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Abstract

Elicitability has recently been discussed as a desirable property for risk

measures. Kou and Peng (2014) showed that an elicitable distortion risk

measure is either a Value-at-Risk or the mean. We give a concise alternative

proof of this result, and discuss the conflict between comonotonic additivity

and elicitability.
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1 Distortion risk measures

We consider a standard atomless probability space (Ω,F ,P), and denote by

D the set of distribution functions on R. A law invariant risk measure ρ is a

mapping from Dρ to [−∞,+∞], where Dρ ⊂ D. Write

H = {h : [0, 1]→ [0, 1] : h is non-decreasing, h(0) = 0 and h(1) = 1}.
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Definition 1.1. A distortion risk measure ρ : Dρ → R is defined by

ρ(F ) =

∫ 0

−∞
(h(1− F (x))− 1)dx+

∫ ∞
0

h(1− F (x))dx, (1.1)

where Dρ is set of some F ∈ D such that (1.1) is well-defined, and h ∈ H is called

the distortion function of ρ.

The two most popular risk measures used in practice, Value-at-Risk (VaR)

and Expected Shortfall (ES), are both distortion risk measures; for a recent dis-

cussion on VaR and ES, see Embrechts et al. (2014). We refer to Wang et al.

(1997), Acerbi (2002), Kusuoka (2001) and Kou and Peng (2014) for more details

and examples of distortion risk measures. Distortion risk measures are closely re-

lated to L-statistics (linear combinations of rank statistics, introduced for robust

estimation); see Chapter 3 of Huber and Ronchetti (2009).

2 Elicitability

Elicitability was originally introduced as a property of set-valued functions.

For consistency, we consider ρ : Dρ → 2R as set-valued functions. This includes,

for example, the case of quantiles, which may be an interval. In most cases, each

value of ρ is a set with exactly one element as in Section 1, and we simply treat

them as mappings to R.

Definition 2.1. A scoring function S : R× R→ [0,∞) is called consistent for ρ

with respect to Dρ, if

E(S(t,X)) 6 E(S(x,X)) (2.1)

for all t ∈ ρ(F ) and all x ∈ R, where X is a random variable with distribution

F ∈ Dρ. We speak of strict consistency of S if equality in (2.1) implies x ∈ ρ(X).

The functional ρ is elicitable (with respect to Dρ) if there exists a strictly consistent

scoring function for it.
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Roughly speaking, the forecasting of an elicitable risk measure can be e-

valuated using a score function, whereas there is no clear criterion to evaluate

the forecasting of a non-elicitable risk measure. Arguments for the desirability

of elicitability for risk management and other statistical sciences can be found in

Gneiting (2011) and Ziegel (2015).

3 Elicitable distortion risk measures

A necessary condition for a functional to to be elicitable are convex level sets,

that is, if t ∈ ρ(F ) ∩ ρ(G), then

t ∈ ρ(λF + (1− λ)G),

whenever λF + (1−λ)G ∈ Dρ for λ ∈ [0, 1]; see Osband (1985). Developments on

risk measures with convex level sets can be found in Weber (2006), Lambert (2012),

Ziegel (2015), Bellini and Bignozzi (2014), Kou and Peng (2014) and Delbaen et

al. (2014). The work of Steinwart et al. (2014) shows that convex level sets are

also a sufficient criterion for elicitability under some weak regularity assumptions

on ρ; see also Lambert (2012).

The work of Weber (2006) investigated monetary risk measures with convex

level sets under some additional regularity assumptions in a context of dynamic

consistency. Under his assumptions, convex level sets are necessary and sufficient

for the risk measure to be a shortfall risk measure. In the case of convex risk

measures, Delbaen et al. (2014) show that Weber’s (2006) assumptions are equiv-

alent to the weak compactness property. They extend his result by showing that

all convex risk measures with convex level sets are necessarily generalized short-

fall risk measures. Bellini and Bignozzi (2014) considered monetary elicitable risk

measures based on the results of Weber (2006). They use a more restrictive def-

inition of elicitability by imposing regularity conditions on the scoring function

S, which in turn ensures that Weber’s assumptions are satisfied. It was shown

that (1) a monetary risk measure is elicitable only if it is a shortfall risk measure;
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(2) a convex risk measure is elicitable if and only if it is a convex shortfall; (3)

a coherent risk measure is elicitable if and only if it is an expectile. In the case

of coherent risk measures it is possible to show directly from the Kusuoka repre-

sentation (Kusuoka, 2001), that the only coherent risk measures with convex level

sets are expectiles; see Ziegel (2015). While it is possible to apply Weber’s (2006)

results to distortion risk measures, this requires unnecessary additional assump-

tions, which can be avoided by exploiting the structure of distortion risk measures

directly.

The following result (Kou and Peng, 2014, Theorem A.1) characterizes distor-

tion risk measures with convex level sets, which leads to a full characterization of

elicitable distortion risk measures. We provide an alternative proof of this result,

which is substantially shorter and less technical.

Theorem 3.1 (Kou and Peng (2014)). Let D∗ be the class of distributions with

finite support and ρ be a distortion risk measure with distortion function h ∈ H

as defined at (1.1) whose restriction to D∗ has convex level sets. Then h is one of

the three cases:

(i) the identity on [0, 1];

(ii) for some α ∈ (0, 1) and c ∈ [0, 1],

h(x) =


0, x ∈ [0, α),

c, x = α,

1, x ∈ (α, 1];

(3.1)

(iii) for some c ∈ [0, 1],

h(x) =


0, x = 0,

c, x ∈ (0, 1),

1, x = 1.

(3.2)
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Proof. Let 0 < x < y, λ ∈ [0, 1]. Then

ρ((1− λ)δx + λδy) = x+ h(λ)(y − x),

where δx is the Dirac measure at the point x ∈ R. In particular, ρ(δ1) = 1. Let

λ ∈ [0, 1] such that h(λ) > 0. All 0 < x < y such that ρ((1− λ)δx + λδy) = 1 are

characterized by the equation

y =
(

1− 1

h(λ)

)
x+

1

h(λ)
.

In order to obtain x < y, we need to choose x < 1, which then implies y > 1.

Convexity of level sets on D∗ now implies for all p ∈ [0, 1], 0 < x < 1 < y

chosen as described before, that

1 = ρ
(
p((1− λ)δx + λδy) + (1− p)δ1

)
= x+ h(1− p(1− λ))(1− x)− h(λp)

(
1− 1

h(λ)

)
(1− x),

hence

h(λ) = h(λ)h(1− (1− λ)p) + (1− h(λ))h(λp), λ, p ∈ [0, 1]. (3.3)

Let λ0 := inf{t | h(t) > 0}. Assume λ0 > 0 and let λ ∈ (λ0, 1] and p0 = λ0/λ.

Then, h(λ) > 0 and for p ∈ [0, p0), we have h(λp) = 0. Equation (3.3) now implies

that h(t) = 1 for t ∈ (1 − p0(1 − λ), 1] = (1 − λ0(1 − λ)/λ, 1]. As this holds for

all λ ∈ (λ0, 1], we obtain h(t) = 1 for t ∈ (λ0, 1], hence h is of the form (3.1) as in

case (ii).

Assume form now on that λ0 = 0, i.e. h > 0 on (0, 1]. If there is λ′ ∈ (0, 1)

such that h(λ′) = 1, pick λ < λ′ and p ∈ [0, 1] such that λ′ = 1− p(1− λ). Then

(3.3) implies that h(λ) = 1, hence h = 1 on (0, 1], and h is of the form (3.1).

So suppose now that 0 < h < 1 on (0, 1). Integrating (3.3) over p ∈ [0, 1] we

obtain for λ ∈ (0, 1)

h(λ) = h(λ)

∫ 1

0

h(1− (1− λ)p)dp+ (1− h(λ))

∫ 1

0

h(λp)dp

=
h(λ)

1− λ

∫ 1

λ

h(x)dx+
1− h(λ)

λ

∫ λ

0

h(x)dx

=
h(λ)

1− λ
(g(1)− g(λ)) +

1− h(λ)

λ
g(λ),
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where g(λ) =
∫ λ
0
h(x)dx. Or, equivalently

h(λ)
(
λ− λ

1− λ
(g(1)− g(λ)) + g(λ)

)
= g(λ). (3.4)

The function g is continuous on (0, 1), hence (3.4) shows that also h is continuous

in (0, 1). But this implies in turn that g is continuously differentiable in (0, 1).

Because h > 0, we obtain that λ− λ
1−λ(g(1)− g(λ)) + g(λ) > 0 on (0, 1). Hence,

h(λ) =
g(λ)

λ− λ
1−λ(g(1)− g(λ)) + g(λ)

,

which implies the continuous differentiability of h on (0, 1).

Differentiating (3.3) with respect to p yields

−h(λ)h′(1− p(1− λ))(1− λ) + (1− h(λ))h′(λp)λ = 0.

Let H = {λ ∈ (0, 1) : h′(λ) > 0}. If H is non-empty, then we obtain, by

putting p = 1, that h(λ) = λ for λ ∈ H. As h′ is continuous, H is an open set;

therefore h′(λ) = 1 for λ ∈ H, which along with the continuity of h′ further implies

H = (0, 1), that is, h(λ) = λ on (0, 1), which belongs to case (i). If H is empty,

then h(x) = c for all x ∈ (0, 1) for some constant c ∈ (0, 1), which belongs to case

(iii).

Theorem 3.1 implies that an elicitable distortion risk measure with respect

to any set containing D∗ has to be either a quantile or the mean. Since distortion

risk measures are continuous with respect to the Wasserstein distance and are

translation-invariant, one can easily see that if a distortion risk measure has convex

level sets on all bounded absolutely continuous distributions, then it has to have

convex level sets on D∗.

If h is the identity on [0, 1], then ρ is the mean, which is elicitable with

respect to the class of all integrable probability distributions; see Savage (1971)

and Banerjee et al. (2005). If h = c1{α} + 1(α,1], then ρ is an α-quantile, which

is elicitable to the class of all absolutely continuous probability distributions; see

Thomson (1979) and Gneiting (2011).
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Strictly speaking, a left-quantile (or right-quantile or a convex combination of

the two) is not elicitable with respect to D∗ despite its convex level sets. However,

we do not believe that this is a problem in applications where quantile forecasts

are to be evaluated and compared because in the case of distributions with positive

density functions on their support, quantiles are unique.

In summary, for all practical purposes Value-at-Risk (quantiles) and the mean

are elicitable distortion risk measures and they are the only ones. This characteri-

zation was given in Kou and Peng (2014, Theorem 2.1) in a slightly different form

(elicitability is treated for single-valued functions in the latter paper; there is no

essential difference).

Remark 3.1. We observe from the proof that it is already sufficient to choose

D∗ as the class of three-point distributions. Hence, any distortion risk measures

except for the mean and Value-at-Risk are not elicitable with respect to bounded

discrete distributions.

4 Discussion

Roughly speaking, there is a fundamental conflict between distortion and

elicitability. This is due to the fact that comonotonic additivity, which is the

essential property for distortion risk measures, requires linearity on the inverse

distribution functions, that is,

ρ(λF−1(U) + (1− λ)G−1(U)) = λρ(F−1(U)) + (1− λ)ρ(G−1(U)), λ > 0, (4.1)

where U is a uniform random variable on [0, 1] and F and G are two distribution

functions in Dρ. On the other hand, elicitability requires convex level sets on the

level of distribution functions, that is,

ρ(λF + (1− λ)G) = λρ(F ) + (1− λ)ρ(G), λ ∈ (0, 1), (4.2)

where F and G are two distributions functions in Dρ such that ρ(F ) = ρ(G) (note

that here ρ is treated as a functional on Dρ). Imposing both requirements is very
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restrictive as demonstrated in Section 3. Note that condition (4.1) for all F and

G leads to Choquet integrals, whereas condition (4.2) for all F and G leads to

expected utility functions (von Neumann-Morgenstern Theorem); such observa-

tion leads to the dual theory of risk preference in Yaari (1987) and Schmeidler

(1989). The intersection of both types of functionals is apparently only the mean.

Elicitability only requires (4.2) for F and G such that ρ(F ) = ρ(G); this allows the

Value-at-Risk (which does not belong to the class of expected utility functions) to

still be generally elicitable.

Elicitability and comonotonic additivity both have their own justifications

for applications, just like other properties considered in the literature, such as

robustness and convexity. Depending on specific needs of the practical situation,

some requirements may be more important than others. It appears that there

is no risk measure that is recommendable in all situations; one should carefully

choose the risk measure to use and know its limitations.
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