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Abstract

We introduce the Mixability Detection Procedure (MDP) to check whether a set of d distribution
functions is jointly mixable at a given confidence level. The procedure is based on newly established
results regarding the convergence rate of the minimal variance problem within the class of joint
distribution functions with given marginals. The MDP is able to detect the complete mixability of
an arbitrary set of distributions, even in those cases not covered by theoretical results. Stress-tests
against borderline cases show that the MDP is fast and reliable.
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1 Introduction and motivation of the paper

The definition of complete mixability for a univariate distribution has first been given in Wang
and Wang (2011) and then extended to an arbitrary set of distributions in Wang et al. (2013).

Definition 1.1 (Wang and Wang (2011)). A univariate distribution function F is called d-completely
mixable (d-CM) if there exist d random variables X1, . . . , X

d

identically distributed as F having
constant sum a.s., that is satisfying

P(X1 + · · ·+X
d

= dc) = 1,

for some c 2 R.

Definition 1.2 (Wang et al. (2013)). The d univariate distribution functions F1, . . . , F
d

are said to

be jointly mixable (JM) if there exist d random variables X1, . . . , X
d

such that X
j

d
= F

j

, 1  j  d,
and

P(X1 + · · ·+X
d

= C) = 1,

for some C 2 R.

It is straightforward that, if F in Definition 1.1 has finite first moment µ, then c = µ, and if each F
j

in Definition 1.2 has finite first moment µ
j

, then C =
P

d

j=1 µj

. The concept of risks with a constant
sum goes back to Ga↵ke and Rüschendorf (1981), where the complete mixability of a set of uniform
distributions was showed. The same notion appears in Rüschendorf and Uckelmann (2002a), Müller
and Stoyan (2002, Section 8.3.1) and Knott and Smith (2006) in the context of variance minimization
or as the safest aggregate risk, with a focus on random variables.

The notions of complete and joint mixability have recently gathered a lot of interest since they are
related to the existence of a least element with respect to convex order within the set

S(F1, . . . , F
d

) := {X1 + · · ·+X
d

: X
j

d
= F

j

, 1  j  d}
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consisting of all sums of random variables with given marginal distributions F1, . . . , F
d

. In general the
characterization ofS(F1, . . . , F

d

): is known to be an open question for d � 2 (see Bernard et al. (2014));
is equivalent to the study of joint mixability for d � 3, by simply observing that S+C 2 S(F1, . . . , F

d

)
for some C 2 R is equivalent to F1, . . . , F

d

, F̃
S

are JM, where F̃
S

is the distribution of �S. Recall that
a random variable X is smaller than Y in convex order, denoted by X 

cx

Y , if E[f(X)]  E[f(Y )]
for all convex functions f such that the expectations exist. When two random variables have the same
mean, as within the set S(F1, . . . , F

d

), convex order is equivalent to increasing convex order (also
known as stop-loss order) as defined in Müller and Stoyan (2002).

Let U be a U(0, 1) random variable. It is well known (see for instance Tchen (1980)) that the
greatest element wrt convex order in S(F1, . . . , F

d

) is given by the comonotonic sum F�1
1 (U) + · · ·+

F�1
d

(U), where

F�1
j

(p) =

(
inf{x 2 R : F

j

(x) > p}, if p 2 [0, 1),

inf{x 2 R : F
j

(x) � 1}, if p = 1,

is the generalized inverse (or quantile function) of F
j

, 1  j  d; see Dhaene et al. (2002) for more
details on the concept of comonotonicty and several related results. In fact, we have that

X1 + · · ·+X
d


cx

F�1
1 (U) + · · ·+ F�1

d

(U),

for any X
j

d
= F

j

, 1  j  d. When there are only two random variables, i.e. d = 2, the 
cx

-least
element in S(F1, . . . , F

d

) is known to be the countermonotonic sum F�1
1 (U) + F�1

2 (1� U), i.e.

F�1
1 (U) + F�1

2 (1� U) 
cx

X1 +X2,

for any X1
d
= F1 and X2

d
= F2. When d > 2, the problem of determining the existence of a least

element in S(F1, . . . , F
d

) is much more complicated as the notion of a countermonotonic sum with
given marginals cannot be generalized to higher dimensions; this was studied in Dall’Aglio (1972), and
we refer to Bernard et al. (2014) and Cheung and Lo (2014) for recent discussions.

It is a trivial observation that if F1, . . . , F
d

have finite means µ1, . . . , µ
d

and are JM, the least
element in S(F1, . . . , F

d

) is given by µ1 + · · ·+ µ
d

, i.e.

µ1 + · · ·+ µ
d


cx

X1 + · · ·+X
d

,

for any X
j

d
= F

j

, 1  j  d. Existence of 
cx

-least elements on sums and the corresponding conditions
of complete/joint mixability are involved in a variety of optimization problems in the theory of optimal
couplings, as for example:

(i) Assume that F1, . . . , F
d

have finite first moment µ1, . . . , µ
d

with µ =
P

d

j=1 µj

. For a (strictly)
convex function f : R ! R, we have by Jensen’s inequality that

inf{E [f(X1 + · · ·+X
d

)] ;X
j

d
= F

j

, 1  j  d} � f(µ), (1.1)

and equality holds if (and only if) F1, . . . , F
d

are JM.

(ii) Assume that F1, . . . , F
d

are continuous and have finite first moment. Let X
j

d
= F

j

, 1  j  d,
and, for a 2 [0, 1], define the function

 (a) =
dX

j=1

E[X
j

|X
j

� F�1
j

(a)].

For any s � µ, we have

M(s) = sup{P (X1 + · · ·+X
d

� s);X
j

⇠ F
j

, 1  j  d}  1� �(s), (1.2)

where  �(s) = sup{t 2 [0, 1] :  (t)  s} and the sup is attained if and only if the conditional
distributions of (X

j

|X
j

� F�1
j

( �(s))) are JM.
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Problems (1.1) and (1.2) have relevant applications in quantitative risk management, where they
are needed to assess the model risk associated to the computation of capital charges for a portfolio of
losses for regulatory issues. For instance, problem (1.1) is related to the computation of bounds on
the expected value of a supermodular function (Wang and Wang (2011); Puccetti and Rüschendorf
(2015)) and on the expected shortfall of a sum of random variables (Puccetti (2013)). When f in (1.1)
is chosen as f(x) = (x � µ)2, (1.1) becomes a variance minimization problem, which is fundamental
in variance reduction and simulation; see for example Glasserman (2004). Problem (1.2), as well as
its inf version, is crucial to determine upper and lower sharp bounds on the Value-at-Risk (VaR), i.e.
the quantile, of a sum of random variables; see Wang et al. (2013); Puccetti and Rüschendorf (2013).
For a general introduction on the regulatory motivations of these problems within quantitative risk
management, we refer to Embrechts et al. (2013).

In this paper we restrict to study complete and joint mixability for sets of distributions having a
bounded support. Indeed, a one-sided distribution (e.g. F�1(0) > �1 and F�1(1) = 1) cannot be
completely mixable; see Proposition 2.1, (7) in Wang and Wang (2011). However, the existence of the
convex order least element and the computation of sharp bounds on the distribution function/VaR
of a sum heavily rely on joint mixability assumptions even when the fixed marginal components
are one-sided. In fact, to obtain a convex order least element in S(F1, . . . , F

d

) when the marginals
are one-sided, one however needs the distributions to be CM/JM conditionally on a bounded interval;
see Wang and Wang (2011) and Bernard et al. (2014) for more details. Furthermore, optimal couplings
attaining the maximal value for the quantile/VaR of a sum show a completely/jointly mixable part
for distributions of interest in quantitative risk management; see for instance the discussion and the
figures in Puccetti and Rüschendorf (2013) and Embrechts et al. (2013).

In view of these applications, it would be of great interest to characterize the class of completely
and jointly mixable distributions. So far in the literature, only partial characterizations of the class
of completely mixable distributions are known, mainly in the form of su�cient conditions to complete
mixability. As straightforward examples, Binomial, Uniform, Gaussian and Cauchy distributions are
d-completely mixable for some dimensions d, see Proposition 2.3 in Wang and Wang (2011). We
summarize some other characterizations that we will use in the remainder of the paper.

Proposition 1.1 (Rüschendorf and Uckelmann (2002b)). Any continuous distribution function having
a symmetric and unimodal density is d-CM, for any d � 2.

Proposition 1.2 (Wang and Wang (2011)). Suppose F is a distribution function on the real interval
[a, b], a = F�1(0) and b = F�1(1), having mean µ. A necessary condition for F to be d-CM is that

a+ (b� a)/d  µ  b� (b� a)/d. (1.3)

If F is also continuous with a monotone density on [a, b], condition (1.3) is also su�cient.

Proposition 1.3 (Puccetti et al. (2012)). Any continuous distribution on a bounded interval [a, b]
having a concave density is d-CM.

Proposition 1.4 (Puccetti et al. (2013)). Assume d � 3. Any continuous distribution function F on
a bounded interval [a, b], a < b, having a density f satisfying

f(x) � 3

d(b� a)
, for all x 2 [a, b],

is d-CM.

As a full characterization of completely mixable distribution is still out of reach, there are even
less results concerning su�cient conditions for joint mixable distributions. The only available ones
are given in the recent preprint Wang and Wang (2014). It was also mentioned in Wang et al. (2013)
that it seems to be extremely di�cult to find general su�cient conditions for JM distributions.

In this paper, we introduce a novel detection procedure in order to check whether a set of arbitrary
distribution functions is jointly mixable (which includes completely mixability as a special case). First,
in Section 2, we establish some new results concerning the convergence rate of the minimal variance
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problem within the class of joint distribution functions with given marginals. Based on these results,
we introduce the Mixability Detection Procedure (MDP) in Section 3. The MDP can be used to
detect complete and joint mixability in those cases not covered by theoretical results. In Section 4,
numerical examples are provided via stress-tests against borderline cases, showing that the MDP is
fast and reliable. Section 5 concludes the paper by proposing directions for further developments and
improvements.

2 Theoretical results

The concept of joint mixability (see Definition 1.2) is directly connected with the minimization of
the variance of a sum of random variables with given univariate marginals. For a set of d univariate
distribution functions F1, . . . , F

d

, define the minimal variance problem as

�2(F1, . . . , F
d

) := inf

8
<

:Var

0

@
dX

j=1

X
j

1

A : X
j

d
= F

j

, 1  j  d

9
=

; . (2.1)

Note that, throughout the paper, we denote by Var(X) or by Var(F ) the variance of a random variable

X
d
= F and by var(x) the variance of the components of a vector x 2 RN . We can rewrite problem (2.1)

as

�2(F1, . . . , F
d

) = inf
C2Cd

8
<

:Var

0

@
dX

j=1

F�1
j

(U
j

)

1

A : (U1, . . . , U
d

)
d
= C

9
=

; , (2.2)

where C
d

denotes the set of d-dimensional copulas, i.e. of all d-variate distribution functions having
U(0, 1) marginals. A simple continuity-compactness argument given in Rüschendorf (1983) shows that
the inf in (2.1) is attained and therefore the following immediate result holds.

Proposition 2.1. �2(F1, . . . , F
d

) = 0 holds if and only if F1, . . . , F
d

are JM.

We now show that if two sets of d distributions are close to each other, then also the solutions
of the corresponding minimal variance problems are. To measure the distance between distributions,
we use the L2-Wasserstein distance, introduced in Dobrushin (1970), which has the following simple
form for univariate distributions. We denote by |X|

p

, p � 1, the L
p

norm of a random variable X, i.e.
|X|

p

= (E[|X|p])1/p.

Definition 2.1. The L2-Wasserstein distance between two univariate distribution functions F and G
is defined as

W2(F,G) =

✓Z 1

0
(F�1(p)�G�1(p))2dp

◆1/2

=
��F�1(U)�G�1(U)

��
2
,

where U is U(0, 1) distributed.

Given two sets of distribution functions F1, . . . , F
d

and G1, . . . , G
d

, we define

�2
F

= �2(F1, . . . , F
d

) and �2
G

= �2(G1, . . . , G
d

).

Theorem 2.2. Let F1, . . . , F
d

and G1, . . . , G
d

be two sets of d bounded distribution functions, and
write c :=

P
d

j=1W2(Fj

, G
j

). We have that

|�
F

� �
G

|  c. (2.3)
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Proof. Assume that (U⇤
1 , . . . , U

⇤
d

)
d
= C⇤ attains �2

G

. Using the elementary fact that E[X � x]2 is
minimised at x = E(X) for any random variable X, we can write

�2
F

 Var

0

@
dX

j=1

F�1
j

(U⇤
j

)

1

A

= E

2

4
dX

j=1

F�1
j

(U⇤
j

)� E

0

@
dX

j=1

F�1
j

(U⇤
j

)

1

A

3

5
2

 E

2

4
dX

j=1

F�1
j

(U⇤
j

)� E

0

@
dX

j=1

G�1
j

(U⇤
j

)

1

A

3

5
2

= E

2

4
dX

j=1

⇣
F�1
j

(U⇤
j

)�G�1
j

(U⇤
j

)
⌘
+

dX

j=1

⇣
G�1

j

(U⇤
j

)� E[G�1
j

(U⇤
j

)]
⌘
3

5
2

. (2.4)

Writing F+ =
P

d

j=1

⇣
F�1
j

(U⇤
j

)�G�1
j

(U⇤
j

)
⌘
and G+ =

P
d

j=1

⇣
G�1

j

(U⇤
j

)� E[G�1
j

(U⇤
j

)]
⌘
, from (2.4) we

obtain that
�2
F

 E(F 2
+) + 2E(F+G+) + E(G2

+).

By the Minkowski inequality,

E(F 2
+) = |F+|22 =

������

dX

j=1

⇣
F�1
j

(U⇤
j

)�G�1
j

(U⇤
j

)
⌘
������

2
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0

@
dX

j=1

���F�1
j

(U⇤
j

)�G�1
j

(U⇤
j

)
���
2

1

A
2

= c2.

Note that E[G2
+] = |G+|22 = �2

G

. By Hölder’s inequality,

E(F+G+)  |F+G+|1  |F+|2|G+|2  c �
G

We finally obtain that
�2
F

 c2 + 2c�
G

+ �2
G

= (c+ �
G

)2, (2.5)

Exchanging the set of marginal distributions in the above proof, we obtain analogously that

�2
G

 c2 + 2c�
F

+ �2
F

= (c+ �
F

)2, (2.6)

The inequality |�
F

� �
G

|  c directly follows from (2.5) and (2.6). ⇤
A standard way of approximating an arbitrary distribution by a discrete one is given in the following

definition.

Definition 2.2. Given a distribution function F and an integer N , we define the N -discrete distri-
bution associated to F as

F
N

(x) :=
1

N

N�1X

r=0

1[qr,+1)(x),

where the jump points q0, . . . , qN�1 are the quantiles of F defined by q
r

:= F�1(r/N), 0  r  N � 1.

The N -discrete distribution F
N

(x) is a discrete distributions giving probability mass 1/N to the
(r/N)-quantiles of F . It immediately follows from its definition that

F�1
N

(p) = F�1

✓
bNpc
N

◆
, 0  p < 1. (2.7)

The L2-Wasserstein distance between a bounded, continuous distribution and its N -discrete coun-
terpart decreases as O(1/N), as next lemma shows.
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Lemma 2.3. Assume that F is a bounded continuous distribution on [a, b] with strictly positive density
f on [a, b]. Define

a
F

:=

s
1

3

Z
b

a

1/f(x)dx and c
F

:=

r
1

3
sup

x2(a,b)
1/f(x) < 1.

If F
N

is the N -discrete distribution of F , for all N 2 N we have that

W2(F, FN

)  c
F

/N.

Moreover, as N ! 1,
W2(F, FN

) ⇠ a
F

/N  c
F

/N.

Proof. Recalling (2.7) and using the mean value theorem (the positive density implies di↵erentia-
bility of the inverse function) we have, for any p 2 [0, 1] in which F�1(p) 6= F�1

N

(p), that

F�1(p)� F�1
N

(p) = F�1(p)� F�1

✓
bNpc
N

◆
= (F�1)0(⇠

p

)

✓
p� bNpc

N

◆
,

for some ⇠
p

2 (bNpc/N, p). For some ⌘
i

2 ( i�1
N

, i

N

), 1  i  N , we have

N2W 2
2 (F, FN

) = N2
Z 1

0
(F�1(p)� F�1

N

(p))2dp

= N2
NX

i=1

Z
i/N

(i�1)/N

✓
F�1(p)� F�1

✓
i

N

◆◆2

dp

= N2
NX

i=1

Z
i/N

(i�1)/N

✓
(F�1)0(⌘

i

)

✓
p� i

N

◆◆2

dp

= N2
NX

i=1

�
(F�1)0(⌘

i

)
�2

Z
i/N

(i�1)/N

✓
p� i

N

◆2

dp

= N2
NX

i=1

�
(F�1)0(⌘

i

)
�2

Z 1/N

0
x2dx =

1

3N

NX

i=1

�
(F�1)0(⌘

i

)
�2

. (2.8)

From (2.8), we obtain

N2W 2
2 (F, FN

) =
1

3N

NX

i=1

�
(F�1)0(⌘

i

)
�2  1

3
sup

1in

�
(F�1)0(⌘

i

)
�2  1

3
sup

1in

✓
1

f(F�1(⌘
i

))

◆2

 c2
F

,

thus
W2(F, FN

)  c
F

/N.

From (2.8) we also obtain, as N ! 1, that

N2W 2
2 (F, FN

) =
1

3N

NX

i=1

�
(F�1)0(⌘

i

)
�2 ! 1

3

Z 1

0

�
(F�1)0(x)

�2
dx

=
1

3

Z 1

0

�
f(F�1(x))

��1
dF�1(x) =

1

3

Z
b

a

f(t)�1dt = a2
F

,

thus
W2(F, FN

) ⇠ a
F

/N.

Combining the first result W2(F, FN

)  c
F

/N with W2(F, FN

) ⇠ a
F

/N we also obtain that a
F

 c
F

.
⇤

Lemma 2.3 and Theorem 2.2 directly imply the following theorem, which is the main theoretical
result of our paper. Given the N -discrete distributions F

N,1, . . . , FN,d

associated to F1, . . . , F
d

, we
define

�2
N

:= �2(F
N,1, . . . , FN,d

).
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Theorem 2.4. Let F1, . . . , F
d

be a set of distribution functions. Assume that each F
j

is a continuous
distribution on the interval [a

j

, b
j

], with a strictly positive density on [a
j

, b
j

]. Define the positive
constants

k :=
dX

j=1

a
Fj and K :=

dX

j=1

c
Fj .

Then, we have that
|�

F

� �
N

|  K/N, (2.9)

and
� (K/N)2 � 2(K/N)�

F

 �2
F

� �2
N

 (K/N)2 + 2(K/N)�
N

. (2.10)

Moreover, (2.9) and (2.10) hold asymptotically if K is replaced by k, i.e.

|�
F

� �
N

| . k/N, (2.11)

and
� (k/N)2 � 2(k/N)�

F

. �2
F

� �2
N

. (k/N)2 + 2(k/N)�
N

. (2.12)

Proof. The inequality (2.9) ((2.11)) follows by Theorem 2.2 and Lemma 2.3 applied with G
j

= F
N,j

and c =
P

d

j=1 cFj/N (c =
P

d

j=1 aFj/N). The inequalities in (2.10) and in (2.12) follow similarly
from (2.5) and (2.6). ⇤

Remark 2.1. Since a
F

 c
F

for any F , we have that k  K. In the applications to follow in
Section 3 and 4, we will use (2.11) and (2.12) because the use of k (instead of K) typically leads to
a more accurate estimation of |�

F

� �
N

|. The values of N used are in the order of N � 105 and
this give reasons to use the asymptotically sharper inequalities (2.11) and (2.12) instead of the strict
inequalities (2.9) and (2.10). We will further remark on this choice in Remark 3.2.

Theorem 2.4 has a series of interesting implications.

Corollary 2.5. Under the assumptions of Theorem 2.4, we have that

(i)
lim

N!1
�2
N

= �2
F

,

(ii)

|�2
N

� �2
F

| =
(
O(1/N2) if F1, . . . , F

d

are d-JM,

O(1/N) otherwise,

(iii) If F1, . . . , F
d

are not JM, then �
N

> K/N (and hence �
N

> k/N) for N su�ciently large.

Proof. (i) follows from (2.9) since K is a positive constant which does not depend on N . (ii) and
(iii) follow directly from (2.10), (i) and Proposition 2.1.

3 A procedure to detect complete and joint mixability

Based on Corollary 2.5, we introduce a procedure to check whether a set of arbitrary distributions
F1, . . . , F

d

is jointly mixable. To this aim, we need to define a measure for the degree of mixability of
a distribution or of a set of distribution functions. In the following, we assume that the distributions
F1, . . . , F

d

have finite second moments, and at least one of them is not degenerate (i.e.
P

d

j=1Var(Fj

) >
0).

Definition 3.1. The degree of mixability of the set of d marginal distributions F1, . . . , F
d

is defined
as

�(F1, . . . , F
d

) :=
�2(F1, . . . , F

d

)
P

d

j=1Var(Fj

)
.
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In the homogeneous case in which F
j

= F, 1  j  d, we speak about the degree of d-mixability
of the distribution F .

Definition 3.2. The degree of d-mixability of the distribution F is defined as

�
d

(F ) := �(F, . . . , F ) =
�2(F, . . . , F )

dVar(F )
.

Definitions 3.1 and 3.2 are justified by the following properties.

Proposition 3.1. The degree of mixability enjoys the following properties:

(i) For any set of d distribution functions F1, . . . , F
d

, we have

�(F1, . . . , F
d

) 2 [0, 1].

(ii) �(F1, . . . , F
d

) = 0 if and only if F1, . . . , F
d

are JM.

(iii) �(F1, . . . , F
d

) = 1 if and only if all the F
j

’s but one are degenerate.

(iv) Let X
j

d
= F

j

and G
j

be the distribution of a
j

+ bX
j

, 1  j  d, for some a1, . . . , a
d

, b 2 R, b 6= 0.
Then

�(F1, . . . , F
d

) = �(G1, . . . , G
d

).

Proof. (i) If U⇧
1 , . . . , U⇧

d

are d independent U(0, 1) random variables, we have

0  �2(F1, . . . , F
d

)  Var

0

@
dX

j=1

F�1
j

(U⇧
j

)

1

A =
dX

j=1

Var
⇣
F�1
j

(U⇧
j

)
⌘
=

dX

j=1

Var(F
j

),

i.e. 0  �(F1, . . . , F
d

)  1. (ii) follows directly from Proposition 2.1. (iii) Suppose that all the F
j

’s
but one are degenerate; say F1 is the non-degenerate distribution. Let X

j

⇠ F
j

, j = 1, . . . , d. It

follows immediately that Var(X1+ · · ·+X
d

) = Var(X1) =
P

d

j=1Var(Xj

), and �(F1, . . . , F
d

) = 1. Vice
versa, it is well known that for two distributions F1 and F2 with at least two points in their respective
essential supports, the comonotonic sum F�1

1 (U) + F�1
2 (U) has a strictly higher variance than the

countermonotonic sum F�1
1 (U)+F�1

2 (1�U); see for instance the proof of Theorem 2.5 in Puccetti and
Scarsini (2010). Thus, if the variance of the sum is invariant over all possible bivariate distributions
having fixed marginals, then at least one of the two has to be degenerate. The case d > 2 is similar.
(iv) Assume (U⇤

1 , . . . , U
⇤
d

) attains �2(G1, . . . , G
d

). Using the fact that G�1
j

= bF�1
j

+ a
j

, 1  j  d,
we obtain that

�(G1, . . . , G
d

) =
Var

⇣P
d

j=1G
�1
j

(U⇤
j

)
⌘

P
d

j=1Var(aj + bX
j

)
=

Var
⇣P

d

j=1(bF
�1
j

(U⇤
j

) + a
j

)
⌘

P
d

j=1 b
2Var(X

j

)

=
b2Var

⇣P
d

j=1 F
�1
j

(U⇤
j

)
⌘

P
d

j=1 b
2Var(F

j

)
� �(F1, . . . , F

d

).

�(F1, . . . , F
d

) � �(G1, . . . , G
d

) follows similarly from the same argument, noticing the fact that F
i

can
also be written as a transformation of G

i

of the same type. ⇤

Remark 3.1. Any norm || · || of X�E[X] is a possible candidate to replace Var(·) in the definition of
the degree of mixability. We chose the variance norm E[X�E(X)]2 for: (i) obvious interpretation and
computational ease; (ii) relevance in variance reduction; and (iii) that f(x) = (x�µ)2 is an analytical
function which yields convenience in analysis.
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The computation of the degree of mixability of a set of marginal distributions requires the compu-
tation of the quantity �2

F

. So far in the literature, the only analytical methods to compute �2
F

work
only in the homogeneous case when F

j

= F, 1  j  d, see Theorem 3.5 in Wang and Wang (2011).
All these analytical methods require an a-priori knowledge of the complete mixability of F , hence are
not useful to check if F is completely mixable nor they can be applied to the arbitrary marginals case.

However, if one is able to compute or at least to approximate numerically the quantity �2
N

, we
introduce the mixability detection procedure to check if a set of distributions is jointly mixable. The
procedure is based on the results stated in Theorem 2.4 and Corollary 2.5.

Mixability Detection Procedure (MDP)

Given the d distribution functions F1, . . . , F
d

, fix a (large) integer N and let F
N,1, . . . , FN,d

be the

corresponding N -discrete distributions. Compute the quantity �
N

and k =
P

d

j=1 aFj ;

(A) if �
N

> k/N , then F1, . . . , F
d

are not jointly mixable;

(B) if �
N

< k/N , then we have that
�(F1, . . . , F

d

)  �̂,

where

�̂ =
(�

N

+ k/N)2
P

d

j=1Var(Fj

)
.

In this latter case we say that F1, . . . , F
d

are JM at the confidence level � = �̂.

Definition 3.3. The d distributions F1, . . . , F
d

are said to be jointly mixable (JM) at the confidence
level �̂ 2 (0, 1) if

�(F1, . . . , F
d

)  �̂.

The distribution F is said to be d-completely mixable (CM) at the confidence level �̂ 2 (0, 1) if

�
d

(F )  �̂.

Note that the outcome (A) in the above procedure is conclusive wrt joint mixability. Indeed, on
the basis of Corollary 2.5 (iii), if �

N

> k/N the set of underlying distributions is not JM and a range
for the degree of mixability is given by

(�
N

� k/N)2
P

d

j=1Var(Fj

)
 �(F1, . . . , F

d

)  (�
N

+ k/N)2
P

d

j=1Var(Fj

)
. (3.1)

In the case (B), however, one cannot state that F1, . . . , F
d

are JM as the condition �
N

 k/N
could be violated at a larger N . In practice, one should fix a confidence level � 2 (0, 1) and iterate
the procedure above for increasing values of N until either the condition �

N

 k/N is violated or the
underlying distributions are found to be JM at the given level of confidence. Of course, this latter case
does not imply perfect joint mixability (i.e. �(F1, . . . , F

d

) = 0). From Definition 3.3 it follows that a
set of distributions is JM if and only if it is JM at any positive confidence level. However, the level �
should represent a threshold under which the set of distributions is regarded as indistinguishable from
a truly JM one. If computational resources allow (N ! 1), our procedure will eventually be able to
distinguish any set of non-JM distributions to a JM one.

Remark 3.2. The MDP can analogously be defined with the constant k replaced by K =
P

d

j=1 cFj .
We find in practice that the values of k are much smaller and give better estimation of |�

F

� �
N

|.
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4 Numerical verifications and stress-testing

To the best of our knowledge, in order to compute �2(F
N,1, . . . , FN,d

) for a set of arbitrary distri-
bution functions F1, . . . , F

d

, the only method available in the literature so far, which handles large d at
a reasonable speed, is the Rearrangement Algorithm (RA) first presented in Puccetti and Rüschendorf
(2012). The RA is a numerical procedure based on the iterative rearrangements of the column of a
matrix containing the support of the F

N,j

. It has been recently shown to find very good approxima-
tions of sharp lower and upper bounds on the expected value of a supermodular function of d random
variables having fixed marginal distributions; see Puccetti and Rüschendorf (2015). As the minimal
variance problem belongs to the domain of application of the RA, we briefly describes below how it
can be used for the computation of �2

N

.

Rearrangement Algorithm (RA) to compute �2(F
N,1, . . . , FN,d

).

1. Fix an integer N and a set of d distribution functions F1, . . . , F
d

.

2. Define the N ⇥ d matrix X = (x
i,j

) as

x
i,j

= F�1
j

✓
i� 1

N

◆
, 1  i  N, 1  j  d. (4.1)

3. Permute randomly the elements in each column of X.

4. Iteratively rearrange the j-th column of X so that it becomes oppositely ordered to the sum of the
other columns, for 1  j  d.

5. Repeat Step 4. until no further changes are possible. A matrix X

⇤ is found. Let y⇤ 2 RN be the
vector having as components the componentwise sums of each row of X⇤, i.e.

y

⇤
i

:=
dX

j=1

x⇤
i,j

, 1  i  N.

6. Define s
N

= var(y⇤). In practice we find that

�2(F
N,1, . . . , FN,d

)  s
N

(4.2)

and

s
N

N!1' �2(F
N,1, . . . , FN,d

). (4.3)

Remark 4.1. We discuss some points regarding the RA applied to our framework. For any further
details, we refer the interested reader to the papers Puccetti and Rüschendorf (2012) and Puccetti
and Rüschendorf (2015).

(i) There does not exist an analytical proof that the limit result (4.3) holds for all initial configu-
rations of the algorithm. However, non-convergence seems to be confined to pathological cases,
i.e. to special choices of the starting matrix of the algorithm; see Remark 6.2 in Embrechts
et al. (2013). Using the randomization Step 3., we found the algorithm to provide excellent
approximations with moderately large values of N for all marginal distributions we use in the
applicative section below. Moreover, there is a growing literature in the field of quantitative risk
management which uses the RA for a variety of optimization purposes and the algorithm seems
always to provide excellent results. We refer for instance to the papers Embrechts et al. (2013);
Bernard et al. (2014); Puccetti (2013). However, a full proof of the convergence of the RA, along
with corresponding regularity conditions, remains an open problem.

(ii) The bound in (4.2) holds true for any N . Thus, by using the RA with the MDP in Section 3
one can always find a confidence level at which a set of arbitrary distribution functions is JM.
More care has to be taken when the condition in (B) is satisfied. In this case the study of the
convergence rate of �2

N

can be helpful, as an extra tool to conclude whether a set of distributions
is JM.
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(iii) As a numerical algorithm, the RA can be used with any type of marginal distributions. The
computation time needed for one iteration of the algorithm increases linearly both in N and
in d and is reported in our applications below. For a given d, at some (very large) N memory
constraint prohibits the application of the algorithm. In practice one should choose N as a good
compromise between computation time needed to get an estimate of �2

N

and the (low) level of
confidence requested for joint mixability.

In the remainder of this section, we implement the MDP introduced in Section 3 in connection
with the RA in order to check whether sets of distribution functions of interest are jointly mixable. In
order to test the reliability of our procedure, we first treat the homogeneous case F

j

= F, 1  j  d,
in those cases where we know from theory if the underlying df is CM or not.

For illustrative reasons, in what follows we focus on the study of distributions of interest in quan-
titative risk management. Although typical distributions used in risk management are one-sided, the
detection of the joint mixability in bounded intervals is crucial to finding the solutions of a variety of
problems involving unbounded distributions; see our introductory section and the references therein.
Even if the notions of complete/joint mixability arose within this field, the methodology described
in this paper is no doubt applicable to a broader context. In the remainder of this section, all esti-
mates for �2

N

are obtained via the RA. We remark that, our procedure is open to implement with any
algorithm which calculates �2(F

N,1, . . . , FN,d

), and not limited to the RA.

Homogeneous case I: the Pareto distribution

In applications to quantitative risk management such as the ones described for instance in Bernard
et al. (2014), one typically needs to check the complete/joint mixability of conditional distributions

over some bounded interval. For X
d
= F and a, b 2 R with a  b, we denote by F [a,b] the conditional

distribution of (X|X 2 [a, b]).
The Pareto distribution Pa

✓

(x) = 1�(1+x)�✓, x � 0, ✓ > 0 is continuous with a decreasing density

over its entire support. From Proposition 1.2, Pa[a,b]
✓

is d-CM if and only if

µ
[a,b]
✓

� a+ (b� a)/d,

where µ
[a,b]
✓

denotes the first moment of Pa[a,b]
✓

.

As a first example we set d = 3 and F
j

= Pa[0,b]2 , 1  j  3. In this case, Pa[0,b]2 is known to be
3-CM if and only if

0  b  1,

while it is not 3-CM for b > 1. Table 1 collects the results from the application of the MDP for
values of b around the borderline value b = 1. At the discretization value N = 105, the MDP detects
complete mixability at all values b < 1, at very low confidence levels in the order of magnitude of
10�9. Moreover, the procedure also perfectly detects no complete mixability for values b � 1.003.

A first warning from Table 1 is to be raised by observing the fact that the Pa[0,1.002]2 is regarded to
be 3-CM at the level 6.83e � 09. We strongly remark that this assertion is, by Definition 3.3, not in
contrast with the fact that the distribution is not perfectly CM in this case. It is however clear from
Table 1 that the borderline value is situated below the threshold b = 1.003. At this point one may
perform a more sensitive (and more time consuming) analysis using the procedure at a higher value of
N . The results for N = 106 are reported in Table 2. The cases b = 1.002 and b = 1.001 are resolved
against perfect complete mixability while at the value b = 1.0005 the distribution is observed to be 3-
CM at level 10�11 (which, again, is correct). Of course, borderline cases like this cannot be avoided for
distributions so close to perfect mixability to be indistinguishable by our (any) numerical procedure.
If needed, one may increase the value of N to obtain higher sensitivity. However, in these borderline
cases, a qualitative analysis of the convergence rate of �2

N

may be conclusive. By Corollary 2.5 (ii),
the sequence �2

N

converges to zero as O(1/N2) if and only if the underlying distribution are JM.
In Figure 1 we plot the values of �2

N

N2 in the Pareto homogeneous case described above for b = 1
(left) and b = 1.0005 (right). It is immediately clear that this latter case is not CM. The graphical
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tool can be very useful to detect joint mixability in borderline cases, but does not provide ranges for
the degree of mixability like the MDP does. Finally note that a plot of the convergence rate is based
on the iteration of the procedure at di↵erent values of N , thus it might be very time consuming.

N = 105 theoretical observed range for �3(F )

b = 0.995 (3.1 sec.) CM CM at level 3.45e� 09 [0, 3.45e� 09]
b = 0.996 (3.2 sec.) CM CM at level 3.46e� 09 [0, 3.46e� 09]
b = 0.997 (3.3 sec.) CM CM at level 3.46e� 09 [0, 3.46e� 09]
b = 0.998 (3.3 sec.) CM CM at level 3.46e� 09 [0, 3.46e� 09]
b = 0.999 (3.3 sec.) CM CM at level 3.47e� 09 [0, 3.46e� 09]
b = 1.000 (3.3 sec.) CM CM at level 3.47e� 09 [0, 3.47e� 09]
b = 1.001 (3.6 sec.) NOT CM at level 4.16e� 09 [0, 4.16e� 09]
b = 1.002 (3.7 sec.) NOT CM at level 6.83e� 09 [0, 6.83e� 09]
b = 1.003 (3.7 sec.) NOT NOT [2.07e� 11, 1.16e� 08]
b = 1.004 (3.7 sec.) NOT NOT [1.18e� 09, 1.89e� 08]
b = 1.005 (3.8 sec.) NOT NOT [4.67e� 09, 2.94e� 08]

Table 1: Detection results for 3-complete mixability for the distribution Pa[0,b]2 , for some values of b of
interest. The average computation times are estimated over 100 identical runs of the algorithm.

N = 106 theoretical observed range for �3(F )

b = 0.9995 (91 sec.) CM CM at level 3.47e� 11 [0, 3.47e� 11]
b = 1.0000 (95 sec.) CM CM at level 3.48e� 11 [0, 3.48e� 11]
b = 1.0005 (100 sec.) NOT CM at level 8.15e� 11 [0, 8.15e� 11]
b = 1.0010 (97 sec.) NOT NOT [3.18e� 11, 2.54e� 10]
b = 1.0015 (96 sec.) NOT NOT [2.14e� 10, 6.22e� 10]
b = 1.0020 (101 sec.) NOT NOT [6.40e� 10, 1.26e� 09]

Table 2: The same as Table 1 with a number of discretization points set at N = 106.

0 200 400 600 800 1000

0.
10
0

0.
10
5

0.
11
0

0.
11
5

N/100

σ
N2
N
2

0 200 400 600 800 1000

0.
10

0.
11

0.
12

0.
13

0.
14

N/100

σ
N2
N
2

Figure 1: Plot of the function �2
N

(F, F, F )N2 versus the number of discretization points N , when

F = Pa[0,b]2 with b = 1 (left) and b = 1.0005 (right).
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Homogeneous case II: the Lognormal distribution

Denote by LogN
µ,�

the distribution of the random variable X = eY with Y
d
= N(µ,�2). As

a second example we set d = 3, F
j

= LogN[0.2,b]
2,1 , 1  j  3. For b > 2.7183, it is easy to see

that the density of the LogN[0.2,b]
2,1 distribution is not monotone nor concave, and does not satisfy the

condition given in Proposition 1.4. As a consequence, the 3-mixability of LogN[0.2,b]
2,1 is not covered

by any known theoretical results. By Proposition 1.2 we can only state that for b > b̂ ' 22.65 the

moderate mean condition (1.3) is not satisfied and LogN[0.2,b]
2,1 is not 3-CM. Table 3 collects the results

from the application of the detection procedure for values of b around b̂. At a discretization value
N = 105, the procedure detects no perfect mixability at all values b > b̂, but also at some lower
thresholds. This indicates that the moderate mean condition is not su�cient for a distribution with
non-monotone density to be completely mixable. The borderline value seems to be smaller than the
threshold b = 21.8. A more sensitive analysis at the level N = 106 indicates that the distribution
is no more 3-CM at some threshold between b = 21.55 and b = 21.6. The graphical analysis of the
convergence rate in Figure 2 confirms that for b = 21.55 we have complete mixability, while for b = 21.6
the distribution is not completely mixable.

N = 105 theoretical observed range for �3(F )

b = 21.2 (4.5 sec.) UNKNOWN CM at level 4.21e� 09 [0, 4.21e� 09]
b = 21.5 (7.9 sec.) UNKNOWN CM at level 4.58e� 09 [0, 1.31e� 06]
b = 21.8 (6.8 sec.) UNKNOWN NOT [5.00e� 06, 5.51e� 06]
b = 22.1 (6.2 sec.) UNKNOWN NOT [3.35e� 05, 3.48e� 05]
b = 22.4 (6.0 sec.) UNKNOWN NOT [9.04e� 05, 9.26e� 05]
b = 22.7 (5.8 sec.) NOT NOT [1.78e� 04, 1.81e� 04]

Table 3: Detection results for 3-complete mixability for the distribution LogN[0.2,b]
2,1 . The average

computation times are estimated over 100 identical runs of the algorithm.

N = 106 theoretical observed range for �3(F )

b = 21.45 (175 sec.) UNKNOWN CM at level 4.47e� 11 [0, 4.47e� 11]
b = 21.50 (212 sec.) UNKNOWN CM at level 4.59e� 11 [0, 4.59e� 11]
b = 21.55 (298 sec.) UNKNOWN CM at level 4.82e� 11 [0, 4.82e� 11]
b = 21.60 (419 sec.) UNKNOWN NOT [4.46e� 09, 6.08e� 09]
b = 21.65 (223 sec.) UNKNOWN NOT [3.72e� 07, 3.86e� 07]
b = 21.70 (209 sec.) UNKNOWN NOT [1.35e� 06, 1.38e� 06]

Table 4: The same as Table 3 with a number of discretization points set at N = 106.

It is also interesting to perform a comparative study on the same distribution with di↵erent values

of d. As an example, we study the distribution LogN[0.2,30]
2,1 . By the discussion above, this distribution

is not 3-CM. However, using Proposition 1.4 we can state that it is d-CM for any d � 35. The
application of the detection procedure and the analysis of the convergence rate however indicate that
the distribution is d-CM for all values d � 4. We report in Table 5 the analysis for dimensions d of
interest.
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Figure 2: Plot of the function �2
N

(F, F, F )N2 versus the number of discretization points N , when

F = LogN[0.2,b]
2,1 with b = 21.55 (left) and b = 21.6 (right).

N = 105 theoretical observed range for �
d

(F )

d = 3 (4.3 sec.) NOT NOT [1.23e� 02, 1.23e� 02]
d = 4 (2.8 sec.) UNKNOWN CM at level [6.77e� 09] [0, 6.77e� 09]
d = 5 (3.3 sec.) UNKNOWN CM at level [8.21e� 09] [0, 8.21e� 09]
d = 6 (3.6 sec.) UNKNOWN CM at level [9.68e� 09] [0, 9.68e� 09]
d = 10 (6.3 sec.) UNKNOWN CM at level [1.57e� 08] [0, 1.57e� 08]
d = 20 (14 sec.) UNKNOWN CM at level [3.08e� 08] [0, 3.08e� 08]

Table 5: Detection results for d-complete mixability for the distribution LogN[0.2,30]
2,1 . The average

computation times are estimated over 100 identical runs of the algorithm.
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Inhomogeneous case: mixed marginals with monotone densities

As a third example we set an inhomogeneous framework with monotone densities. It was shown
in Wang and Wang (2014) that d continuous distributions F1, . . . , F

d

with decreasing densities on their
respective supports are JM if and only if the following extended moderate mean condition is satisfied:

dX

j=1

a
j

+ max
j=1,...,d

(b
j

� a
j

) 
dX

j=1

µ
j


dX

j=1

b
j

� max
j=1,...,d

(b
j

� a
j

), (4.4)

where the interval [a
j

, b
j

] and µ
j

represent the essential support and, respectively, the first moment
of F

j

, 1  j  d.

In the case d = 3, F1 = Pa[0,2]2 , F2 = �[0,2] (� is the distribution of a standard Gaussian random

variable), F3 = Exp[0,2]1 and F4 = LogN[3,b]
2,1 , it is easy to compute that (4.4) is satisfied for b 2 [b, b],

with
b ' 3.180719 and b ' 6.582307.

Tables 6 and 7 collect the results from the application of the detection procedure for values of b around
the borderline values above. The analyses of the convergence rates of �2

N

in Figures 3 and 4 are again
conclusive. For this example, observations are coherent with the fact that condition (4.4) is su�cient
to guarantee joint mixability of distributions with decreasing densities. This numerical example was
obtained earlier than the proof stated in Wang and Wang (2014) and actually shows that the detection
procedure can be of invaluable help to the future developments of su�cient conditions for complete
and joint mixability. Moreover, we remark again that the MDP is the only tool available to check the
joint mixability of a set of arbitrary distributions.

5 Conclusions and future developments

In this paper, we introduce a novel procedure, called the Mixability Detection Procedure (MDP),
to check whether a set of d distribution functions is jointly mixable at a given confidence level. The
MDP is based on newly established results regarding the convergence rate of the minimal variance
problem within the class of joint distribution functions with given marginals.

The application of the MDP to a given set of distributions has two possible outcomes: either the
set of distributions is observed to be JM at some given confidence level, or non-perfect mixability is
detected and a deterministic range for the so-called degree of mixability of the set of distributions is
given. The same procedure can be analogously used to detect complete mixability in the homogeneous
case where all the distributions are identical.

The application of the procedure needs a numerical method to evaluate the minimal variance of
a sum of random variables with fixed marginal distributions. To this aim, in this paper we use the
so-called rearrangement algorithm, with excellent results. Stress-tests against borderline cases show
that the MDP is fast and reliable: we never experienced cases in which a mixable distributions has
been observed in numerics to be not mixable. In borderline cases, we also provide an extra qualitative
analysis which is typically conclusive.

So far in the literature, the procedure introduced in this paper represents the first method to check
the complete or joint mixability of an arbitrary set of bounded distribution functions, which is an
essential requirement in various problems of optimal coupling, mass transportations and with respect
the existence of the convex order least element within the class of all sums of random variables with
fixed marginal distributions.

In view of the su�cient condition in Proposition 1.4, the detection of mixability is usually per-
formed for small dimensions d. However, the RA used in connection with our procedure is capable of
dealing also with high dimensional sets of distributions, even for values of d ' 1000. Future research
on su�cient conditions to complete and joint mixability will no doubt benefit and take inspiration
from the numerical findings provided by the detection procedure. The analysis of computation times
seems to suggest that the algorithm requires a larger number of iterations in borderline cases. This
should be taken into account in the search for a general proof of convergence of the RA.
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N = 105 theoretical observed range for �(F1, . . . , F4)

b = 3.14 (6.3 sec.) NOT (conjectured) NOT [2.18e� 06, 2.61e� 06]
b = 3.15 (6.0 sec.) NOT (conjectured) NOT [8.88e� 07, 1.17e� 06]
b = 3.16 (5.8 sec.) NOT (conjectured) NOT [2.40e� 07, 3.96e� 07]
b = 3.17 (5.4 sec.) NOT (conjectured) NOT [1.88e� 08, 7.69e� 08]
b = 3.18 (5.0 sec.) NOT (conjectured) JM at level 5.67e� 09 [0, 5.67e� 09]
b = 3.19 (4.1 sec.) JM (conjectured) JM at level 5.49e� 09 [0, 5.49e� 09]
b = 3.20 (4.2 sec.) JM (conjectured) JM at level 5.59e� 09 [0, 5.59e� 09]

b = 6.57 (4.4 sec.) JM (conjectured) JM at level 5.49e� 09 [0, 5.49e� 09]
b = 6.58 (4.8 sec.) JM (conjectured) JM at level 5.49e� 09 [0, 5.50e� 09]
b = 6.59 (5.4 sec.) NOT (conjectured) NOT [4.41e� 10, 2.53e� 08]
b = 6.60 (5.4 sec.) NOT (conjectured) NOT [5.90e� 08, 1.45e� 07]
b = 6.61 (5.5 sec.) NOT (conjectured) NOT [2.91e� 07, 4.59e� 07]
b = 6.62 (5.5 sec.) NOT (conjectured) NOT [7.98e� 07, 1.06e� 06]

Table 6: Detection results for joint mixability of the d = 4 distributions F1 = Pa[0,2]2 , F2 = �[0,2],

F3 = Exp[0,2]1 and F4 = LogN[3,b]
2,1 . The average computation times are estimated over 100 identical

runs of the algorithm.

N = 106 theoretical observed range for �(F1, . . . , F4)

b = 3.179 (147 sec.) NOT (conjectured) NOT [3.95e� 11, 4.14e� 10]
b = 3.180 (139 sec.) NOT (conjectured) JM at level 1.13e� 10 [0, 1.13e� 10]
b = 3.181 (135 sec.) JM (conjectured) JM at level 5.52e� 11 [0, 5.53e� 11]

b = 6.582 (137 sec.) JM (conjectured) JM at level 5.50e� 11 [0, 5.50e� 11]
b = 6.583 (144 sec.) NOT (conjectured) JM at level 8.87e� 11 [0, 8.87e� 11]
b = 6.584 (140 sec.) NOT (conjectured) NOT [5.75e� 12, 2.63e� 10]

Table 7: The same as Table 6 with a number of discretization points set at N = 106.
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Figure 3: Plot of the function �2
N

(F, F, F )N2 in the case F1 = Pa[0,2]2 , F2 = �[0,2], F3 = Exp[0,2]1 and

F4 = LogN[3,b]
2,1 with b = 3.180 (left) and b = 3.181 (right).
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Figure 4: The same as Figure 3 with b = 6.582 (left) and b = 6.583 (right).

Finally, we remark that our procedure is an open structure in the sense that it can be used also
with more precise methods than the rearrangement algorithm and more accurate ranges for the degree
of mixability, if and when they will be available in the future.
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