0216

R(CN , Cθ) = 0.0221 R(ĈG, Cθ) = 0.0028

(v) Recall that m measures the preference between the data and the base copula. We

observe that when we have a good guess (such as M,C, ĈG) as the base copula,

small m leads to a better estimation. When we have a bad guess as the base copula

(such as W ), small m leads to a worse estimation. Based on this observation, it

is reasonable to let m increase as N increases, since a larger N leads to a more

convincing non-parametric estimation.

(vi) From Table 4.3, among the three ECBCs, C̃m,m(·|N,Π) performs best when the

Spearman’s ρ is low, C̃m,m(·|N,M) performs best when the Spearman’s ρ is high.
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Table 4.3: R(CE , Cθ) for different choices of CE . Here we omit N in the ECBC. The

parameters θ are in parentheses and the Spearman’s ρ are also listed.

Clayton(1), ρ = 0.479 Clayton(3), ρ = 0.788

R(ĈG, Cθ) = 0.0109, R(CN , Cθ) = 0.0440 R(ĈG, Cθ) = 0.0093, R(CN , Cθ) = 0.0445

m C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|W ) C̃m,m(·|ĈG) C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|W ) C̃m,m(·|ĈG)

3 0.0309 0.0317 0.0634 0.0263 0.0258 0.0430 0.0771 0.0264

7 0.0338 0.0324 0.0404 0.0326 0.0321 0.0367 0.0489 0.0325

14 0.0361 0.0351 0.0372 0.0356 0.0356 0.0367 0.0408 0.0358

30 0.0382 0.0377 0.0379 0.0381 0.0387 0.0389 0.0400 0.0388

50 0.0396 0.0393 0.0393 0.0395 0.0400 0.0400 0.0405 0.0400

t(0.5,5), ρ = 0.473 t(0.8,5), ρ = 0.777

R(ĈG, Cθ) = 0.0096, R(CN , Cθ) = 0.0437 R(ĈG, Cθ) = 0.0052, R(CN , Cθ) = 0.0474

m C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|W ) C̃m,m(·|ĈG) C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|W ) C̃m,m(·|ĈG)

3 0.0285 0.0325 0.0662 0.0248 0.0258 0.0443 0.0784 0.0257

7 0.0317 0.0330 0.0441 0.0315 0.0346 0.0389 0.0505 0.0348

14 0.0349 0.0356 0.0394 0.0353 0.0388 0.0400 0.0441 0.0389

30 0.0375 0.0379 0.0390 0.0378 0.0416 0.0419 0.0431 0.0416

50 0.0390 0.0392 0.0398 0.0392 0.0429 0.0431 0.0436 0.0430

Gumbel(1.5), ρ = 0.478 Gumbel(2.5), ρ = 0.789

R(ĈG, Cθ) = 0.0078, R(CN , Cθ) = 0.0420 R(ĈG, Cθ) = 0.0052, R(CN , Cθ) = 0.0477

m C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|W ) C̃m,m(·|ĈG) C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|W ) C̃m,m(·|ĈG)

3 0.0299 0.0290 0.0631 0.0223 0.0267 0.0465 0.0816 0.0266

7 0.0298 0.0293 0.0399 0.0280 0.0351 0.0404 0.0533 0.0352

14 0.0325 0.0320 0.0354 0.0319 0.0388 0.0405 0.0450 0.0388

30 0.0353 0.0350 0.0358 0.0351 0.0417 0.0423 0.0436 0.0417

50 0.0368 0.0366 0.0370 0.0367 0.0432 0.0434 0.0441 0.0432

The ECBC based on the Gaussian copula outperforms the other ECBCs in most

cases.

In summary, the ECBC estimation procedure provides a new method which incorporates
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both the prior information and the data, and it shows its advantage by comparing with

the above non-parametric methods when an appropriate base copula is chosen. It is very

flexible to choose different base copulas.

4.2 Simulation for different m1,m2

In the next we study the the impact of (m1,m2) for m1 ̸= m2. Table 4.4 reports

the L1-error of ECBC with various choices of (m1,m2). The sample is simulated from a

Gumbel copula with parameter θ = 2.5, and the sample size is 500.

We observe that for ECBC with M as the base copula, the estimation error is

minimized when m1 is close to m2, whereas for EBC, such a trend is not observed.

However, optimal choices of m1,m2 are not easy to obtain.

4.3 Financial data analysis

In financial practice, Gaussian copula is often chosen as the benchmark correlation

structure. However, it is well-known that Gaussian copula has zero tail dependence coef-

ficient and the tail property of real financial data cannot be captured. In this empirical

study, we tried to solve this issue by ECBC. From proposition 2.2, we understand that

if the base copula M is chosen, ECBC has positive tail dependence coefficient. Thus, we

can try to capture the tail property of financial data by ECBC with base copula M and

check the impact on overall and tail error.

We use SPY 500 and NASDAQ daily return data, from Jan, 29th, 1993 to Jan, 9th,

2013.

We first use AR(1) model to filter the return series to avoid auto-correlation. In the

Durbin Watson test, the DW statistic for filtered SPY and NASDAQ return is 2.0005

and 2.0001, with a p value of 0.9964 and 0.9862. Based on the filtered time series, half

of the samples are randomly chosen as the test data set. Parametric MLE of Gaussian
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Table 4.4: L1-error of ECBC and EBC with different m1,m2

Empirical composite Bernstein copula with M as the base copula

m1\m2 3 5 10 20 30 40 50 200

3 0.0095 0.0094 0.0111 0.0133 0.0149 0.0161 0.0161 0.0213

5 0.0089 0.0107 0.0106 0.0108 0.0127 0.0116 0.0118 0.0147

10 0.0106 0.0118 0.0107 0.0110 0.0118 0.0118 0.0117 0.0119

20 0.0136 0.0112 0.0113 0.0117 0.0119 0.0117 0.0122 0.0132

30 0.0148 0.0116 0.0119 0.0117 0.0132 0.0126 0.0125 0.0124

40 0.0151 0.0124 0.0119 0.0124 0.0127 0.0128 0.0133 0.0127

50 0.0166 0.0116 0.0118 0.0126 0.0131 0.0124 0.0125 0.0136

200 0.0215 0.0153 0.0126 0.0119 0.0130 0.0117 0.0137 0.0139

Empirical Bernstein copula

m1\m2 3 5 10 20 30 40 50 200

3 0.0371 0.0327 0.0292 0.0282 0.0267 0.0262 0.0256 0.0260

5 0.0341 0.0264 0.0212 0.0204 0.0198 0.0174 0.0179 0.0180

10 0.0300 0.0224 0.0183 0.0151 0.0147 0.0145 0.0149 0.0137

20 0.0280 0.0205 0.0151 0.0129 0.0126 0.0122 0.0128 0.0138

30 0.0270 0.0191 0.0153 0.0124 0.0137 0.0133 0.0132 0.0127

40 0.0258 0.0196 0.0145 0.0135 0.0132 0.0132 0.0135 0.0127

50 0.0262 0.0178 0.0147 0.0131 0.0133 0.0129 0.0129 0.0137

200 0.0263 0.0187 0.0143 0.0124 0.0132 0.0119 0.0138 0.0139

copula ĈG, parametric MLE of Gumbel copula ĈGu, and ECBC with base copula M

and Π are obtained from the test data. The distance between these estimators and the

empirical copula CN based on the training data are shown in the following Table 4.5.

30



L1-error is applied here as the error measure:

Rα(CE , CN ) = E

 1

(K − 1)2

K−1∑
i=1

K−1∑
j=1

∣∣∣∣CE(
i

K
α,

j

K
α)− CN (

i

K
α,

j

K
α)

∣∣∣∣
 , (17)

where K = 100.

Table 4.5: L1-error for different estimators, including parametric MLE of Gaussian copula

ĈG, parametric MLE of Gumbel copula ĈGu, and ECBC with base copula M and Π.

Distance shown in the unit of 10−3

α = 1 α = 0.05 α = 0.01

R1(ĈG, CN ) = 1.6292 R0.05(ĈG, CN ) = 1.1262 R0.01(ĈG, CN ) = 1.3118

R1(ĈGu, CN ) = 4.7681 R0.05(ĈGu, CN ) = 3.6895 R0.01(ĈGu, CN ) = 1.3997

m C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|M) C̃m,m(·|Π) C̃m,m(·|M) C̃m,m(·|Π)

3 3.9409 37.8040 2.3443 10.2103 0.3606 2.3568

5 3.3739 24.4224 1.9946 9.4493 0.3079 2.3218

10 2.7408 12.4731 1.3858 8.0679 0.2501 2.2511

20 2.0906 6.0320 0.9791 6.1239 0.2936 2.1234

30 1.8766 3.8730 0.8258 5.0689 0.4261 2.0348

40 1.7323 2.8096 0.7716 4.2333 0.5217 1.9614

50 1.6297 2.2997 0.7702 3.8635 0.6431 1.9114

200 1.5406 1.6491 0.8837 1.6745 0.9355 1.4716

It can be clearly observed that by applying ECBC with M as base copula, not only

we obtain a smaller overall error compared to EBC but also much better tail distribution

estimation, beating the Gaussian MLE.

5 Conclusion

Based on Bernstein copula (BC) presented by Sancetta and Satchell (2004), this

paper studied one new class of copula functions: the composite Bernstein copulas (CBC).

A CBC is constructed by mixing the information of a base copula and a target copula.
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The CBC converges to the target copula as mi → ∞ and the copula has nice theoretical

properties. The CBC can also be used to model tail dependence. The empirical CBC

(ECBC) was introduced as a non-parametric estimation procedure, and its asymptotic

properties were shown. The ECBC is able to incorporate prior information flexibly with

difference choices of base copulas and the parameter m. Simulation study and empirical

analysis of financial data showed the advantage of the new estimation method, especially

in capturing tail dependence. We remark that in the ECBC estimation procedure, the

optimal choice of m is still unclear and is a possible research direction for future study.
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A Proof of Theorem 3.1

Part (1) is implied by the Law of Large Numbers and Theorem 2.1 (iii). In the

following we show part (2).
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Note that

sup
0≤ui≤1,i≤n

|C̃m1,...,mn(u1, . . . , un|N,D)− C(u1, . . . , un)|

≤ sup
0≤ui≤1,i≤n

|C̃m1,...,mn(u1, . . . , un|N,D)− Cm1,...,mn(u1, . . . , un|C,D)|

+ sup
0≤ui≤1,i≤n

|Cm1,...,mn(u1, . . . , un|C,D)− C(u1, . . . , un)|. (18)

For the first term of the right-hand of the inequality (18), from (3) and (13) we get

sup
0≤ui≤1,i≤n

|C̃m1,...,mn(u1, . . . , un|N,D)− Cm1,...,mn(u1, . . . , un|C,D)|

= sup
0≤ui≤1,i≤n

|
m1∑
l1=0

· · ·
mn∑
ln=0

(CN (
l1
m1

, . . . ,
ln
mn

)− C(
l1
m1

, . . . ,
ln
mn

))

×P(F−1
Bin(m1,u1)

(UD
1 ) = l1, . . . , F

−1
Bin(mn,un)

(UD
n ) = ln)|

≤ sup
0≤li≤mi,i≤n

|CN (
l1
m1

, . . . ,
ln
mn

)− C(
l1
m1

, . . . ,
ln
mn

)|

≤ sup
0≤ui≤1,i≤n

|CN (u1, . . . , un)− C(u1, . . . , un))|.

Thus we obtain that

sup
0≤ui≤1,i≤n

|C̃m1,...,mn(u1, . . . , un|N,D)− Cm1,...,mn(u1, . . . , un|C,D)|

≤ sup
0≤ui≤1,i≤n

|CN (u1, . . . , un)− C(u1, . . . , un))|), a.s. (19)

For the second term of the right-hand of the inequality (18), note that

|Cm1,...,mn(u1, . . . , un|C,D)− C(u1, . . . , un)|

= |E[C(
F−1
Bin(m1,u1)

(U1)

m1
, . . . ,

F−1
Bin(mn,un)

(Un))

mn
)− C(u1, . . . , un)]|

≤
n∑

i=1

E|
F−1
Bin(m1,u1)

(U1)

mi
− ui|

≤
n∑

i=1

√
Var(

F−1
Bin(mi,ui)

(Ui)

mi
) = O(

1
√
m
). (20)
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Combining (19) and (20), we can get

sup
0≤ui≤1,i≤n

|C̃m1,...,mn(u1, . . . , un|N,D)− C(u1, . . . , un)|

≤ sup
0≤ui≤1,i≤n

|CN (u1, . . . , un)− C(u1, . . . , un))|) +O(
1

√
m
)

= OP (
1√
N

) +O(
1

√
m
) = OP (

1

min{
√
N,

√
m}

). (21)

B Proof of Theorem 3.2

For i ≤ N , denote

Ymi =
m∑

l1=0

m∑
l2=0

{(I(Vi,1 ≤
l1
m
,Vi,2 ≤

l2
m
)− C(

l1
m
,
l2
m
))

P(F−1
Bin(m,u1)

(UD
1 ) = l1, F

−1
Bin(m,u2)

(UD
2 ) = l2)}.

Then

N1/2(C̃m,m(u1, u2|N,D)− Cm,m(u1, u2|C,D))

= N−1/2
N∑
i=1

m∑
l1=0

m∑
l2=0

{(I(Vi,1 ≤
l1
m
,Vi,2 ≤

l2
m
)− C(

l1
m
,
l2
m
))

×P(F−1
Bin(m,u1)

(UD
1 ) = l1, F

−1
Bin(m,u2)

(UD
2 ) = l2)}

= N−1/2
N∑
i=1

Ymi. (22)

Note that Ymi, i ≤ N are independent and identically distributed random variables. For

simplicity, we denote

N1,1(u1) = F−1
Bin(m,u1)

(UD
1,1), N1,2(u2) = F−1

Bin(m,u2)
(UD

1,2),

N2,1(u1) = F−1
Bin(m,u1)

(UD
2,1), N1,2(u2) = F−1

Bin(m,u2)
(UD

2,2),

where (UD
1,1, U

D
1,2) and (UD

2,1, U
D
2,2) are independent random vectors with distribution D̄.

For i = 1, 2 and j = 1, 2,

Ni,j(uj)

m
− uj =

Ni,j(uj)−muj√
m

1√
m
.
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Note that

Ni,j(uj)−muj√
m

d→ N(0, uj(1− uj))

and as m → ∞,

P(
Ni,1(u1)−mu1√

mu1(1− u1)
≤ s,

Ni,2(u2)−mu2√
mu2(1− u2)

≤ t)

= D̄(P(
Ni,1(u1)−mu1√

mu1(1− u1)
≤ s),P(

Ni,2(u2)−mu2√
mu2(1− u2)

≤ t))

→ D̄(Φ(s),Φ(t)).

Thus we have

Var(Ymi)

= E[E{(I(Vi,1 ≤
N1,1(u1)

m
,Vi,2 ≤

N1,2(u2)

m
)− C(

N1,1(u1)

m
,
N1,2(u2)

m
))

×(I(Vi,1 ≤
N2,1(u1)

m
,Vi,2 ≤

N2,2(u2)

m
)− C(

N2,1(u1)

m
,
N2,2(u2)

m
))|Vi,1, Vi,2}]

= E[(I(Vi,1 ≤
N1,1(u1) ∧N2,1(u1)

m
,Vi,2 ≤

N1,2(u2) ∧N2,2(u2)

m
)

−I(Vi,1 ≤
N1,1(u1)

m
,Vi,2 ≤

N1,2(u2)

m
)× C(

N2,1(u1)

m
,
N2,2(u2)

m
)

−C(
N1,1(u1)

m
,
N1,2(u2)

m
)I(Vi,1 ≤

N2,1(u1)

m
,Vi,2 ≤

N2,2(u2)

m
)

+C(
N1,1(u1)

m
,
N1,2(u2)

m
)C(

N2,1(u1)

m
,
N2,2(u2)

m
)]

= E[C(
N1,1(u1) ∧N2,1(u1)

m
,
N1,2(u2) ∧N2,2(u2)

m
)

−C(
N1,1(u1)

m
,
N1,2(u2)

m
)C(

N2,1(u1)

m
,
N2,2(u2)

m
)]

= C(u1, u2)− C(u1, u2)
2 +

2√
m

∂C(u1, u2)

∂u1

√
u1(1− u1)E(Z1 ∧ Z2)

+
2√
m

∂C(u1, u2)

∂u2

√
u2(1− u2))E(Z1 ∧ Z2) + o(

1√
m
),

where Z1 and Z2 are independent N(0, 1) random variables. It is easy to verify that

E(Z1 ∧ Z2) = − 1√
π
.
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Finally,

Var(Ymi)

= C(u1, u2)− C(u1, u2)
2 − 2√

m
√
π

∂C(u1, u2)

∂u1

√
u1(1− u1)

− 2√
m
√
π

∂C(u1, u2)

∂u2

√
u2(1− u2) + o(

1√
m
)

= σ(u1, u2)−
1√
m
V (u1, u2) + o(

1√
m
).

Thus from (22) we know that

N1/2(C̃m,m(u1, u2|N,D)− Cm,m(u1, u2|C,D))
d→ N(0, σ2(u1, u2)). (23)

On the other-hand, under the condition of Theorem 3.2, we have

Cm,m(u1, u2|C,D)− C(u1, u2)

= E[C(
F−1
Bin(m,u1)

(UD
1 )

m
,
F−1
Bin(m,u2)

(UD
2 )

m
)− C(u1, u2)]

=
1

2

∂2C(u1, u2)

∂u21
E(

F−1
Bin(m,u1)

(UD
1 )

m
− u1)

2 +
1

2

∂2C(u1, u2)

∂u22
E(

F−1
Bin(m,u2)

(UD
2 )

m
− u2)

2

+
∂2C(u1, u2)

∂u1∂u2
E[(

F−1
Bin(m,u1)

(UD
1 )

m
− u1)(

F−1
Bin(m,u2)

(UD
2 ))

m
− u2)] + o(

1

m
)

=
1

2m
{∂

2C(u1, u2)

∂u21
u1(1− u1) +

∂2C(u1, u2)

∂u22
u2(1− u2)}

+
1

m2

∂2C(u1, u2)

∂u1∂u2
Cov(F−1

Bin(m,u1)
(UD

1 ), F−1
Bin(m,u2)

(UD
2 )) + o(m−1). (24)

Note that

(
F−1
Bin(m,u1)

(UD
1 )−mu1√

mu1(1− u1)
,
F−1
Bin(m,u2)

(UD
2 )−mu2√

mu2(1− u2)
)

d→ D̄(Φ(s),Φ(t)),

thus

Cov(
F−1
Bin(m,u1)

(UD
1 )−mu1√

mu1(1− u1)
,
F−1
Bin(m,u2)

(UD
2 )−mu2√

mu2(1− u2)
)

=

∫ ∞

−∞

∫ ∞

−∞
stdD̄(Φ(s),Φ(t)) + o(1).

Thus from (24) we get

Cm,m(u1, u2|C,D)− C(u1, u2) = m−1b(u1, u2) + o(m−1). (25)
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Combining equation (23) and equation (25), we get

N1/2(C̃m,m(u1, u2|N,D)− C(u1, u2|C,D))

= N1/2(C̃m,m(u1, u2|N,D)− Cm,m(u1, u2|C,D)) +
N1/2

m
(b(u1, u2) + o(1))

d→ N(ab(u1, u2), σ
2(u1, u2)).

39


