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Abstract

Many optimization problems in probabilistic combinatorics and mass transportation im-

pose fixed marginal constraints. A natural and open question in this field is to determine

all possible distributions of the sum of random variables with given marginal distributions;

the notion of joint mixability is introduced to address this question. A tuple of univariate

distributions is said to be jointly mixable if there exist random variables, with respective dis-

tributions, such that their sum is a constant. We obtain necessary and sufficient conditions

for the joint mixability of some classes of distributions, including uniform distributions, dis-

tributions with monotone densities, distributions with unimodal-symmetric densities, and

elliptical distributions with the same characteristic generator. Joint mixability is directly

connected to many open questions on the optimization of convex functions and probabilistic

inequalities with marginal constraints. The results obtained in this paper can be applied to

find extreme scenarios on risk aggregation under model uncertainty at the level of depen-

dence.
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1 Introduction

In a standard atomless probability space (Ω,F ,P), assuming Xi ∼ Fi, i = 1, . . . , n for given

univariate distributions F1, . . . , Fn, what can we say about the distribution of S = X1+ · · ·+Xn,

when the dependence structure among X1, . . . , Xn is allowed to be arbitrary? That is
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(Q) to determine whether a given distribution F is a possible distribution of S.

The simply-stated question (Q) turns out to be highly non-trivial to answer. A more general

question arises if the sum S is replaced by any measurable function on Rn of X1, . . . , Xn. At

this moment, even the case for the sum seems to be challenging enough; we focus on this special

case in this paper. To frame question (Q) mathematically, we denote the set of all possible

multivariate distributions with given marginal distributions, called a Fréchet class, as

Fn = Fn(F1, . . . , Fn) = {distribution of (X1, . . . , Xn) : Xi ∼ Fi, i = 1, . . . , n}, (1.1)

and the set of all possible distributions of the sum of random variables with given marginal

distributions as

Sn = Sn(F1, . . . , Fn) = {distribution of X1 + · · ·+Xn : Xi ∼ Fi, i = 1, . . . , n}. (1.2)

The study on Fn is referred to as distributions with fixed margins. Early results on inequalities in

Fréchet classes date back to Hoeffding (1940) and Fréchet (1951). Some later milestone results

on inequalities and compatibility for distributions with fixed margins include Strassen (1965),

Dall’Aglio (1972) and Tchen (1980). A collection of more recent research developments in this

area can be found in Dall’Aglio et al. (1991) and Cuadras and Fortiana (2002). We refer to Joe

(1997) for an overview on dependence concepts and Fréchet classes.

The set of distributions Fn is fully characterized, whereas the characterization of Sn is not

clear yet. Therefore, optimization problems over Sn could be much more challenging than classic

optimization problems over Fn. We write S ∈d Sn if the distribution of S is in Sn. Typical

examples of optimization problems over Sn include

sup
S∈dSn

ρ(S) and inf
S∈dSn

ρ(S) (1.3)

for a law-determined convex functional ρ : X → R where X is a set of random variables on

(Ω,F ,P), and

sup
S∈dSn

P(S 6 s) and inf
S∈dSn

P(S 6 s) (1.4)

for a real number s. The history of the search for such optimizations problems goes back to

Makarov (1981), who, in response to a question earlier raised by A.N. Kolmogorov, gave the

maximal and minimal values in (1.4) for n = 2. The optimization of convex functions in (1.3)

are answered in Tchen (1980): the maximum for any n and the minimum for n = 2 are solved.

However, general solutions to (1.3) and (1.4) are not available for n > 3 except for the maximum

problem in (1.3). Since such extreme values are important in quantitative risk management,

significant mathematical developments are made also in the financial mathematics literature;

the interested reader is referred to Embrechts et al. (2014) for history, financial implications and
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recent progresses on such questions. Contributions have been made using copulas and mass-

transportation techniques (see Rüschendorf, 2013), but a feasible way to fully answer question

(Q) is never clear. As far as we know, even for the case n = 2 question (Q) is still open. The

optimization problem (1.3) includes discrete minimization of the maximal time spent by a set of

workers (the bottleneck of a schedule); see for instance Haus (2015).

In this paper, we will partially answer question (Q) by formally introducing the theory of

joint mixability. A vector (X1, . . . , Xn) is called a joint mix if X1 + · · ·+Xn is almost surely a

constant. An n-tuple of distributions (F1, . . . , Fn) is said to be jointly mixable if there exists a

joint mix with univariate marginal distributions F1, . . . , Fn. The concept of joint mixability was

first introduced in Wang et al. (2013), as a generalization of complete mixability in Wang and

Wang (2011) (a distribution F is n-completely mixable if there exists a joint mix taking values

in Rn with marginal distributions identical to F ). Earlier study of risks with constant sum,

containing special cases of complete mixability, can be found in Gaffke and Rüschendorf (1981),

Rüschendorf and Uckelmann (2002) and Müller and Stoyan (2002, Section 8.3.1). Wang et al.

(2013) briefly defined joint mixability with limited mathematical development of the theory.

Question (Q) can be reformulated as: do there exist random variables S,X1, . . . , Xn such

that S ∼ F, Xi ∼ Fi, i = 1, . . . , n and X1 + · · · + Xn − S = 0? Equivalently, letting F̄ (x) =

P(−S 6 x), is (F̄ , F1, . . . , Fn) jointly mixable? Here without loss of generality we can choose the

constant K to be 0 by shifting F . Therefore, question (Q) is equivalent to the determination of

joint mixability.

Complete mixability and joint mixability describe whether it is possible to generate random

variables from given distributions with a target distribution of the sum. The properties are par-

ticularly of interest in quantitative risk management, where dependence between risks is usually

unknown or partially unknown. The notion of complete mixability helps to determine best- and

worst-cases of capital requirements (special cases of (1.3) and (1.4)) under dependent uncer-

tainty ; for such discussions, the reader is referred to Wang et al. (2013), Bernard et al. (2014)

and Embrechts et al. (2013, 2015). A connection of the above probabilistic problems to mass-

transportation theory is found in Rüschendorf (2013). Note that the existing research mainly

focused on complete mixability; results on joint mixability are very limited in the literature as

it is a relatively new notion and is regarded as more challenging.

Complete mixability and joint mixability can be treated as the strongest form of negative

dependence; see for instance Müller and Stoyan (2002, Section 8.3.1) and Puccetti and Wang

(2015b). Existing results on complete mixability are summarized in Wang and Wang (2011)

and Puccetti et al. (2012, 2013). Although it has been mentioned with applications, non-trivial

examples of jointly mixable distributions are only found in Wang et al. (2013) where necessary
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and sufficient conditions for the joint mixability of normal distributions are given. A numerical

procedure to check joint mixability is presented in Puccetti and Wang (2015a). In this paper, we

develop the theory of joint mixability, and provide necessary and sufficient conditions for the joint

mixability of uniform distributions, distributions with monotone densities, distributions with

unimodal-symmetric densities, and elliptical distributions with the same characteristic generator.

The most valuable and technical contribution of this paper is Theorem 3.2 which characterizes

the joint mixability of distributions with monotone densities. It generalizes Theorem 2.4 of Wang

and Wang (2011), which is regarded as the most relevant result on complete mixability for risk

management (see Embrechts et al., 2014, Section 3).

The rest of the paper is organized as follows. In Section 2 we introduce the definition, some

examples, necessary conditions and some technical properties of joint mixability. In Section 3

we present our main results on sufficient conditions of joint mixability for some classes of distri-

butions. In particular, the main technical result in this paper provides sufficient and necessary

conditions for the joint mixability of a tuple of distributions with monotone densities. Section 4

is dedicated to some probabilistic inequalities and applications related to our main results. The

proofs of the main theorems are put in Section 5. Section 6 draws a conclusion.

2 Joint mixability

Throughout the paper, we consider a standard atomless probability space (Ω,A,P) and

let Lp := Lp(Ω,A,P), p ∈ [0,∞] be the set of all real-valued random variables on that proba-

bility space with finite p-moment. For simplicity, we identify probability distributions with its

cumulative distributions functions (cdf) in this paper. For a cdf F , we write X ∼ F to denote

F (x) = P(X 6 x), x ∈ R. We also denote the generalized inverse function of F by F−1(p), that

is F−1(p) = inf{t ∈ R : F (t) > p} for p ∈ (0, 1], and F−1(0) = inf{t ∈ R : F (t) > 0}. We write

X
d
= Y if the random variables (or vectors) X and Y have the same distribution.

2.1 Definition

Definition 2.1 (Joint mixability). Suppose n is a positive integer. An n-tuple of probability

distributions on R (F1, . . . , Fn) is jointly mixable (JM) if there exist n random variables X1 ∼

F1, . . . , Xn ∼ Fn such that X1 + · · · + Xn =: K is almost surely a constant. Such K ∈ R is

called a joint center of (F1, . . . , Fn), and the random vector (X1, . . . , Xn) is called a joint mix.

We denote by Jn(K) the set of all n-tuples of JM distributions with joint center K, that is,

Jn(K) = {(F1, . . . , Fn) : (F1, . . . , Fn) is JM with joint center K}.
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A probability distribution F on R is n-completely mixable (n-CM) if (F, . . . , F ) ∈ Jn(K) for

some K.

Remark 2.1. Equivalently, (F1, . . . , Fn) is jointly mixable if the set Sn in (1.2) contains a de-

generate distribution. When the means of F1, . . . , Fn are finite, the joint center K is unique and

equal to the sum of the means of F1, . . . , Fn.

The term mixability in Definition 2.1 reflects that the property concerns whether one is able

to construct a joint mix with the given margins. We first give a few natural examples of joint

mixes and jointly mixable distributions.

Example 2.1 (Multinomial distributions). Suppose that (X1, . . . , Xn) follows from a multino-

mial distribution with parameters (N ; p1, . . . , pn), N ∈ N, p1, . . . , pn > 0 and
∑n
i=1 pi = 1. That

is, for (x1, . . . , xn) ∈ Nn0 ,

P(X1 = x1, . . . , Xn = xn) =
N !

x1! . . . xn!
px1
1 . . . pxn

n I{x1+···+xn=N}.

Obviously, (X1, . . . , Xn) is a joint mix by definition. The marginal distributions of a multinomial

distribution with parameters (N ; p1, . . . , pn) are binomial distributions with respective parame-

ters (N ; p1), . . . , (N ; pn). As a consequence, an n-tuple of binomial distributions with respective

parameters (N ; p1), . . . , (N ; pn) where
∑n
i=1 pi = 1 is jointly mixable.

Example 2.2 (Multivariate normal distributions). Suppose that σ1, σ2, σ3 > 0,

2 max
i=1,2,3

σi 6 σ1 + σ2 + σ3, (2.1)

and (X1, X2, X3) follows from a multivariate normal distribution with parameters (0,Σ) where

Σ =


σ2
1

1
2 (σ2

3 − σ2
1 − σ2

2) 1
2 (σ2

2 − σ2
1 − σ2

3)

1
2 (σ2

3 − σ2
1 − σ2

2) σ2
2

1
2 (σ2

1 − σ2
2 − σ2

3)

1
2 (σ2

2 − σ2
1 − σ2

3) 1
2 (σ2

1 − σ2
2 − σ2

3) σ2
3

 .

It is straightforward to check that Σ is positive semi-definite under condition (2.1) and hence

the multivariate normal distribution with parameters (0,Σ) is well defined. We can verify that

E[(X1 + X2 + X3)2] = 0 which is the summation of all entries in Σ. Hence, (X1, . . . , Xn) is a

joint mix, and the triplet of normal distributions (N(0, σ2
1),N(0, σ2

2),N(0, σ2
3)) is jointly mixable.

Later we will see that (2.1) is necessary and sufficient for the joint mixability of distributions in

a broad class.

Recent results on complete mixability can be found in Wang and Wang (2011), Puccetti et

al. (2012, 2013). On the other hand, the properties and characterization of JM distributions are

very limited in the literature (only Wang et al. (2013) gave a result on normal distributions). In
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this paper, we aim to explore the theory for joint mixability in more depth. Some of the results

on joint mixability are parallel to the results on complete mixability; however we remark that

most of the proofs on complete mixability cannot be naturally generalized to joint mixability,

and much more work is needed. In the next section, law-determined norms will be used.

Definition 2.2 (Law-determined norm). A law-determined norm || · || is a map from L0 to

[0,∞], such that

(i) ||aX|| = |a| · ||X|| for a ∈ R and X ∈ L0;

(ii) ||X + Y || 6 ||X||+ ||Y || for X,Y ∈ L0;

(iii) ||X|| = 0 implies X = 0 a.s.;

(iv) ||X|| = ||Y || if X
d
= Y , X,Y ∈ L0.

The Lp-norms p ∈ [1,∞), || · ||p : L0 → [0,∞], X 7→ (E[|X|p])1/p and the L∞-norm

|| · ||∞ : L0 → [0,∞], X 7→ ess-sup(|X|) are law-determined norms. Here, we allow || · || to take a

value of ∞, which means that the non-negative functional || · || is not necessarily a norm in the

common sense; we slightly abuse the terminology here since all natural examples are norms in

respective proper spaces.

2.2 Properties

Throughout this paper, for i = 1, . . . , n, we denote by µi the mean of Fi and let ai = sup{x :

Fi(x) = 0}, bi = inf{x : Fi(x) = 1} and li = bi − ai. All of the above quantities are possibly

infinite.

We first give three necessary conditions for joint mixability. The three conditions seem

trivial, but they are essential for several classes of distributions to be JM, as we will discuss in

Section 3. To avoid possible ill-definition, we naturally allow −∞+∞ 6 K 6 −∞+∞ for any

K ∈ R ∪ {−∞,∞}.

Theorem 2.1 (Necessary conditions). If the n-tuple of distributions (F1, . . . , Fn) is JM, and

µ1, . . . , µn are finite, then the following inequalities hold:

(a) (Mean inequality)

n∑
i=1

ai + max
i=1,...,n

li 6
n∑
i=1

µi 6
n∑
i=1

bi − max
i=1,...,n

li. (2.2)

(b) (Norm inequality)
n∑
i=1

||Xi − µi|| > 2 max
i=1,...,n

||Xi − µi||, (2.3)

where Xi ∼ Fi, i = 1, . . . , n and || · || is a law-determined norm on L0.
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Proof. For part (a), we only need to prove for the cases where at least one of

n∑
i=1

ai + max
i=1,...,n

li,

and

n∑
i=1

bi − max
i=1,...,n

li is finite. For part (b), we only need to show for the case where each ||Xi||

is finite.

(a) Assume
∑n
i=1 ai + maxi=1,...,n li is finite. Take ε > 0. Suppose Xi ∼ Fi, i = 1, . . . , n and

X1 + · · ·+Xn = K ∈ R. Since the support of Fi is bounded away from −∞, i = 1, . . . , n, it

is easy to see that K =
∑n
i=1 µi. Then for any j = 1, . . . , n

I{K>
∑n

i=1 ai+lj−ε} = P

(
n∑
i=1

Xi >

n∑
i=1

ai + lj − ε

)
> P (Xj > bj − ε) > 0.

This implies
n∑
i=1

µi >
n∑
i=1

ai + max
i=1,...,n

li.

The other half of the assertion is similar.

(b) Since (F1, . . . , Fn) is JM, there exists a joint mix (Y1, . . . , Yn) where Yi ∼ Fi, i = 1, . . . , n.

Then
∑n
i=1(Yi − µi) = 0. It follows that for j = 1, . . . , n,

||Yj − µj || =

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
i=1,i6=j

(Yi − µi)

∣∣∣∣∣∣
∣∣∣∣∣∣ 6

n∑
i=1,i6=j

||Yi − µi||,

and (2.3) follows since || · || is law-determined.

Remark 2.2. Suppose that (F1, . . . , Fn) is JM. If µ1, . . . , µn are finite, (2.2) implies that

min
i=1,...,n

ai > −∞ ⇔ max
i=1,...,n

bi <∞.

Indeed, the above assertion holds without assuming the finiteness of µ1, . . . , µn. To see this,

suppose that mini=1,...,n ai > −∞ and bj = ∞ for some j = 1, . . . , n. Then for any x ∈ R, and

Xi ∼ Fi, i = 1, . . . , n,

P(X1 + · · ·+Xn > x) > P

Xj > x−
n∑

i=1, i 6=j

ai

 > 0.

This shows that (X1, . . . , Xn) cannot be a joint mix. The case when maxi=1,...,n bi < ∞ and

aj = −∞ for some j = 1, . . . , n is similar.

Theorem 2.1 (a) is a generalization of the mean condition for complete mixability, which is

of crucial importance in the study of complete mixability. Note that joint mixability is location-

invariant; the mean condition is not affected by affine transformations. As an additional condition

for joint mixability, (b) forms a polygon inequality: the largest component can not be greater
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than the sum of the rest. This is geometrically intuitive, since if we treat X1, . . . , Xn as vectors,

then they form an n-polygon if and only if X1 + · · ·+Xn = 0.

When (F1, . . . , Fn) is JM, inequality (2.3) holds for all possible law-determined norms,

which could be difficult to check theoretically. In the following corollary we give some special

cases of (2.3) which can be easily checked, and sometimes they turn out to be sufficient as well.

We denote by σ2
i the variance of Fi, i = 1, . . . , n; they could be infinite.

Corollary 2.2 (Necessary conditions - special cases). If the n-tuple of distributions (F1, . . . , Fn)

is JM, then the following inequalities hold:

(c) (Length inequality)
n∑
i=1

li > 2 max
i=1,...,n

li. (2.4)

(d) (Variance inequality)
n∑
i=1

σi > 2 max
i=1,...,n

σi. (2.5)

Proof. If maxi=1,...,n li <∞, (2.4) follows directly from (2.2) by noting that

n∑
i=1

ai + max
i=1,...,n

li 6
n∑
i=1

bi − max
i=1,...,n

li ⇒ 2 max
i=1,...,n

li 6
n∑
i=1

(bi − ai);

if maxi=1,...,n li =∞, then (2.4) holds trivially. (2.5) follows directly from (2.3).

In some cases, (c) and (d) are equivalent (for example, when F1, . . . Fn are in a scale family

with bounded support; in that case, (b) is also equivalent to (c) and (d)). We remind the readers

that conditions (a)-(d) are generally not sufficient for joint mixability. Later in this paper, we

will show that (a)-(d) are sufficient for some classes of distributions.

To characterize joint mixability, we begin by looking at the set of jointly mixable distribu-

tions. In the following we give some basic properties of joint mixability, which will be used to

prove the main results in Section 3. The properties (i)-(v) are parallel to Proposition 2.1 in Wang

and Wang (2011) and Theorems 3.1 and 3.2 in Puccetti et al. (2012) for complete mixability,

and they can be checked in a relatively straightforward manner; we only give a proof for (iv)

here.

Proposition 2.3. For simplicity, we denote by F = (F1, . . . , Fn) and G = (G1, . . . , Gm). Here

the positive integers n and m can be the same depending on the context. Suppose K,L ∈ R.

(i) If F,G ∈ Jn(K), then λF + (1− λ)G ∈ Jn(K) for all λ ∈ [0, 1].

(ii) If F ∈ Jn(K) and G ∈ Jm(L), then (F1, . . . , Fn, G1, . . . , Gm) ∈ Jn+m(K + L).

(iii) The element-wise weak limit of a sequence in Jn(K) is still in Jn(K).
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(iv) As a consequence of (i) and (iii), a (possibly infinite) convex combination of vectors in

Jn(K) is still in Jn(K).

(v) Given r, t1, . . . , tn ∈ R, let Fi[r, ti](x) = P(rXi + ti 6 x) for x ∈ R and i = 1, . . . , n. If

(F1, . . . , Fn) ∈ Jn(K), then (F1[r, t1], . . . , Fn[r, tn]) ∈ Jn(rK +
∑n
i=1 ti).

(vi) (F1, . . . , Fn, G1, . . . , Gm) is JM if and only if there exists a distribution F , such that both

(F1, . . . , Fn, F ) and (G1, . . . , Gm, F̄ ) are JM, where F̄ (x) = P(−X 6 x), x ∈ R, X ∼ F .

Proof. Similar to properties of complete mixability, (i)-(v) can be checked directly. We only

show (iv).

⇒: Suppose that Xi ∼ Fi, i = 1, . . . , n and Yj ∼ Gj , j = 1, . . . ,m and X1 + · · · + Xn +

Y1 + · · ·+ Ym = K is a constant. Let Y = Y1 + · · ·+ Ym and denote its distribution by F . Then

X1 + · · ·+Xn+Y = K, that is, (F1, . . . , Fn, F ) is JM. On the other hand, Y1 + · · ·+Ym−Y = 0,

that is, (G1, . . . , Gm, F̄ ) is JM.

⇐: Suppose that there exists a distribution F such that Y, Y ′ ∼ F , (X1, . . . , Xn, Y )

and (Y1, . . . , Ym,−Y ′) are two joint mixes. We claim that there exists a random vector Z =

(Z1, . . . , Zn,W,W1, . . . ,Wm) where (Z1, . . . , Zn,W )
d
= (X1, . . . , Xn, Y ) and (W,W1, . . . ,Wm)

d
=

(Y ′, Y1, . . . , Ym). The existence of Z is guaranteed by the compatibility of the two marginal

constraints that are overlapping only on a single variable; see Joe (1997, Section 3.2). Moreover,

(Z1, . . . , Zn,W1, . . . ,Wm) is a joint mix since (Z1, . . . , Zn,W ) and (−W,W1, . . . ,Wm) are both

joint mixes. Therefore, (F1, . . . , Fn, G1, . . . , Gm) is JM.

Note that in Proposition 2.3 (v), the scale parameter r has to be identical for all marginal

distributions.

As mentioned earlier, existing research on joint mixability is limited. As far as we know,

the only known cases are the normal distributions (Wang et al., 2013). In the next section, we

will identify new classes of jointly mixable distributions and their corresponding necessary and

sufficient conditions.

3 Main results

In this section, we list sufficient conditions for the joint mixability of several classes of

distributions. The proofs are put in Section 5. In Section 3.1 we study distributions with

monotone densities. In Section 3.2 we study symmetric distributions.
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3.1 Distributions with monotone densities

The first result in this section is the joint mixability of non-identical uniform distributions,

based on which the proofs of the joint mixability of monotone densities and unimodal-symmetric

densities will be obtained later.

For uniform distributions we can easily verify that the four necessary conditions (2.2)-(2.5)

are all equivalent. Moreover, it turns out that each of them is sufficient for a tuple of several

uniform distributions to be JM.

Theorem 3.1. Suppose that F1, . . . , Fn are n uniform distributions. Then (F1, . . . , Fn) is JM

if any of (2.2)-(2.5) is satisfied.

In the following we present the most important theorem in this paper, a necessary and

sufficient condition for the joint mixability of a tuple of distributions with decreasing densities.

Its proof is mathematically more involved than the other theorems in this section. According

to Remark 2.2, distributions with unbounded supports and decreasing densities are not jointly

mixable; hence we only study the case where they have bounded supports.

Theorem 3.2. Suppose that F1, . . . , Fn are n distributions with decreasing densities on their

respective bounded supports. Then (F1, . . . , Fn) is JM if the mean inequality (2.2) is satisfied.

If (X1, . . . , Xn) is a joint mix, then (−X1, . . . ,−Xn) is also a joint mix; thus (2.2) is also

sufficient for the joint mixability of a tuple of distributions with increasing densities. We remark

that Theorem 3.2, parallel to Theorem 2.4 of Wang and Wang (2011), has been a conjecture

for about four years. It has been expected to hold based on some numerical evidence; see

Puccetti and Wang (2015a) for numerical verifications of Theorem 3.2 through a discretized

approximation. The result itself is of practical importance in risk management; see Wang et al.

(2013) and Embrechts et al. (2014). Similar to the case of identical margins in Wang and

Wang (2011), an explicit joint distribution function (or its copula) of a joint mix with different

monotone densities seems to be very difficult to write down.

The proposition below arises in the proof of Theorem 3.2. It consists of a different type

of results and is of independent interest: the existence of F with some constraints such that

(F1, F2, F ) is JM.

Proposition 3.3. Suppose that F1 and F2 have decreasing density functions on their support

[0, L1] and [0, L2], with mean µ1 and µ2, respectively. There exists a distribution F3 with an

increasing density on [−M, 0], where M = max{L1, L2, 2µ1 + 2µ2}, such that (F1, F2, F3) ∈

J3(0).
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Proposition 3.3 implies that for distributions F1 and F2 with decreasing densities on [0, L],

means µ1, µ2 and µ1 + µ2 6 L/2, it is possible to find X1 ∼ F1 and X2 ∼ F2 such that X1 +X2

also has a decreasing density on [0, L].

3.2 Symmetric distributions

The following theorem concerns the joint mixability of unimodal-symmetric densities, not

necessarily from the same location-scale family.

Theorem 3.4. Suppose that F1, . . . , Fn are distributions with unimodal-symmetric densities,

and mode 0. Let pi(x) be the density function of Fi and let Gi(x) = Fi(x) − xpi(x) − 1
2 for

i = 1, . . . , n and x > 0. Then (F1, . . . , Fn) is JM if

n∑
i=1

G−1i (a) > 2 max
i=1,...,n

G−1i (a) for all a ∈ (0, 12 ). (3.1)

An immediate corollary of Theorem 3.4 is that a triplet of two identical uniform distributions

and a unimodal-symmetric distribution with a compatible support is JM.

Corollary 3.5. Suppose that F is a unimodal-symmetric distribution. For a > 0, (U[0, a],U[0, a], F )

is JM if and only if F is supported in an interval of length at most 2a.

When the distributions F1, . . . , Fn are unimodal-symmetric, and from a location-scale family

with scale parameters θ1, . . . , θn, respectively, inequality (3.1) reads as

n∑
i=1

θi > 2 max
i=1,...,n

θi. (3.2)

Note that (3.2) is also equivalent to the norm inequality (2.3) and it is sufficient for joint mixa-

bility, as implied by Theorem 3.4.

Corollary 3.6. Suppose that F1, . . . , Fn are unimodal-symmetric distributions from the same

location-scale family. Then (F1, . . . , Fn) is JM if the scale inequality (3.2) is satisfied.

Remark 3.1. Theorem 2.1 of Rüschendorf and Uckelmann (2002) gave the complete mixability of

distributions with a unimodal-symmetric density by an analytical construction. Theorem 3.4 and

Corollary 3.6 generalize Theorem 2.1 of Rüschendorf and Uckelmann (2002). The mathematical

approach in the latter paper does not seems to apply to the scope of joint mixability. The proof

of Theorem 3.4 in this paper is based on a different technical approach.

In the next theorem, we give necessary and sufficient conditions for the joint mixability of

marginal elliptical distributions. An n-elliptical distribution En(µ,Σ, φ) is an n-variate distri-

bution with characteristic function

exp{it>µ}φ(t>Σt), t ∈ Rn

11



where i is the imaginary unit, µ ∈ Rn, Σ is an n×n positive semi-definite matrix, A> represents

the transpose of a matrix A, and φ : [0,∞)→ R is called a characteristic generator. A necessary

and sufficient condition for φ to be a characteristic generator is given in Theorem 2 of Cambanis

et al. (1981); the interested reader is referred to Fang et al. (1990) and Lindskog et al. (2003) for

more details. Many commonly used multivariate distributions such as the multivariate normal

distribution and the multivariate t-distribution are special cases of elliptical distributions.

Theorem 3.7. Suppose that µi ∈ R, σi > 0, i = 1, . . . , n, φ is a characteristic generator for an

n-elliptical distribution, and Fi ∼ E1(µi, σ
2
i , φ). Then (F1, . . . , Fn) is JM if the inequality (2.5)

is satisfied.

In the above theorem, the real parameters σ1, . . . , σn are not necessarily the respective

standard deviations of F1, . . . , Fn. For i = 1, . . . , n, if Fi has a finite variance, then φ′(0+) exists

and σi is −2φ′(0+) times the standard deviation of Fi; see Cambanis et al. (1981) for details.

Remark 3.2. We remark that the class of symmetric distributions is identical to the class of

one-dimensional elliptical distributions; see Cambanis et al. (1981). Wang et al. (2013) gave the

joint mixability of normal distributions as a special case of Theorem 3.7. For normal random

vectors, having a constant sum is also related to minimal concordance order in the Fréchet class;

see Joe (1990).

4 Optimization problems

In this section, we briefly study two types of optimization problems related to joint mix-

ability as mentioned in Section 1. These results can directly be applied to the determination

of conservative values of risk measures on risk aggregation, and have close connections to the

bottleneck assignment problems as discussed in Haus (2015).

4.1 Optimization with respect to convex order

Convex order is a partial order based on variability between two random variables.

Definition 4.1 (Convex order). Let X and Y be two random variables with finite means. X is

smaller than Y in convex order, denoted by X ≺cx Y , if for all convex functions f ,

E[f(X)] 6 E[f(Y )], (4.1)

whenever both sides of (4.1) are well-defined.

It is immediate that X ≺cx Y implies E[X] = E[Y ]. Convex order has been extremely

useful in combinatorics, optimization, probability and financial mathematics. In what follows,

12



by saying an element in Sn we actually mean a random variable whose distribution belongs to

Sn. Finding the largest and the smallest elements in Sn w.r.t. convex order would typically

solve the optimization problems in (1.3), as law-determined convex functionals often respect

convex order; see for instance Föllmer and Schied (2011, Section 4).

It is well-known that the convex ordering largest element in Sn(F1, . . . , Fn) is always ob-

tained by F−11 (U) + · · ·+ F−1n (U) for a random variable U ∼ U[0, 1]. However, it remains open

in general to find the smallest element in Sn(F1, . . . , Fn) w.r.t. convex order for n > 3. Bernard

et al. (2014) gave an example where Sn(F1, . . . , Fn) does not contain a smallest element w.r.t.

convex order.

For F1, . . . , Fn with finite means, a sufficient condition for the existence of the smallest

element w.r.t. convex order in Sn(F1, . . . , Fn) is joint mixability. Some sufficient conditions for

joint mixability are given in Section 3. In such cases, the corresponding smallest element w.r.t.

convex order is µ, the sum of the means of F1, . . . , Fn.

In summary, for all S ∈d Sn(F1, . . . , Fn),

µ ≺cx S ≺cx F
−1
1 (U) + · · ·+ F−1n (U), (4.2)

where U is a U[0, 1] random variable. Both inequalities in (4.2) are sharp if the conditions in

any of Theorems 3.1, 3.2, 3.4 and 3.7, and Corollaries 3.5 and 3.6 are satisfied.

Remark 4.1. When the Fréchet class Fn admits mutually exclusive random vectors (with very

restrictive conditions on F1, . . . , Fn), mutual exclusivity leads to a smallest element in Sn w.r.t.

convex order; see Dhaene and Denuit (1999) and Cheung and Lo (2014).

Remark 4.2. Similar to the homogeneous results in Wang and Wang (2011, Section 3), Theorem

3.2 could be used to characterize the smallest element w.r.t. convex order in Sn(F1, . . . , Fn)

when F1, . . . , Fn have monotone densities but do not satisfy the mean condition (2.2). This

requires non-trivial further study; see recent results in Jakobsons et al. (2015).

4.2 Optimization on the distribution function of the sum

The joint mixability is also related to the minimal or maximal probability function of the

sum over Sn in (1.4). Denote

m+(s) = inf{P(S 6 s) : S ∈d Sn(F1, . . . , Fn)}, s ∈ R,

and

M+(s) = sup{P(S 6 s) : S ∈d Sn(F1, . . . , Fn)}, s ∈ R.

The quantities m+(s) and M+(s) are in general unclear analytically for n > 3.
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In quantitative risk management, the Value-at-Risk (VaR) of an aggregate risk is of par-

ticular interest in portfolio management. The Value-at-Risk of a random variable X at level

p ∈ (0, 1) is defined as the (left-continuous) inverse distribution function

VaRp(X) = inf{x ∈ R : P(X 6 x) > p}.

Quantities of interest are

VaRp = sup{VaRp(S) : S ∈d Sn(F1, . . . , Fn)}, p ∈ (0, 1),

and

VaRp = inf{VaRp(S) : S ∈d Sn(F1, . . . , Fn)}, p ∈ (0, 1).

VaRp and VaRp represent the best and worst cases of Value-at-Risk for a portfolio in presence

of model uncertainty at the level of dependence. For more discussions and applications of this

topic, see Embrechts and Puccetti (2006) and Embrechts et al. (2013, 2014).

Here we look atm+(s) and VaRp since the story ofM+(s) and VaRp is similar. The following

result is given in Wang et al. (2013). Define, for t ∈ [0, 1), Φ(t) =
∑n
i=1 E[Xi|Xi > F−1i (t)], where

Xi ∼ Fi, i = 1, . . . , n, and let Φ−1 be the inverse of Φ. In addition, let Φ(1) =
∑n
i=1 F

−1
i (1),

Φ−1(x) = 0 if x < Φ(0) and Φ−1(x) = 1 if x > Φ(1). Assuming that F1, . . . , Fn have positive

densities on their supports, Φ is strictly increasing on (0, 1).

Proposition 4.1. Suppose the distributions F1, . . . , Fn have positive density on their supports

with finite means.

(1) We have for s ∈ R,

m+(s) > Φ−1(s), (4.3)

and for p ∈ (0, 1),

VaRp 6 Φ(p). (4.4)

(2) For each fixed s > Φ(0), the equality

m+(s) = Φ−1(s) (4.5)

holds if and only if the n-tuple of the distributions of F−11 (W ), . . . , F−1n (W ) is jointly mixable,

where W ∼ U[Φ−1(s), 1], and for p ∈ (0, 1), the equality

VaRp = Φ(p) (4.6)

holds if and only if the n-tuple of the distributions of F−11 (W ), . . . , F−1n (W ) is jointly mixable,

where W ∼ U[p, 1].
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We remark that, although the above result was given in Wang et al. (2013), no example was

presented in the latter paper for the case when F1, . . . , Fn are non-identical, since there were no

known non-trivial classes of truncated distributions that are jointly mixable.

Example 4.1. Suppose the distribution Fi is a uniform distribution on [ai, ai+li] for i = 1, . . . , n.

Suppose that l1, . . . , ln satisfy (2.4). Let a =
∑n
i=1 ai + 1

2

∑n
i=1 li and l =

∑n
i=1 li. Then from

Theorem 3.1 and Proposition 4.1,

VaRt = Φ(t) = a+
tl

2
, t ∈ [0, 1]

and

m+(s) = 1 ∧
(

2s− 2a

l

)
+

, s ∈ R.

For the case when all F1, . . . Fn are identically a uniform distribution on [0, 1], Rüschendorf

(1982) gave the value of m+(s) = 1 ∧
(
2s−n
n

)
+

which is a special case of the above example.

Remark 4.3. For the case where l1, . . . , ln do not satisfy (2.4), m+(s) and VaRp can be obtained

via a convex order argument without involving joint mixability; for connection between convex

order and smallest probability function or worst Value-at-Risk, see Bernard et al. (2014, Section

4). The questions of VaRp where F1, . . . , Fn have monotone densities in unbounded supports

are recently answered based on results obtained in this paper (in particular, Theorem 3.2); see

Jakobsons et al. (2015) where joint mixability is assumed as a sufficient condition for main results

therein to hold.

5 Proofs of main results

In this section, for any distribution F , we denote by F̄ the distribution of the random

variable −X, where X ∼ F ; this notation was used in Proposition 2.3 (iv). Throughout, U[a, b]

represents a uniform distribution on [a, b], a, b ∈ R.

5.1 Proof of Theorem 3.1

Proof. Since the four necessary conditions are equivalent, we will only show that the length

condition (2.4) is sufficient. Without loss of generality, we assume the mean of Fi is zero for

i = 1, . . . , n.

We first prove the theorem for n = 3. The following lemma comes in handy.

Lemma 5.1. Suppose F1, F2, F3 are uniform distributions with lengths l1, l2, l3 and l1 + l2 = l3.

Then (F1, F2, F3) is JM.
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Proof of Lemma 5.1. For a random variable U ∼ U[− 1
2 ,

1
2 ], let X1 = l1U ∼ F1, X2 = l2U ∼ F2

and X3 = −l3U ∼ F3 then X1 +X2 +X3 = 0. This shows that (F1, F2, F3) is JM.

Now we proceed to prove the general case for n = 3. Write F1 = U[−a, a], F2 = U[−b, b]

and F3 = U[−c, c], where a, b, c > 0. Without loss of generality, assume a > b. By (2.4), we have

a − b 6 c 6 a + b. The case c = a − b or c = a + b is implied by Lemma 5.1. In the following

we assume a − b < c < a + b. Denote k = c
a+b , m = a−b

c then 0 6 k,m < 1, k(a + b) = c, and

mc = a− b.

We will show that we can decompose each of F1, F2, F3 into six different uniform distribu-

tions Fi,j with length li,j , i = 1, 2, 3, j = 1, . . . , 6. The decomposition is as follows.

Group F1 F2 F3 lengths

(i) F1,1 = U[−a, ka] F2,1 = U[kb, b] F3,1 = U[−c,mc] l2,1 + l3,1 = l1,1

(ii) F1,2 = U[−ka, a] F2,2 = U[−b,−kb] F3,2 = U[−mc, c] l2,2 + l3,2 = l1,2

(iii) F1,3 = U[ka, a] F2,3 = U[−b, kb] F3,3 = U[−c,−mc] l1,3 + l3,3 = l2,3

(iv) F1,4 = U[−a,−ka] F2,4 = U[−kb, b] F3,4 = U[mc, c] l1,4 + l3,4 = l2,4

(v) F1,5 = U[−a, a] F2,5 = U[−b, b] F3,5 = U[−mc,mc] l2,5 + l3,5 = l1,5

(vi) F1,6 = U[−ka, ka] F2,6 = U[−kb, kb] F3,6 = U[−c, c] l1,6 + l2,6 = l3,6

Note that the sum of the means of each triplet (F1,j , F2,j , F3,j) is 0, and by Lemma 5.1,

(F1,j , F2,j , F3,j) is JM for j = 1, . . . , 6. Now we seek a way to write each Fi as a combina-

tion of Fi,j , i = 1, 2, 3, j = 1, . . . , 6. Let

q =
1

4

(
1

1− k2
+

1

1−m2
− 1

)−1
,

q1 = q 4m2

1−m2 and q2 = q 4k2

1−k2 . Then

4q + q1 + q2 =
1

4

(
1

1− k2
+

1

1−m2
− 1

)−1(
4 +

4k2

1− k2
+

4m2

1−m2

)
= 1.

Denote the distributions

F ∗i :=

4∑
j=1

qFi,j + q1Fi,5 + q2Fi,6.

It remains to check for each i = 1, 2, 3, F ∗i = Fi.

By construction, the density of F ∗1 is constant on the three intervals [−a,−ka], [−ka, ka]

and [ka, a] respectively. By symmetry, it suffices to check that the density of F ∗1 on [−a,−ka] is

1
2a . The density of F ∗1 on [−a,−ka] is

q
1

(1 + k)a
+ q

1

(1− k)a
+ q

4m2

1−m2

1

2a
=

2q

a

(
1

1− k2
+

1

1−m2
− 1

)
=

1

2a
.

Thus, F ∗1 = F1. F
∗
2 = F2 follows from the same calculation.
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By construction, F ∗3 is also uniform on the intervals [−c,−mc], [−mc,mc] and [mc, c] re-

spectively. By symmetry, it suffices to check that the density of F ∗3 on [−c,−mc] is 1
2c . The

density of F ∗3 on [−c,−mc] is

q
1

(1 +m)c
+ q

1

(1−m)c
+ q

4k2

1− k2
1

2c
=

2q

c

(
1

1−m2
+

1

1− k2
− 1

)
=

1

2c
.

Thus, F ∗3 = F3.

Finally, by Proposition 2.3 (iv), it follows from

Fi :=

4∑
j=1

qFi,j + q1Fi,5 + q2Fi,6, for i = 1, 2, 3,

and

(F1,j , F2,j , F3,j) ∈ J3(0), for j = 1, . . . , 6,

that (F1, F2, F3) ∈ J3(0).

Now we complete the theorem for the cases for n 6= 3. The case for n = 2 is trivial. We

show the cases for n > 3 by induction. Suppose n > 4 and (2.4) is satisfied, and without loss of

generality assume l1 6 l2 6 . . . 6 ln. Let l = l1 + l2 and F = U[− l
2 ,

l
2 ] = F̄ . It is easy to see that

(F, F3, F4, . . . , Fn) still satisfies the mean condition, and hence (F, F3, F4, . . . , Fn) ∈ Jn−1(0) by

inductive hypothesis. By Lemma 5.1, we have that (F1, F2, F̄ ) ∈ J3(0). As a consequence, we

obtain that (F1, . . . , Fn) ∈ Jn(0) using Proposition 2.3 (vi).

5.2 Proof of Theorem 3.2

Below we briefly explain the main idea behind the proof of Theorem 3.2. First, we consider

distributions with decreasing step density functions. We implement mathematical induction such

that in each step, the n-tuple of distributions is written as several pieces of simpler distributions

which are “approximately mixable”, plus a remaining n-tuple which has a reduced maximum

essential support. We refer to this procedure as the reduction. The mathematical tools to handle

approximations of mixability and combinations of distributions are presented in Lemmas 5.2 and

5.3. Lemmas 5.4 and 5.5 give distances between uniform densities and decreasing densities, and

its impact on the approximation of mixability. Lemma 5.6 provides an inequality on the mean

of a decreasing density which is useful to show Lemma 5.7. Lemma 5.7 is a technical result

which guarantees that one can always repeat the reduction. Lemma 5.8 contains details of the

reduction and confirms that the assertion in Theorem 3.2 holds for step density functions and

for the case where n = 3. The results on step density functions in Lemma 5.8 are extended to

general decreasing density functions in Lemma 5.9. Proposition 3.3 shows that two decreasing

densities can be combined into one, and hence it builds a bridge between the case where n = 3

and the case where n > 3. Lemma 5.10 concludes the main result of the theorem.
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Since the proof itself involves multiple Lemmas and partial results, in this section we will

use the symbols F1, . . . , Fn repeatedly in different places, and they are not the distributions

mentioned in the statement of Theorem 3.2. We first introduce some handy notation.

For K,C ∈ R we denote by Mn(K,C) the set of n-tuples (F1, . . . , Fn), where F1, . . . , Fn

are univariate distributions, for which there exist n random variables X1 ∼ F1, . . . , Xn ∼ Fn

such that |X1 + · · · + Xn − K| 6 C almost surely. Elements in Mn(K,C) can be interpreted

as “approximately mixable with error C”. In particular, Mn(K, 0) = Jn(K), and obviously

Mn(K1, C1) ⊂Mn(K2, C2) if C2 − C1 > |K2 −K1|.

We define the Wasserstein L∞-distance between two distributions F and G,

d(F,G) = sup
t∈[0,1]

{|F−1(t)−G−1(t)|}.

Here for notational ease we identify a probability distribution F and its cdf. In all the following

lemmas, F, F1, . . . , Fn and G,G1, . . . , Gn are distributions on R.

Lemma 5.2. If (F1, . . . , Fn) ∈ Mn(K,C) for some K,C ∈ R, and d(Fi, Gi) 6 di ∈ R for

i = 1, . . . , n then (G1, . . . , Gn) ∈Mn(K,C + d1 + · · ·+ dn).

Lemma 5.3. If (F1, . . . , Fn) ∈ Mn(K,C) and (G1, . . . , Gn) ∈ Mn(K,C) for some K,C ∈ R,

then (λF1 + (1− λ)G1, . . . , λFn + (1− λ)Gn) ∈Mn(K,C) for all λ ∈ [0, 1].

Lemmas 5.2 and 5.3 are straightforward to verify and we omit the proofs here.

Lemma 5.4. If the essential support of a distribution F is [0, L], L > 0, and F admits a

decreasing density on [0, L], with mean µ, then d(F,G) = L− 2µ where G = U[0, 2µ].

Proof. By definition G−1(t) = 2µt, t ∈ [0, 1] and F−1 is a concave function. We have that for

all a, b, λ ∈ [0, 1],

F−1(λa+ (1− λ)b) 6 λF−1(a) + (1− λ)F−1(b). (5.1)

Moreover, F−1(0) = 0, F−1(1) = L. By (5.1), for a fixed t0 ∈ [0, 1], we have that

F−1(t0) 6 t0L 6 t0(2µ) + L− 2µ = G−1(t0) + L− 2µ.

Let A = F−1(t0). By (5.1), F−1(t) 6 t
t0
A for 0 6 t 6 t0 and F−1(t) 6 t−t0

1−t0L + 1−t
1−t0A for

t0 6 t 6 1. It follows that

µ =

∫ 1

0

F−1(t)dt 6
∫ t0

0

t

t0
Adt+

∫ 1

t0

(
t− t0
1− t0

L+
1− t
1− t0

A

)
dt =

t0A

2
+ (1− t0)

A+ L

2

=
A

2
+

(1− t0)L

2
.

Therefore, F−1(t0) > 2µ− (1− t0)L = t0L− (L−2µ) > G−1(t0)− (L−2µ). Since t0 is arbitrary,

d(F,G) 6 L − 2µ. Finally, d(F,G) = L − 2µ follows from the fact that F−1(1) − G−1(1) =

L− 2µ.
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Lemma 5.4 shows that the distance between a decreasing density and a uniform density

can be controlled by L − 2µ. Later we will use this relationship repeatedly to approximate

the mixability of decreasing densities based on the mixability of uniform densities. Lemma 5.5

introduces a class of 2-step density functions v(·;α, c, β, L) and give its distance from uniform

densities. This class of 2-step density functions will be used later as building blocks for general

step density functions.

Lemma 5.5. Define for real numbers α 6 c 6 β < L, a distribution V (α, c, β, L) with density

function

v(x;α, c, β, L) =
1

β − α
β − c
L− α

I{x∈[α,β)} +
1

L− β
L− α− β + c

L− α
I{x∈[β,L]}.

Then V (α, c, β, L) has mean (L+ c)/2 and d(V (α, c, β, L),U[c, L]) = c− α.

Proof. It suffices to verify that V (α, c, β, L) has an increasing density on [α,L], the mean of

V (α, c, β, L) is (L + c)/2, and then apply Lemma 5.4, which holds also for increasing densities

by symmetry.

Lemma 5.6 gives a lower bound for the mean of a decreasing density in a given support

with known density values at both endpoints.

Lemma 5.6. Suppose f is a decreasing density function on R, supported in [0, L], L ∈ R. For

any real number M > L, it is straightforward that f(0) > 1/M > f(M). Denote A = Mf(0)

and B = f(M)M , then the mean µ of f satisfies

µ >M
AB + 1− 2B

2(A−B)
, if A > B, (5.2)

µ >
M

2A
, (5.3)

and

µ >
MB

2
. (5.4)

Proof. Denote the distribution function F (x) =
∫ x
0
f(t)dt, then µ =

∫M
0
tf(t)dt = M−

∫M
0
F (x)dx.

Since B
M = f(M) 6 f(x) 6 f(0) = A

M for all x ∈ [0,M ], we have that F (x) 6 A
M x and

F (x) 6 1− B
M (M − x) = 1−B + B

M x. Therefore, for any T ∈ [0,M ], we have

M − µ =

∫ M

0

F (x)dx =

∫ T

0

F (x)dx+

∫ M

T

F (x)dx

6
1

2

A

M
T 2 + (1−B)(M − T ) +

1

2

B

M
(M2 − T 2). (5.5)

Setting T = 1−B
A−BM , we have that M − µ 6 M

2
2A−AB−1
A−B and (5.2) follows. Setting T = M/A,

we have that µ > M
2A + 1

2BM(1− 1
A )2 > M

2A , and (5.3) follows. Setting T = 0, (5.4) follows.

19



Lemma 5.7 contains the key technical result which ensures that the reduction can be per-

formed repeatedly.

Lemma 5.7. Suppose for each i = 1, . . . , n, fi is a strictly decreasing density function on its

support [0, Li], Li ∈ R, with mean µi. Let M = µ1 + · · ·+µn, and suppose M > Li, i = 1, . . . , n.

Denote Ai = fi(0)M and Bi = fi(M)M . There exist λ1, . . . , λn ∈ (0, 1) and D > 0 such that

n∑
i=1

λi = 1,

λiAi + (1− λi)Bi = D, (5.6)

for each i = 1, . . . , n, and
n∑
i=1

(1− λi)Bi 6 D. (5.7)

Proof. By (5.6), for any D, it is λi = λi(D) = D−Bi

Ai−Bi
whenever Ai 6= Bi. It is easy to see that

if Ai = Bi for some i, then Ai = Bi = 1 and µi = M/2 which contradicts with the fact that fi

has strictly a decreasing density. Hence Ai > 1 for all i. Let

W0 =

n∑
i=1

1

Ai −Bi
, W1 =

n∑
i=1

Bi
Ai −Bi

, W2 =

n∑
i=1

AiBi
Ai −Bi

.

Note that λ1(D), . . . , λn(D) are well-defined and are increasing functions of D. Solving λ1 +

· · ·+ λn = 1 we obtain

1 = W0D −W1 ⇔ D =
1 +W1

W0
.

Now by Lemma 5.6,

λi(B1) =
B1 −Bi
Ai −Bi

6
B1

Ai
6

4µ1µi
M2

for i = 2, . . . , n. Then

λ1(B1) + · · ·+ λn(B1) 6 0 +
4µ1(µ2 + · · ·+ µn)

M2
=

4µ1

M

(
1− µ1

M

)
< 1.

Thus, we have that D > B1 > 0. Similarly, D > Bi and λi > 0 for all i = 1, . . . , n. Note that

by Lemma 5.6,

1 =
1

M
(µ1 + · · ·+ µn) >

n∑
i=1

AiBi + 1− 2Bi
2(Ai −Bi)

=
W0 +W2

2
−W1,

thus 1 + W1 > W0+W2

2 , and hence 1 + W1 >
√
W0W2. It follows that D = 1+W1

W0
> W2

1+W1
. We

can now verify that

n∑
i=1

(1− λi)Bi =

n∑
i=1

Ai −D
Ai −Bi

Bi = W2 −W1D 6 D.
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Remark 5.1. If we only assume a (non-strict) decreasing density of fi, i = 1, . . . , n, then Lemma

5.7 holds with λi ∈ [0, 1], i = 1, . . . , n,.

To show Theorem 3.2 for decreasing densities, we start with the case n = 3 and consider

decreasing step density functions as defined below. Suppose for each i = 1, 2, 3, fi is a density

function on [ai0, a
i
Ni

), with

fi(x) =

Ni∑
k=1

hikI[aik−1,a
i
k)

(x),

where ai0 < ai1 < · · · < aiNi
, and hi1 > · · · > hiNi

> 0. Denote Li = aiNi
− ai0. We will assume

aik − aik−1 6 1 for each i, k. The following lemma contains the essential steps to the proof of

Theorem 3.2.

Lemma 5.8. Suppose f1, f2, f3 are decreasing step density functions with mean µ1, µ2, µ3, re-

spectively, and let M = µ1 + µ2 + µ3 − a10 − a20 − a30. If Li 6 M , i = 1, 2, 3, then (F1, F2, F3) ∈

M3(µ1 + µ2 + µ3, 6) where F1, F2, F3 are the corresponding distribution functions of f1, f2, f3,

respectively.

Proof. First, we define a quantity N , the number of steps plus one half of the number of “zero-

steps at the right-end”,

N(F1, F2, F3) = N1 +N2 +N3 +
1

2
(I{L1<M} + I{L2<M} + I{L3<M}).

Such N is uniquely determined by F1, F2, F3. We will show the lemma by induction on N . Note

that the smallest possible value of N is 4, in which case f1, f2 and f3 are three uniform densities

with L1 = L2 + L3, and the lemma holds trivially as (F1, F2, F3) ∈ M3(µ1 + µ2 + µ3, 0) in this

case. In the following we will show that the case of N = K/2, K ∈ N can be reduced to the case

of N < K/2.

Without loss of generality we let a10 = a20 = a30 = 0. Consequently aNi
= Li, i = 1, 2, 3 and

M = µ1 + µ2 + µ3. First, observe that if L1 + L2 + L3 − 2M 6 6, then by Lemma 5.4, we have

3∑
i=1

d(Fi,U[0, 2µi]) =

3∑
i=1

(Li − 2µi) = L1 + L2 + L3 − 2M 6 6.

Note that

(U[0, 2µ1],U[0, 2µ2],U[0, 2µ3]) ∈M3(µ1 + µ2 + µ3, 0),

and by Lemma 5.2, we have

(F1, F2, F3) ∈M3(µ1 + µ2 + µ3, 6).

Hence, in the following we consider

L1 + L2 + L3 − 2M > 6, (5.8)
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which implies that M > Li > 6 for all i = 1, 2, 3.

By Lemma 5.7, there exist λ1, λ2, λ3, D ∈ (0,∞) such that λ1 + λ2 + λ3 = 1,

λ1f1(0) + (1− λ1)f1(M) = λ2f2(0) + (1− λ2)f2(M) = λ3f3(0) + (1− λ3)f3(M) = D

and

(1− λ1)f1(M) + (1− λ2)f2(M) + (1− λ3)f3(M) 6 D.

Denote Di = (1− λi)fi(M), i = 1, 2, 3, and D0 = D −D1 −D2 −D3 > 0.

Let t > 0 be a small number, such that for each i,

λit 6 ai1 (5.9)

and

(1− λi)t 6

 M − Li Li < M,

M − aiNi−1 Li = M.
(5.10)

Note that all the quantities below depends on t, and later we will determine the value of t.

Consider the following three triplets of distributions:

U1 := (U[M − (1− λ1)t,M ],U[0, λ2t],U[0, λ3t]) ∈M3(M, 0),

U2 := (U[0, λ1t],U[M − (1− λ2)t,M ],U[0, λ3t]) ∈M3(M, 0),

and

U3 := (U[0, λ1t],U[0, λ2t],U[M − (1− λ3)t,M ]) ∈M3(M, 0).

Consider the triplet of measures G = (G1, G2, G3) := (F1, F2, F3)−D1tU1 −D2tU2 −D3tU3. It

is easy to check that Gi is a non-negative measure, with a step density on [0,M ], i = 1, 2, 3. The

first step of G1 has a height of f1(0) − D2

λ1
− D3

λ1
= D0

λ1
on [0, λ1t]. Let Iit = [λit,M − t + λit],

i = 1, 2, 3. We can see that G1 = F1 on I1t and hence G1 has a decreasing step density function

on Iit . Moreover, G1 assigns zero measure on [M − t+λ1t,M ]. It holds similarly for G2 and G3.

We consider two possibilities: if D0 = 0, then G1, G2, G3 all have step densities on I1t , I
2
t , I

3
t ,

respectively. Note that the lengths of I1t , I
2
t , I

3
t are all M − t, and D0 = 0 implies that at least

one of L1, L2, L3 is equal to M . We can take t as the largest number such that (5.9)-(5.10)

hold. In that case, one of the six inequalities in (5.9)-(5.10) is an equality. Now we compare

(F1, F2, F3) with (G1, G2, G3). At least one of G1, G2, G3 has fewer steps compared to F1, F2, F3.

Let Ĝ = G/(1 − D1t − D2t − D3t) be a triplet of distributions. The sum of the means of the

three components of Ĝ is still M , since F,U1, U2, U3 all satisfy this property. We have that

N(Ĝ) < N(F1, F2, F3) and therefore Ĝ ∈ M3(µ1 + µ2 + µ3, 6) by inductive hypothesis. Hence,

by Lemma 5.3,

(F1, F2, F3) = (1−D1t−D2t−D3t)Ĝ+D1tU1 +D2tU2 +D3tU3 ∈M3(µ1 + µ2 + µ3, 6).
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In the following we consider the more complicated case that D0 > 0. Intuitively, one wants

to further find H,U such that G = H + U where the components of H has decreasing densities

and fewer steps compared to those of F1, F2, F3 (hence an inductive argument can be applied),

and U ∈M3(M, 0) based on some prior results.

In the following we define a few quantities L′i, c
j
i , α

j
i and βji where i, j are two distinct

elements of {1, 2, 3}. For i, j, k being distinct elements of {1, 2, 3}, let

L′i =

 Li Li < M,

M − (1− λi)t Li = M,

that is, L′i is the right-end-point of the essential support of the measure Gi. Let cji = M −L′k −
1
2λit, β

j = ajNj−2 (note that Nj > 6 since Lj > 6), and

αji = max{λjt, ajl : ajl 6M − L′k − 1, l = 1, . . . , Nj}.

We can check that cji > λjt > 0: if Lk < M , then L′k = Lk, (1− λk)t 6 M − L′k by (5.10), and

hence cji = M − L′k − 1
2λit > (1− λk)t− 1

2λit > λjt; if Lk = M , then L′ = M − (1− λi)t, and

hence cji = M − L′k − 1
2λit = (1− λk)t− 1

2λit > λjt.

Consider the triplet of distributions

U4 = (U[0, λ1t],U[c21, L
′
2],U[c31, L

′
3]).

We can check that U[c21, L
′
2], U[c31, L

′
3] have the same length L′2 + L′3 + 1

2λ1t −M , and U4 ∈

M3(M, 0). We verify that by (5.8) and (5.9),

L′2 + L′3 +
1

2
λ1t−M > L2 + L3 +

1

2
λ1t− (1− λ2)t− (1− λ3)t−M

> 6−
(

1

2
λ1 + λ2 + λ3

)
t

> 2.

Let (recall the definition of V [α, c, β, L] in Lemma 5.5)

U5 = (U[0, λ1t], V [α2
1, c

2
1, β

2, L′2], V [α3
1, c

3
1, β

3, L′3]).

It is easy to check that αj1 6 cj1, cj1 − α
j
1 6 2, and cj1 < βj < L′j (note that L′j − c

j
1 > 2 and

L′j − βj 6 2), j = 2, 3. By Lemmas 5.2 and 5.5, and the fact that U4 ∈M3(M, 0), we have that

U5 ∈M3(M, 4). Similarly, by denoting

U6 = (V [α1
2, c

1
2, β

1, L′1],U[0, λ2t], V [α3
2, c

3
2, β

3, L′3]),

and

U7 = (V [α1
3, c

1
3, β

1, L′1], V [α2
3, c

2
3, β

2, L′2],U[0, λ3t]),
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we have that U6, U7 ∈M3(M, 4).

Now we considerH = G−D0t(U5+U6+U7). To guarantee thatH is a triplet of non-negative

measures, we let t satisfy for {i, j, k} = {1, 2, 3},

D0t

(
1

L′i − βi
L′i − αij − βi + cij

L′i − α
+

1

L′i − βi
L′i − αik − βi + cik

L′i − α

)
6 hiNi

, (5.11)

in addition to (5.9)-(5.10).

With t satisfying (5.9)-(5.11), it is easy to verify that Ĥ = (Ĥ1, Ĥ2, Ĥ3) := H/(1− 3D0t−

D1t−D2t−D3t) is a triplet of distributions. The sum of the means of the three components of

Ĥ is still M , since G,U5, U6, U7 all satisfy this property. It is straightforward that for i = 1, 2, 3,

the essential support of Ĥi is [λit, L
′
i] ⊂ Iit if (5.11) is a strict inequality, and it is [λit, a

i
Ni−1] ⊂ Iit

if (5.11) is an equality.

Now we take t as the largest number such that (5.9)-(5.11) are satisfied. In that case, at

least one of the inequalities in (5.9)-(5.11) becomes an equality. We call the transformation from

(F1, F2, F3) to Ĥ an operation.

(i) If one inequality in (5.11) is an equality, then the last non-zero-step in Fi for some i = 1, 2, 3

vanishes after the operation, while creating at most one “zero-step at the right-end” in Ĥ.

(ii) If each inequality in (5.11) is not an equality, then no extra “zero-steps at the right-end”

will be created after the operation, and

(a) if one inequality in (5.9) is an equality, then the first step in Fi for some i = 1, 2, 3

vanishes after the operation;

(b) if one inequality in (5.10) is an equality, then either the last non-zero-step in Fi for

some i = 1, 2, 3 vanishes after the operation, or the last “zero-step at the right-end”

in Fi for some i = 1, 2, 3 vanishes in the operation.

In each case, it follows that N(Ĥ) < N(F1, F2, F3) and therefore Ĥ ∈ M3(µ1 + µ2 + µ3, 6) by

inductive hypothesis. By Lemma 5.3,

(F1, F2, F3) = (1− 3D0t−D1t−D2t−D3t)Ĥ +D0t(U5 + U6 + U7) +D1tU1 +D2tU2 +D3tU3

∈M3(µ1 + µ2 + µ3, 6).

Now we finish the proof of the lemma by induction.

One can extend the above results on decreasing step density functions to general decreasing

density functions. The result is given in Lemma 5.9.
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Lemma 5.9. Suppose that distributions F1, F2, F3, with supports contained in [0, 1] and means

µ1, µ2, µ3, respectively, have decreasing density functions on [0, 1], and µ1 + µ2 + µ3 = 1. Then

(F1, F2, F3) ∈ J3(1).

Proof. First assume that F1, F2, F3 have strictly decreasing density functions on [0, 1]. Let

X1 ∼ F1, X2 ∼ F2, X3 ∼ F3 and U ∼ U[0, 1] independent of X1, X2, X3. For an m ∈ N, denote

Yi = bmXic+ U , i = 1, 2, 3. Let G1, G2, G3 be the distributions of Y1, Y2, Y3, respectively. Note

that νm := E[Y1] + E[Y2] + E[Y3] > E[mX1] + E[mX2] + E[mX3] = m since the densities of

F1, F2, F3 are decreasing. On the other hand, νm 6 E[mX1 + 1] + E[mX2 + 1] + E[mX3 + 1] =

m + 3. It is easy to check that Gi is supported on [0,m] and satisfy the conditions of Lemma

5.8, and hence (G1, G2, G3) ∈ M3(νm, 6) ⊂ M3(m, 9). Let F̂i be the distribution of mXi,

i = 1, 2, 3. By |mXi − Yi| 6 1, we have that d(F̂i, Gi) 6 1 and hence by Lemma 5.2, we have

that (F̂1, F̂2, F̂3) ∈ M3(m, 12). Therefore, (F1, F2, F3) ∈ M3(1, 12m ). Since m is arbitrary, by

a compactness argument, we conclude that (F1, F2, F3) ∈ M3(1, 0). If the density functions of

F1, F2, F3 are not strictly decreasing on [0, 1], we can always find a sequence of strictly decreasing

densities that converge to F1, F2, F3 with the same mean. By Proposition 2.3 (iii), we obtain

that (F1, F2, F3) ∈M3(1, 0) = J3(1).

Next, we show Proposition 3.3, which will serve as another key step in the proof of Theorem

3.2; it allows one to go from n = 3 to n > 3. Proposition 3.3 states that “Suppose that F1 and

F2 have decreasing density functions on their supports [0, L1] and [0, L2], with means µ1 and

µ2, respectively. There exists a distribution F3 with an increasing density on [−M, 0], where

M = max{L1, L2, 2µ1 + 2µ2}, such that (F1, F2, F3) ∈ J3(0).”

Proof of Proposition 3.3. We prove this proposition for the case of step density functions. Sup-

pose that F1 and F2 have step density functions f1, f2, respectively, such that

fi(x) =

Ni∑
k=1

hikI[aik−1,a
i
k)

(x),

i = 1, 2, where 0 = ai0 < ai1 < · · · < aiNi
= Li, and hi1 > . . . > hiNi

> 0. Here, we do not assume

aik − aik−1 6 1.

We show the lemma for step density functions by induction on N = N1 +N2. For the case

N1 = N2 = 1, F1 and F2 are uniform distributions. Take F3 = U[−M, 0], M = L1 + L2 =

2µ1 + 2µ2. By Theorem 3.1 we have that (F1, F2, F3) ∈ J3(0), that is, the lemma holds true in

this case.

Now assume the lemma holds for step density functions for N < K. We will show the case

for N = K can be reduced to N = K − 1.
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If M = 2µ1 + 2µ2 > Li, i = 1, 2, then we again take F3 = U[−M, 0], then the sum of the

means of F1, F2 and F3 is 0. By Lemma 5.9 we obtain that (F1, F2, F3) ∈ J3(0). Thus, the

lemma holds true in this case.

In the following, without loss of generality we assume M = L1 > L2, M > 2µ1 + 2µ2.

Similar to the proof of Lemma 5.8 we assume hi1 > · · · > hiNi
> 0, i = 1, 2. Consider the

following set of decreasing step probability density functions (pdf):

Qi =

{
f is pdf : f(x) =

Ni∑
k=1

gikI[aik−1,a
i
k)

(x) : gi1 > . . . > giNi
> 0

}
, i = 1, 2.

Let µ(·) be the mean of a distribution function or a density function. For any f ∈ Qi, it is

obvious that µ(f) takes value in (
ai1
2 ,

aiNi

2 ]. Note that
a11
2 +

a21
2 6 µ1 + µ2 <

L1

2 and
a1N1

2 +
a2N2

2 =

L1

2 + L2

2 > L1

2 . Therefore, there exist g1 ∈ Q1, g2 ∈ Q2 such that µ(g1) + µ(g2) = L1

2 = M
2 . Let

G1 and G2 be the distribution functions of g1 and g2, respectively. By Lemma 5.9 we have that

(G1, G2, G3) ∈ J3(0) where G3 = U[−M, 0]. For i = 1, 2, write

gi(x) =

Ni∑
k=1

gikI[aik−1,a
i
k)

(x),

and in addition hiNi+1 = giNi+1 = 0. Let

λ = min

{
hir − hir+1

gir − gir+1

: r = 1, . . . , Ni, i = 1, 2

}
.

Note that hir+1 − hir > 0 for all r and gir+1 − gir > 0 for at least one r, so λ <∞ is well-defined.

It is easy to see that 0 < λ 6 1, and λ = 1 implies that fi = gi, i = 1, 2. This conflicts with

µ1 + µ2 < M = µ(g1) + µ(g2).

In the following we consider λ < 1. Let Wi = 1
1−λ (Fi − λGi), i = 1, 2. We can check that

the density function of Wi is again a decreasing step function, by noting that

hir − hir+1

gir − gir+1

> λ ⇔ hir − λgir > hir+1 − λgir+1 > 0, r = 1, . . . , Ni − 1, i = 1, 2. (5.12)

Moreover, one of the inequalities in (5.12) is an equality by the definition of λ; this implies that

for i = 1 or 2, Wi has at least one less step compared to Fi. Let [0, L′1] and [0, L′2] be the

essential supports of W1 and W2, respectively, and M ′ = max{L′1, L′2, 2µ(W1) + 2µ(W2)}. Note

that L′i 6 Li, i = 1, 2, and µ(G1) + µ(G2) > µ1 + µ2, implying that µ(W1) + µ(W2) < µ1 + µ2;

hence M ′ 6M . By inductive hypothesis, there exists W3 with an increasing density on [−M ′, 0],

therefore also on [−M, 0], such that (W1,W2,W3) ∈ J3(0).

Finally, take F3 = λG3 + (1 − λ)W3, and also note that Fi = λGi + (1 − λ)Wi, i = 1, 2.

By Proposition 2.3 (i), we have that (F1, F2, F3) ∈ J3(0) and the lemma holds true for all step

density functions. By a standard compactness argument, we conclude that the lemma holds true

for all decreasing densities.
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Lemma 5.10. Suppose that distributions F1, . . . , Fn, with supports contained in [0, 1] and means

µ1, . . . , µn, respectively, have decreasing density functions on [0, 1], and µ1 + · · ·+µn = 1. Then

(F1, . . . , Fn) ∈ Jn(1).

Proof. The case for n = 2 is trivial as the assumption that µ1+µ2 = 1 implies F1 = F2 = U[0, 1].

The case for n = 3 is shown in Lemma 5.9.

Now we consider n > 4, and we will show the lemma by induction. Without loss of generality

we assume µ1 6 µ2 6 . . . 6 µn. Since µ1 + · · · + µn = 1, we have that µ1 + µ2 6 1/2. By

Proposition 3.3, there exists a distribution G with an increasing density on [−1, 0] such that

(F1, F2, G) ∈ J3(0). Note that Ḡ has a decreasing density on [0, 1], and µ(Ḡ) = −µ(G) =

µ1 + µ2. Hence, by inductive hypothesis, (Ḡ, F3, . . . , Fn) ∈ Jn−1(1). By Proposition 2.3 (vi),

(F1, F2, G) ∈ J3(0) and (Ḡ, F3, . . . , Fn) ∈ Jn−1(1) imply that (F1, . . . , Fn) ∈ Jn(1).

Finally, using Lemma 5.10, we are able to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Since joint mixability is invariant under linear transformations (Proposi-

tion 2.3 (v)), we can assume a1 = · · · = an = 0 without loss of generality. The mean condition

(2.2) reads as

µ1 + · · ·+ µn > max
i=1,...,n

li.

Now Fi has decreasing density functions on [0, li] ⊂ [0, µ1 + · · · + µn]. By Lemma 5.10 and

the invariance of joint mixability under linear transformations, we conclude that (F1, . . . , Fn) ∈

Jn(µ1 + · · ·+ µn).

5.3 Proof of Theorem 3.4

Proof. For each i = 1, . . . , n, it is easy to check that Gi : R+ → [0, 12 ] is a non-decreasing

function, hence G−1i (a) for a ∈ (0, 12 ) is properly defined. Let m ∈ N and Umi,j be the cdf of the

uniform distribution on [−G−1i ( j
m+1 ), G−1i ( j

m+1 )] for i = 1, . . . , n, j = 1, . . . ,m. By Theorem

3.1 and (3.1) we know that (Um1,j , . . . , U
m
n,j) ∈ Jn(0) for j,m ∈ N and j 6 m.

Define distributions

Fmi =

m∑
j=1

1

m
Umi,j

for i = 1, . . . , n, m ∈ N. By Proposition 2.3 (iv) we have for m ∈ N

(Fm1 , . . . , F
m
n ) ∈ Jn(0). (5.13)
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We will show that (Fm1 , . . . , F
m
n )→ (F1, . . . , Fn) weakly as m→∞. For x > 0, we calculate

Fmi (x) =

m∑
j=1

1

m
Umi,j(x)

=
1

2
+

1

2

m∑
j=1

1

m

(
I{G−1

i ( j
m+1 )6x}

+ I{G−1
i ( j

m+1 )>x}
x

G−1i ( j
m+1 )

)
.

Note that

lim
m→∞

m∑
j=1

1

m
I{G−1

i ( j
m+1 )6x}

= G(x),

and

lim
m→∞

m∑
j=1

1

m
I{G−1

i ( j
m+1 )>x}

x

G−1i ( j
m+1 )

=

∫ 1
2

Gi(x)

x

G−1i (t)
dt

=

∫ ∞
x

x

y
dG(y)

=

∫ ∞
x

x

y
(−yp′(y))dy

=

∫ ∞
x

−xdp(y)

= xp(x).

Thus, we have for i = 1, . . . , n,

lim
m→∞

Fmi =
1

2
+

1

2
(G(x) + xp(x)) =

1

2
+

∫ x

0

pi(t)dt = Fi(x). (5.14)

By Proposition 2.3 (iii), (5.13) and (5.14), we conclude that (F1, . . . , Fn) ∈ Jn(0).

5.4 Proof of Theorem 3.7

Proof. We only need to prove the case for n > 2. Without loss of generality, we assume µj = 0

and σ1 > σ2 > . . . > σn.

Generally, if Y ∼ En(µ,Σ, φ), then for any b ∈ Rn,

b>Y ∼ E1(b>µ,b>Σb, φ). (5.15)

Denote

Tn−1 = {positive semi-definite (n− 1)× (n− 1) matrix with diagonal entries σ2
2 , σ

2
3 , . . . , σ

2
n}.

Denote the (n− 1)-vector 1 = (1, . . . , 1)>. Define a function

f(T ) = σ1 −
√

1>T1, T ∈ Tn−1.

Obviously f(T ) is a continuous function of T over Tn−1 with respect to a standard matrix

metric (such as Frobenius metric). Take T = (σ2, . . . , σn)>(σ2, . . . , σn) ∈ Tn−1. We have that
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f(T ) = σ1−
∑n
j=2 σj 6 0 by (2.5). On the other hand, let σ̂j = (−1)jσj for j = 2, . . . , n and take

T = (σ̂2, . . . , σ̂n)>(σ̂2, . . . , σ̂n) ∈ Tn−1. We have that f(T ) = σ1−
∑n
j=2 σ̂j =

∑n
j=1(−1)j+1σj >

0. Hence there exists T0 ∈ Tn−1 such that f(T0) = 0. Now we let (X2, . . . , Xn) ∼ En−1(0, T0, φ),

and by (5.15) we have that X2 + · · ·+Xn ∼ E1(0,1>T01, φ) = E1(0, σ2
1 , φ). Let X1 = −(X2 +

· · ·+Xn). It follows that X1 ∼ E1(0, σ2
1 , φ) and X1+ · · ·+Xn ∼ E1(0, 0, φ). Thus, (F1, . . . , Fn) ∈

Jn(0).

6 Conclusion

In this paper, we introduce the theory of joint mixability. We provide necessary conditions

for joint mixability: (a) mean inequality, and (b) norm inequality. As special cases of (b), two

extra conditions that can be easily checked, (c) length inequality and (d) variance inequality are

also introduced. It is shown that any of (a)-(d) is sufficient for the joint mixability of a tuple

of uniform distributions; (a) is sufficient for the joint mixability of a tuple of distributions with

monotone densities; (d) is sufficient for the joint mixability of a tuple of elliptical distributions

with the same characteristic generator; and a stronger condition of type (b) is sufficient for

the joint mixability of a tuple of distributions with unimodal-symmetric densities. Our results

partially solve long-time existing open questions in the literature of multivariate distributions

with fixed margins.

This paper concerns questions of possible distributions of X1 + · · ·+Xn when X1, . . . , Xn

have fixed marginal distributions. Instead of X1 + · · · + Xn, one may more generally consider

the possible distributions of f(X1, . . . , Xn), where f : Rn → Rk is a general function (k ∈

N). Substantial challenges are expected for this type of questions at this moment; see recent

discussions in Bignozzi and Puccetti (2015).
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Rüschendorf, L. (2013). Mathematical risk analysis. Dependence, risk bounds, optimal allocations

and portfolios. Springer, Heidelberg. 1
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