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Abstract

It has been a challenge to characterize the set of all possible sums of random variables

with given marginal distributions, referred to as an aggregation set in this paper. We study

the aggregation set via its connection to the corresponding lower-convex set, which is the set

of all sums of random variables that are smaller than the respective marginal distributions

in convex order. Theoretical properties of the two sets are discussed, assuming that all

marginal distributions have finite mean. In particular, an aggregation set is always a subset

of its corresponding lower-convex set, and the two sets are identical in the asymptotic sense

after scaling. We also show that a lower-convex set is identical to the set of comonotonic

sums with the same marginal constraint. The main theoretical results contribute to the

field of multivariate distributions with fixed margins.

Key-words: aggregation set; convex order; comonotonicity; dependence uncertainty;

Fréchet classes.

1 Introduction

The study of probability measures with given margins has been an active field in multivariate

probability theory for a long time; see for instance Strassen (1965). One of the challenging

questions in this field is to determine all possible distributions of Sn = X1 + · · · + Xn for

given distributions F1, . . . , Fn, where Xi ∼ Fi, i = 1, . . . , n, are random variables in a standard

probability space (Ω,F ,P), assumed to be atomless unless otherwise specified.

This question has raised a lot of attention in the recent research of dependence uncertainty

in quantitative risk management. To be more precise, in the modeling of an aggregate risk Sn,

model uncertainty lies at both the level of the marginal distributions F1, . . . , Fn, and at the
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level of the joint distribution of (X1, . . . , Xn) (i.e. dependence uncertainty). In the practice of

quantitative risk management, one often has reliable information on the marginal distributions,

but very little information on the joint distribution; see Embrechts et al. (2013) for examples

in the context of operational risk. With dependence uncertainty, one has to find bounds on

quantities of interest over all possible models of Sn in the set

Dn = Dn(F1, . . . , Fn) = {X1 + · · ·+Xn, Xi ∼ Fi, i = 1, . . . , n}, (1.1)

which we call an aggregation set in this paper. For instance, the calculation of sup{ρ(Sn) : Sn ∈

Dn}, where ρ is a risk measure, is useful in obtaining conservative values of ρ, a practical con-

cern in risk management with model uncertainty. This problem and its corresponding infimum

problem inf{ρ(Sn) : Sn ∈ Dn} have recently been studied in Wang et al. (2013); Embrechts et al.

(2013, 2014b); Puccetti et al. (2013); Bernard et al. (2013, 2014) for the most popular regulatory

risk measures Value-at-Risk and Expected Shortfall. We refer to the survey paper Embrechts et

al. (2014a) for an overview and a history of this topic.

The core question is to characterize the aggregation set Dn. It is well known that even

in the case of n = 2, the characterization of D2 is generally an open question; see Bernard et

al. (2014). In the latter paper Dn is called an admissible risk class from a risk management

perspective, and some properties of Dn are discussed. A frequently studied question in recent

research is to determine whether Dn contains a constant random variable, in which case we call

that F1, . . . , Fn are jointly mixable (see Wang et al., 2013). Apparently the characterization

of Dn is a more ambitious aim than the determination of joint mixability; even the latter is a

challenging open question, only solved for some specific classes of marginal distributions (see

for instance Wang and Wang, 2011). Many contributions to the research on Dn are made by

using copula and mass-transportation techniques; we refer the interested reader to Rüschendorf

(2013) for a comprehensive overview. The study of Dn generally belongs to the field of research

on Fréchet classes and distributions with marginal constraints; see for instance Joe (1997) from

a copula perspective.

In this paper, we study Dn by connecting it with the following set

Cn = Cn(F1, . . . , Fn) = {X1 + · · ·+Xn, Xi 6cx Yi, Yi ∼ Fi, i = 1, . . . , n}, (1.2)

which we call a lower-convex set (a lower set with respect to convex order). Here, 6cx represents

convex order. When n = 1, we use the notation

C(F ) = C1(F ) = {X : X 6cx Y, Y ∼ F}. (1.3)

We assume distributions F1, . . . , Fn have finite mean in this paper. Convex order is consistent

with risk preferences in economic decision theory; see for instance Yaari (1987). As such, Cn
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contains all aggregate risks
∑n
i=1Xi such that for each i = 1, . . . , n, Xi is preferred compared to

an Fi-distributed risk via convex order; in quantitative risk management it can be interpreted

as a set of acceptable risks with marginal constraints.

We investigate properties of the sets Dn and Cn, and in particular, Cn is closed with respect

to L1-convergence, and it can be fully characterized as the set of random variables smaller than

a comonotonic sum in convex order. One of the main contributions of this paper is to show

that in the homogeneous setting when F1 = · · · = Fn, Dn has an upper limit C after scaling by

1/n, as n → ∞. This result is a complement to the laws of large numbers. It presents all the

possible limits of (X1 + · · · + Xn)/n as n → ∞ by removing the assumption of independence,

that is, allowing arbitrary dependence among the sequence of random variables. Another main

contribution is to show that all the elements in Cn(F1, . . . , Fn) can be written as a comonotonic

sum (see Dhaene et al., 2002, for comonotonicity) of random variables X1, . . . , Xn which are

smaller than F1, . . . , Fn in convex order, respectively. We also give some direct implications of

our main results in the theory of risk measures.

The rest of the paper is organized as follows. Some preliminaries on convex order are given

in Section 2. In Section 3, we study some theoretical properties and the asymptotic behavior

of Dn, and identify its limit in the homogeneous setting. In Section 4, we show the equivalence

between Cn and the set of corresponding comonotonic sums. A conclusion is drawn in Section 5.

2 Preliminaries on convex order

Recall that a random variable X is called smaller than another random variable Y in convex

order, denoted by X 6cx Y , if

E[φ(X)] 6 E[φ(Y )] for all convex φ : R→ R,

provided that both expectations exist. We also write F 6cx G if X 6cx Y , X ∼ F and Y ∼ G.

Standard references for convex order can be found in Müller and Stoyan (2002) and Shaked and

Shanthikumar (2007). Throughout, we say that a distribution or a random variable is integrable

if it has finite mean, and we use L1 for the set of integrable random variables. In the paper,

we mainly focus on integrable distributions, which are the main subject in the study of convex

order; for instance, integrability is required in the definition of convex order in Müller and Stoyan

(2002, Definition 1.5.1).

There is a martingale characterization about the convex order which is useful for under-

standing convex order and will be used several times later.

Lemma 2.1. (Theorem 3.A.4, Shaked and Shanthikumar (2007)) The L1 random variables X
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and Y satisfy X 6cx Y if, and only if, there exist two random variables X̂ and Ŷ , defined on

the same probability space, such that

X̂
d
= X, Ŷ

d
= Y and E[Ŷ |X̂] = X̂ a.s.

Convex order is a stochastic order to compare the variability of random variables. There

is extensive research on transfers of mass between two random variables that are ordered by

6cx. In the following we state a result established by Rothschild and Stiglitza (1970); see also

Theorem 1.5.29 of Müller and Stoyan (2002) and Theorem 2.5.4 of Müller (2013). We need the

following definition of mean preserving spreads, see Rothschild and Stiglitza (1970) or Definition

1.5.28 of Müller and Stoyan (2002) for more details.

Definition 2.1. Let F and G be distribution functions of discrete distributions whose union

support is a finite set of points x1 < x2 < · · · < xn with probability mass functions f and g

respectively. Then G is said to be a mean preserving spread of F , if they have the same mean

and there exists i ∈ {2, . . . , n− 1} such that

g(xi−1) > f(xi−1), g(xi) 6 f(xi), g(xi+1) > f(xi+1),

and

g(xj) = f(xj), j 6∈ {i− 1, i, i+ 1}.

Lemma 2.2. Suppose that F and G are two distribution functions supported in finite sets. Then

F 6cx G is equivalent to that there is a finite sequence F1, . . . , Fk with F1 = F and Fk = G,

such that Fi+1 is a mean preserving spread of Fi for i = 1, . . . , k − 1, i.e., G differs from F by

finitely many mean preserving spreads.

In the following sections, we denote F−1(t) = inf{x : F (x) > t}, t ∈ (0, 1] for any distri-

bution function F . Two random variables X and Y are said to be comonotonic, if there exists

a random variable U and two non-decreasing functions f, g such that X = f(U) and Y = g(U)

almost surely. Such U can be chosen as U[0, 1] distributed, and f and g can be chosen as the

inverse distribution functions of X and Y . For any distributions F and G, we denote by F ⊕G

the distribution of the sum of comonotonic random variables with respective distributions F and

G. In other words, F ⊕G is the distribution of F−1(U) +G−1(U) where U ∼ U[0, 1].

3 Aggregation sets and lower-convex sets

3.1 Basic properties

First, the inclusion of Dn in Cn follows directly from the definitions of Dn and Cn in (1.1)

and (1.2). This simple fact will be used repeatedly, and hence we state it here as a proposition.
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Proposition 3.1. Dn(F1, . . . , Fn) ⊂ Cn(F1, . . . , Fn) for any integrable distributions F1, . . . , Fn.

We aim to investigate the aggregation set Dn by its superset Cn. We first give a closer look

at Cn. Recall its definition:

Cn(F1, . . . , Fn) = {X1 + · · ·+Xn, Xi 6cx Yi, Yi ∼ Fi, i = 1, . . . , n},

where F1, . . . , Fn ∈ F1. We define another set

C′n(F1, . . . , Fn) = {S : S 6cx X
c
1 + · · ·+Xc

n, X
c
i ∼ Fi, Xc

i , i = 1, . . . , n, comonotonic, }

= C(F1 ⊕ · · · ⊕ Fn).

We will first show that the two sets Cn and C′n are identical; this result will become very useful in

the later analysis. Note that the definition of Cn involves arbitrary dependence as in Dn (hence

it is not straightforward to characterize), whereas C′n only concerns a single inequality of convex

order and is a fully characterized set.

Proposition 3.2. C′n(F1, . . . , Fn) = Cn(F1, . . . , Fn) for any integrable distributions F1, . . . , Fn.

Proof. It suffices to prove C′n ⊂ Cn, since the converse Cn ⊂ C′n follows from Corollary 1 in Dhaene

et al. (2002). For any S ∈ C′n, by Lemma 2.1, there exist Ŝ
d
= S and Ŷ

d
=
∑n
i=1X

c
i with Xc

i ∼ Fi,

i = 1, . . . , n, comonotonic such that E[Ŷ |Ŝ] = Ŝ a.s. Let FSc denote the distribution function of∑n
i=1X

c
i and Xi = E[F−1

i (FSc(Ŷ ))|Ŝ], i = 1, . . . , n. Then Xi 6cx X
c
i , since F−1

i (FSc(Ŷ )) ∼ Fi,

i = 1, . . . , n. Then we have
∑n
i=1Xi = E[

∑n
i=1 F

−1
i (FSc(Ŷ ))|Ŝ] = E[Ŷ |Ŝ] = S a.s.

From Proposition 3.2, it is straightforward to determine whether S ∈ Cn for a given random

variable S via checking convex order, whereas Dn is yet open to characterize. Another property

of Cn that we will use later is the closure property under the weak convergence.

Proposition 3.3. For any integrable distributions F1, . . . , Fn,

(i) Cn(F1, . . . , Fn) is uniformly integrable;

(ii) Cn(F1, . . . , Fn) is closed with respect to the topology induced by weak convergence.

Proof. By Proposition 3.2, we only need to prove that the theorem holds for n = 1, since

Cn(F1, . . . , Fn) = C′n(F1, . . . , Fn) = C(F1 ⊕ · · · ⊕ Fn). (i) follows directly from Elton and Hill

(1992, Theorem 4.2). It suffices to prove (ii). Let Xn ∈ C(F ), n ∈ N satisfying that Xn
d→ X

as n → ∞. By Theorem 3.2.2 of Durrett (2010), there exist X ′n, n ∈ N and X ′ on the same

probability space such that X ′n
d
= Xn, n ∈ N, X ′

d
= X and

X ′n
a.s.−→ X ′ as n→∞.
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It follows that, by the uniform integrability of {X ′n, n ∈ N} from (i),

E[Y ] = lim
n→∞

E[X ′n] = E[X].

For any t ∈ R, applying Fatou’s lemma to the sequence {(X ′n− t)+, n > 1} which converges a.s.

to (X − t)+, we have that

E[(X − t)+] 6 lim inf
n→∞

E[(X ′n − t)+] 6 E[(Y − t)+]

where the last inequality follows from X ′n 6cx Y for all n ∈ N. Thus, we have X 6cx Y .

Remark 3.1. (i) By noting that 1
n (X1 + . . . + Xn) 6cx X holds for Xi

d
= X, i = 1, . . . , n,

from Theorem 3.3 (i) we can directly obtain the following: suppose that {Yn, n ∈ N} is a

sequence defined as

Yn =
1

n
(Xn1 + · · ·+Xnn) , n ∈ N,

where {Xni} is any triangular array such that Xni
d
= X, i = 1, . . . , n, n ∈ N, for some

integrable random variable X. Then {Yn, n ∈ N} is uniformly integrable.

(ii) From Theorem 3.3 (ii), the set Cn(F1, . . . , Fn) is also closed with respect to a.s.-convergence

and L1-convergence since the latter two types of convergence are stronger than weak con-

vergence. Moreover, Dn is closed under the same topology as shown in Bernard et al.

(2014).

(iii) If some of the distribution functions F1, . . . , Fn are not integrable, then the result in Propo-

sition 3.3 (i) fails to hold since there exists element in Cn(F1, . . . , Fn) which is not integrable.

Note that the set Cn(F1, . . . , Fn) is not closed with respect to a.s. convergence, implying

that Proposition 3.3 (ii) also fails; see Shaked and Shanthikumar (2007, Theorem 4.A.8).

3.2 Motivating examples

Now that we have Dn ⊂ Cn, one naturally wonders about the difference between the two

sets. The following example of Bernoulli distributions motivates us to believe that the difference

between the two sets can be, in some sense, very small.

Example 3.1. Suppose that F = Bern(p) for some p ∈ [0, 1], i.e., for X ∼ F ,

P(X = 0) = 1− p, P(X = 1) = p.

Denote by L(N) the set of random variables which take values in N. We have that

Dn(F, . . . , F ) = Cn(F, . . . , F ) ∩ L(N).
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Proof. Denote D′n = Cn(F, . . . , F ) ∩ L(N). It is obvious that Dn ⊂ D′n by Proposition 3.1. For

the converse, let X ∈ D′n. Then by Proposition 3.2, X 6cx nY with Y ∼ F and X only takes

values in {1, . . . , n}. Suppose that P(X = i) = pi > 0, i = 0, . . . , n, with
∑n
i=0 pi = 1 and∑n

i=1 ipi = np. Define exchangeable random variables X = (X1, . . . , Xn) by

P(X = σi) = pi

/(n
i

)
, i = 1, . . . , n,

where σi denotes any permutation of n-dimensional vector u = (0, . . . , 0, 1, . . . , 1) with ||u||1 = i,

i = 1, . . . , n, where || · ||1 is the L1-norm defined by ||x||1 =
∑n
i=1 |xi| for x = (x1, . . . , xn). Then

P(Xi = 1) =

n∑
i=1

i

n
pi =

1

n
np = p, i = 1, . . . , n.

and

P

(
n∑
i=1

Xi = j

)
=
∑
σj

P(X = σj) = pj , j = 0, . . . , n.

This means X =
∑n
i=1Xi ∈ Dn.

Motivated by Example 3.1, one may wonder whether the two sets Dn and Cn ∩ L are

identical, where L is the set of random variables with the proper range. However, this is not

true in general, even for some very simple choices of marginal distributions. The following two

examples show that Dn is strictly smaller than Cn∩L for the case of tri-atomic distributions and

uniform distributions. We hope those simple examples help the reader to understand challenges

arising in problems related to Dn. We remark that the only fully characterized aggregation sets

Dn so far are those of Bernoulli distributions.

Example 3.2. Suppose that F is a tri-atomic distribution, i.e, for X ∼ F ,

P(X = 0) = p, P(X = 1) = q, P(X = 2) = 1− p− q,

for some p, q > 0 and p+ q 6 1. Then, it generally holds that

Dn(F, . . . , F ) 6= Cn(F, . . . , F ) ∩ L(N).

Proof. We show by providing a counter-example in the case of n = 2. Let p = q = 1/3 and Y

be a random variable defined by

P(Y = 1) = P(Y = 3) = 1/2.

It is easy to see that Y 6cx 2X; hence Y ∈ C2(F, F ) ∩ L(N). We show that one cannot

find X1, X2 ∼ F such that Y = X1 + X2. Suppose that Y = X1 + X2 for some random

variables X1, X2 ∼ F . Note that P(Y = 1) = P(X1 = 0, X2 = 1) + P(X1 = 1, X2 = 0), and
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P(Y = 3) = P(X1 = 1, X2 = 2) + P(X1 = 2, X2 = 1). Since P(Y = 1) + P(Y = 3) = 1, we have

that

P(X1 = 0, X2 = 1) + P(X1 = 1, X2 = 0) + P(X1 = 1, X2 = 2) + P(X1 = 2, X2 = 1) = 1.

It follows that {X1 = 0}∪{X1 = 2} = {X2 = 1} a.s. However P({X1 = 0}∪{X1 = 2}) = 2/3 >

P(X2 = 1). The contradiction shows that Y 6∈ D2(F, F ).

Example 3.3. Suppose that F = U[0, 1]. Then,

D2(F, F ) 6= C2(F, F ).

Proof. Let X be a random variable such that

P
(
X =

6

5

)
= P

(
X =

4

5

)
=

1

2
.

It is straightforward to check that X ∈ C2(F, F ). To see that X 6∈ D2(F, F ), assume that there

exist U1, U2 ∼ U(0, 1) such that X = U1 + U2. Let Ai = {U1 ∈ [(i − 1)/5, i/5)}, Bi = {U2 ∈

[(i − 1)/5, i/5)}, i = 1, . . . , 5, and C = {X = 4/5}. In the following, sets are considered as

identical if their indicator functions are almost surely equal.

Note that X = 4/5 implies that Ui 6 4/5, i = 1, 2, and X = 6/5 implies that Ui > 1/5,

i = 1, 2, that is, C ⊂ Ac5 ∩Bc5 and Cc ⊂ Ac1 ∩Bc1. Then it follows that

A5 ∪B5 ⊂ Cc and A1 ∪B1 ⊂ C,

and from U1 + U2 = X we further have that

A5 = B2, A2 = B5, A1 = B4 and A4 = B1.

Now, A3 = (A1 ∪ A2 ∪ A4 ∪ A5)c = (B4 ∪ B5 ∪ B1 ∪ B2)c = B3. It follows that P(A3) =

P(C ∩A3) +P(Cc ∩A3) = P(C ∩A3 ∩B3) +P(Cc ∩A3 ∩B3) = 0. This contradiction shows that

X 6∈ D2(F, F ).

The above examples reveal some substantial challenges to determine the set Dn even in

some very simple homogeneous settings. In the next section, we will investigate the asymptotic

properties of Dn as n→∞ in homogeneous settings.

3.3 Asymptotic behavior of aggregation sets

In this section we investigate the asymptotic behavior of sets Dn(F1, . . . , Fn) when F1 =

· · · = Fn. To analyze the asymptotic behavior, one needs to normalize Dn by a constant 1/n.

We denote

Bn(F ) =
{

1
n (X1 + · · ·+Xn), Xi ∼ F, i = 1, . . . , n

}
=
{

1
nS : S ∈ Dn(F, . . . , F )

}
. (3.1)
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The following lemma helps to justify our motivation for an asymptotic analysis of the set

Bn. We use the standard definition of upper limit for a sequence of sets {An, n > 1}, that is,

lim supn→∞An = ∩n>1 ∪k>n Ak.

Lemma 3.4. Bn(F ) ⊂ Bnk(F ) ⊂ lim sup
m→∞

Bm(F ) ⊂ C(F ) for any n, k ∈ N and any integrable

distribution F .

Proof. For any X ∈ Bn(F ), there exist X1, . . . , Xn ∼ F such that

1

n
(X1 + · · ·+Xn) = X.

Then for each k ∈ N, define Xi,j = Xi, i = 1, . . . , n, j = 1, . . . , k. Then

1

nk

k∑
j=1

n∑
i=1

Xi,j =
1

nk

n∑
i=1

kXi = X.

This implies thatX ∈ Bnk(F ). Moreover, since k is arbitrary, we have thatX ∈ lim supm→∞ Bm(F );

thus Bn(F ) ⊂ Bnk(F ) ⊂ lim supm→∞ Bm(F ). By Proposition 3.1, we have that for each n ∈ N,

Dn(F, . . . , F ) ⊂ Cn(F, . . . , F ) = {X : X 6cx nY, Y ∼ F}, thus Bn(F ) ⊂ C(F ). Therefore,

∪m>1 Bm(F ) ⊂ lim sup
m→∞

Bm(F ) ⊂ ∪m>1Bm(F ) ⊂ C(F ). (3.2)

We are now ready to present the main result on the asymptotic behavior of Bn.

Theorem 3.5. For any integrable distribution F , let Bn(F ) and C(F ) be given by (3.1) and

(1.3), respectively. Then

lim sup
n→∞

Bn(F ) = C(F ), (3.3)

where A denotes the closure of A with respect to the topology induced by L1-convergence.

Proof. By Lemma 3.4, ∪n>1Bn(F ) ⊂ C(F ). By Proposition 3.3, we know that C(F ) is closed with

respect to the topology induced by L1-convergence. Thus, we have lim supn→∞ Bn(F ) ⊂ C(F ).

For the converse, we show by the following two steps.

Step 1. Denote by L∗ the set of random variables taking values in a finite set. First, we show that

C(F ) ∩ L∗ ⊂ ∪n>1Bn(F ). (3.4)

Note that C(F ) ∩ L∗ is not empty. For any X ∈ C(F ) ∩ L∗, without loss of generality,

denote the support of distribution of X by supp(X) = {x1, . . . , xk}. By Lemma 2.1, there

exists a random variable Y ∼ F such that

E[Y |X = xi] = xi, for i = 1, . . . , k.
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One can define a sequence {Yn, n ∈ N} such that given X = xi, they are independent, and

[Yn|X = xi]
d
= [Y |X = xi] for i = 1, . . . , k . To see this, by the Kolmogorov consistency

theorem, there exist sequences of independent random variables {Yni, n ∈ N} defined on

probability space (Ai,Fi,P|Ai
), where Ai = {ω ∈ Ω : X(ω) = xi}, Fi = {A ∩ Ai, A ∈ F}

and P|Ai
is the probability measure on Ai given by P|Ai

(A) = P(A)/P(Ai) for all A ∈ Fi,

i = 1, . . . , n, such that with Yni
d
= [Y |X = xi], n ∈ N. Then we define {Yn, n ∈ N} on Ω

by

Yn(ω) =


Yn1(ω), ω ∈ A1,

. . . , . . .

Ynk(ω), ω ∈ Ak,

n ∈ N. (3.5)

Then by the law of large numbers, we have

1

n
[Y1 + · · ·+ Yn|X = xi]

a.s.−→ xi as n→∞,

which means

Y n :=
1

n
(Y1 + · · ·+ Yn)

a.s.−→ X as n→∞. (3.6)

It should be noted that Yn, n ∈ N are not independent unconditionally, and it can be

easily verify that Yn
d
= X for all n ∈ N. Then by Remark 3.1, we have that {Y n, n ∈ N} is

uniformly integrable, which combined with (3.6) implies that Y n
L1

−→ X as n→∞. Since

Y n ∈ Bn(F ), n ∈ N and ∪n>1Bn(F ) is closed with respect to the topology induced by

L1-convergence, then it follows that X ∈ ∪n>1Bn(F ). Hence, we obtain (3.4).

Step 2. Second, we show that

C(F ) ⊂ ∪n>1Bn(F ).

Based on Step 1, it suffices to prove that

C(F ) ⊂ C(F ) ∩ L∗. (3.7)

As we know that C(F ) is a closed set, and L∗ is dense in C(F ) in the sense of L1-convergence,

(3.7) is naturally expected to hold; in the following we show this by construction. For any

X ∈ C(F ), by Lemma 2.1, without loss of generality, assume that there exists Y ∼ F such

that E[Y |X] = X, a.s. Define

Xn =

n2n∑
i=−n2n+1

µiI{ i−1
2n 6X< i

2n } + µn2n+1I{X>n} + µ−n2nI{X<−n}, (3.8)

with µi = E
[
X
∣∣∣ i−1

2n 6 X < i
2n

]
, i = −n2n + 1, . . . , n2n, µn2n+1 = E[X|X > n] and

µ−n2n = E[X|X < −n]. It is easy to see that Xn
a.s.−→ X as n → ∞. By Remark 3.1, we
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have {Xn, n ∈ N} is uniformly integrable. It follows immediately that

Xn
L1

−→ X as n→∞. (3.9)

Moreover, note that for all n ∈ N

E[Y |Xn] = E [E[Y |X]|Xn] = E[X|Xn] = Xn, a.s.

which means that Xn 6cx Y , i.e., Xn ∈ C(F ) ∩ L∗ for all n ∈ N. This, combined with

(3.9), implies (3.7).

Finally, it follows from (3.2) that ⋃
n>1

Bn(F ) = lim sup
n→∞

Bn(F ).

Combining with Steps 1-2, we complete the proof of the theorem.

Remark 3.2. (i) Since C(F ) is closed with respect to weak or a.s. convergence, we can see

that lim supn→∞ Bn(F ) is also the closure of lim supn→∞ Bn(F ) with respect to weak or

a.s. convergence. Indeed, in the case of bounded random variables, lim supn→∞ Bn(F ) is

also the closure with respect to the topology induced by L∞-convergence, as summarized

in Proposition 3.6 below.

(ii) If the distribution F is not integrable, then the result in Theorem 3.5 cannot be obtained

using the same proof. Note that if E[X+] =∞ and E[X−] <∞ for X ∼ F , then C(F )∩L∗

is an empty set (by checking with the convex function φ(x) = −x), not to mention that

our proof requires C(F ) ∩ L∗ to be dense in C(F ) in the sense of L1-convergence.

Proposition 3.6. Suppose that F has bounded support, then

lim sup
n→∞

Bn(F )
∗

= C(F ), (3.10)

where A
∗

denotes the closure of A with respect to the topology induced by L∞-convergence.

Proof. It suffices to show the corollary by modifying some details in the proof of Theorem 3.5.

In Step 1, using Corollary A.2 in Embrechts et al. (2014b), there exist Yni
d
= [Y |X = xi],

i = 1, . . . , n, n ∈ N, such that∣∣∣∣∣ 1n
n∑
k=1

Yki − xi

∣∣∣∣∣ < 2

n
‖X‖∞, n ∈ N,

where ‖X‖∞ = ess-sup|X| < ∞. Then it follows that the Y n, n ∈ N defined by (3.5) satisfy

that Y n
L∞−→ X as n → ∞. In Step 2, since X bounded, it is easy to see that the Xn, n ∈ N

defined by (3.8) satisfy that Xn
L∞−→ X as n→∞. Combining the above arguments yields that

C(F ) ⊂ lim sup
n→∞

Bn(F )
∗
.
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This completes the proof.

In the following we reveal an important connection between Proposition 3.6 and a recently

established result in risk management and dependence uncertainty: the asymptotic equivalence

between the worst scenarios of Value-at-Risk (VaR) and Expected Shortfall (ES). We use the

standard definitions of VaR and ES:

VaRp(X) = F−1(p), X ∼ F, p ∈ (0, 1),

and

ESp(X) =
1

1− p

∫ 1

p

VaRq(X)dq, p ∈ (0, 1),

respectively. The asymptotic equivalence was established in Puccetti and Rüschendorf (2014),

Puccetti et al. (2013) and Wang (2014) under different extra conditions based on the theory of

complete mixability ; see also Embrechts et al. (2014a, Section 3) for a history of this problem.

Using Proposition 3.6, we obtain a substantially shorter and less technical proof of this result for

bounded random variables. The complete version of this result for unbounded random variables

is given recently in Wang and Wang (2014).

Corollary 3.7. Let X ∼ F be a bounded random variable, then for p ∈ (0, 1),

lim
n→∞

1

n
sup{VaRp(X1 + · · ·+Xn), Xi ∼ F, i = 1 . . . , n} = ESp(X).

Proof. Note that 1
n sup{VaRp(X1 + · · · + Xn), Xi ∼ F, i = 1 . . . , n} = supY ∈Bn(F ) VaRp(Y ).

It can be easily verified that as n → ∞, the limit of supY ∈Bn(F ) VaRp(Y ) exists; see Wang et

al. (2014, Proposition 2.1). Since ESp preserves the convex order and Bn(F ) ⊂ C(F ), we have

supY ∈Bn(F ) ESp(Y ) 6 supY ∈C(F ) ESp(Y ) = ESp(X). Thus,

lim
n→∞

sup
Y ∈Bn(F )

VaRp(Y ) 6 lim
n→∞

sup
Y ∈Bn(F )

ESp(Y ) 6 ESp(X).

To prove the converse inequality, take any Y ∈ C(F ). By Proposition 3.6, there exists a sequence

of random variables Xk ∈ Bnk
(F ), k ∈ N, such that Xk

L∞→ Y as k → ∞. This implies

VaRp(Xk)→ VaRp(Y ) as k →∞. It follows that

lim
n→∞

sup
Y ∈Bn(F )

VaRp(Y ) = lim sup
n→∞

sup
Y ∈Bn(F )

VaRp(Y ) > sup
Y ∈C(F )

VaRp(Y ).

It remains to prove that supY ∈C(F ) VaRp(Y ) > ESp(X). Take Y = F−1(U)I{06U6p}+ESp(X)I{U>p}

with U ∼ U[0, 1]. Then E[F−1(U)|Y ] = Y a.s., which implies that Y 6cx X, i.e., Y ∈ C(F ).

Since VaRp(Y ) = ESp(X), it follows that supY ∈C(F ) VaRp(Y ) > VaRp(Y ) = ESp(X). This

completes the proof.
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4 Lower-convex sets and comonotonic sums

For any integrable distributions F1, . . . , Fn, recall that

Cn(F1, . . . , Fn) =

{
n∑
i=1

Xi : Xi 6cx Yi, Yi ∼ Fi, i = 1, . . . , n

}
. (4.1)

Consider a lower-convex set represented by comonotonic random variables:

C∗n(F1, . . . , Fn) =

{
n∑
i=1

Xc
i : Xc

i 6cx Yi, Yi ∼ Fi, Xc
i comonotonic, i = 1, . . . , n

}
. (4.2)

It is obvious that C∗n(F1, . . . , Fn) ⊂ Cn(F1, . . . , Fn). The main result in this section states that

Cn(F1, . . . , Fn) ⊂ C∗n(F1, . . . , Fn) also holds, i.e. the above two sets are actually identical. This

is equivalent to say that

Cn(F1, . . . , Fn) =

{
n∑
i=1

G−1
i (Ui) : Gi 6cx Fi, Ui ∼ U[0, 1], i = 1, . . . , n

}

=

{
n∑
i=1

G−1
i (U) : Gi 6cx Fi, U ∼ U[0, 1], i = 1, . . . , n

}
;

hence elements in Cn has a much simpler form, driven by one single random source. Note the

difference between the definition of C∗n and the other set C′n. We first need the following lemma.

Lemma 4.1. Let X and Y be two random variables on (Ω,F ,P) with Ω = {1, . . . , n}, F = 2Ω

and P({i}) = pi, i = 1, . . . , n, given by

X(i) = xi, Y (i) = yi, i = 1, . . . , n.

Then there exist comonotonic random variables Xc and Y c on (Ω,F ,P) such that

Xc 6cx X, Y c 6cx Y and Xc + Y c
d
= X + Y.

Proof. We prove the result by induction. The result holds trivially for n = 1. Assume that it

also holds for n 6 k. We aim to show that it holds for n = k + 1. Define the probability space

(Ωk,Fk,P|Ωk
) by Ωk = Ω \ {k + 1}, Fk = 2Ωk and P|Ωk

(A) = P(A)/P(Ωk) for any A ∈ Fk, and

define random variables Xk and Y k on (Ωk,Fk,P|Ωk
) given by

Xk = [X|Ωk] and Y k = [Y |Ωk].

By induction, there exist comonotonic random variables Xc
k and Y ck on Ωk such that Xc

k 6cx X
k,

Y ck 6cx Y
k and

Xk + Y k
d
= Xc

k + Y ck .

Without loss of generality, assume that

Xc
k(i) = x∗i and Y ck (i) = y∗i , i = 1, . . . , k,
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and x∗1 6 . . . 6 x∗k and y∗1 6 . . . 6 y∗k. Define the extension to Ω of random variables Xc
k and

Y ck , still denoted by Xc
k and Y ck for simplicity, given by

Xc
k(i) = x∗i , i = 1, . . . , k, Xc

k(k + 1) = xk+1,

and

Y ck (i) = y∗i , i = 1, . . . , k, Y ck (k + 1) = yk+1,

respectively. Then it is obvious that Xc
k + Y ck

d
= X + Y , Xc

k 6cx X and Y ck 6cx Y . However,

generally Xc
k and Y ck are not comonotonic. To complete the proof, consider the following cases:

(1) When xk+1 < x∗1 and yk+1 > y∗k: let

δ = min {pn(x∗1 − xk+1), pn(yk+1 − y∗k)} .

We only deal with the case when x∗1 − xk+1 6 yk+1 − y∗k. The other case is symmetric.

Define random variables Xk+1 and Yk+1 on Ω as (note that n = k + 1)

Xk+1(i) = x∗i − δ, i = 1, . . . , k, Xk+1(k + 1) = xk+1 + δ
1− pn
pn

= Xk+1(1),

and

Yk+1(i) = y∗i + δ, i = 1, . . . , k, Yk+1(k + 1) = yk+1 − δ
1− pn
pn

> Yk+1(k).

It is easy to verify that Xc
k +Y ck = Xk+1 +Yk+1. Xc

k and Y ck differ from Xk+1 and Yk+1 by

k mean preserving spreads, respectively, which, by Lemma 2.2, implies that Xk+1 6cx X

and Yk+1 6cx Y . Now Xk+1 and Yk+1 both take the smallest value at ω = 1, and by the

following steps we can reduce to the case of k.

Define random variables Xk+1 and Y k+1 on probability space (Ω1,F1,P|Ω1) with Ω1 =

Ω \ {1}, F1 = 2Ω1 and P|Ω1
(A) = P(A)/P(Ω1) for any A ∈ F1, given by

Xk+1 = [Xk+1|Ω1] and Y k+1 = [Yk+1|Ω1].

By induction, there exist comonotonic random variables Xc
k+1 and Y ck+1 on Ω1 such that

Xc
k+1 6cx X

k+1, Y ck+1 6cx Y
k+1 and

Xc
k+1 + Y ck+1

d
= Xk+1 + Y k+1.

Repeating the extension procedure, we get the their extension versions Xc
k+1 and Y ck+1 on

Ω by defining its value on {1} as

Xc
k+1(1) = Xk+1(1) and Y ck+1(1) = Yk+1(1).
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By noting that

Xc
k+1(1) = min{Xk+1(ω) : ω ∈ Ω1} 6 min{Xc

k+1(ω) : ω ∈ Ω1},

we have that

Xc
k+1(1) = min{Xc

k+1(ω) : ω ∈ Ω},

and similarly,

Y ck+1(1) = min{Y ck+1(ω) : ω ∈ Ω}.

It follows that Xc
k+1 and Y ck+1 are comonotonic on Ω. Also, it is easy to see that

Xc
k+1 + Y ck+1

d
= Xk+1 + Yk+1

d
= X + Y,

and Xc
k+1 6cx X and Y ck+1 6cx Y .

(2) When yk+1 > x∗1 and yk+1 < y∗k: it is similar to the first case.

(3) In all the remaining cases Xc
k and Y ck both take the smallest value at ω = 1, and using the

argument in Step 1 we can reduce to the case of k.

The proof of the lemma is complete.

With Lemma 4.1, we can show the main result of this section.

Theorem 4.2. For any integrable distributions F1, . . . , Fn, let Cn(F1, . . . , Fn) and C∗n(F1, . . . , Fn)

be defined by (4.1) and (4.2), respectively. Then

Cn(F1, . . . , Fn) = C∗n(F1, . . . , Fn).

Proof. It suffices to show Cn(F1, . . . , Fn) ⊂ C∗n(F1, . . . , Fn) since the converse is obvious. For any

S ∈ Cn(F1, . . . , Fn), there exist Xi 6cx Yi, Yi ∼ Fi, i = 1, . . . , n such that S
d
=
∑n
i=1Xi.

Step 1. We first show the result for n = 2 when X1, X2 ∈ L∗, where L∗ is the set of random

variables taking values in a finite set. By Lemma 4.1, there exist comonotonic random

variables Xc
i 6cx Xi 6cx Yi, i = 1, 2, such that S

d
=
∑n
i=1X

c
i .

Step 2. Consider the case that n = 2 and X1 and X2 are general random variables. There exist

Xk
1 ∈ L∗ and Xk

2 ∈ L∗ which are increasing in convex order, k = 1, 2, . . . , such that

Xk
1
a.s.−→ X1 and Xk

2
a.s.−→ X2 as k →∞.

By Step 1, for each k ∈ N, there exist comonotonic random variables Xk,c
1 ∈ C(F1) and

Xk,c
2 ∈ C(F2) such that

Xk,c
1 +Xk,c

2
d
= Xk

1 +Xk
2 , k ∈ N.

15



Let µk and νk be the probability measures on R induced by Xk,c
1 and Xk,c

2 , respectively.

By Helly theorem, there exist subsequences µnk
and νnk

such that

µnk

v−→ µ and νnk

v−→ ν as k →∞,

where
v−→ represents vague convergence. We claim that µ and ν are both probability

measures. To see this, for a real number M > 0,

µ(R) > lim
k→∞

µnk
([−M,M ]) > 1− lim

k→∞

1

M
E[|Xnk,c

1 |] > 1− E[|X|]
M

, (4.3)

where the last inequality follows from that Xnk,c
1 6cx X and φ(·) = | · | is a convex function.

Letting M →∞ yields that µ(R) = 1. Similarly, we can show that ν(R) = 1. Therefore

µnk

w−→ µ and νnk

w−→ ν as k →∞,

where
w−→ represents the weak convergence. Let Xc

1 and Xc
2 be comonotonic random

variables such that P(Xc
1 ∈ ·) = µ(·) and P(Xc

2 ∈ ·) = ν(·). Then we have

Xc
1 +Xc

2
d
= X1 +X2.

On the other hand, by Theorem 3.3,

Xc
i 6cx Xi, i = 1, 2.

This completes the proof for n = 2 and general X1 and X2.

Step 3. For general n > 3, we prove it by induction. Denote

S =

n∑
i=1

Xi =: Sn−1 +Xn.

Denote by Fn−1 the distribution function of Sn−1 and consider C2(Fn−1, Fn). By induc-

tion, there exist Scn−1 6cx Sn−1 and Xc
n 6cx Xn such that Scn−1 and Xc

n are comonotonic

and

Sn
d
= Scn−1 +Xc

n.

Note that Scn−1 ∈ Cn−1(F1, . . . , Fn−1) by Proposition 3.2. By induction again, there exist

Xc
i ∈ C(Fi), i = 1, . . . , n− 1, comonotonic, such that

Scn−1
d
=
n−1∑
i=1

Xc
i .

Define Xi = F−1
Xc

i
(U), i = 1, . . . , n for some U[0, 1] random variable U . Then Xi ∈ C(Fi),

i = 1, . . . , n are comonotonic and Sn
d
=
∑n
i=1Xi. This completes the proof of the theorem.
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Remark 4.1. One may also consider the difference between two random variables instead of the

sum of them. Since X 6cx Y is equivalent to −X 6cx −Y , one can see that

{X − Y : X ∈ C(F ), Y ∈ C(G)}

= {X + Y : X ∈ C(F ), Y ∈ C(G∗), }

= {Xc + Y c : Xc ∈ C(F ), Y c ∈ C(G∗), Xc, Y c comonotonic}

= {Xc − Y c : Xc ∈ C(F ), Y c ∈ C(G), Xc, Y c counter-comonotonic},

where G∗(·) = 1−G(·−) and G(x−) denotes the left limit of G at x ∈ R.

Remark 4.2. If some of F1, . . . , Fn are not integrable, it remains open whether Cn(F1, . . . , Fn) =

C∗n(F1, . . . , Fn) still holds. The main difficulty is that (4.3) generally fails to hold as E[|Xnk,c
1 |]

might be unbounded, so the same logic in the proof could not be applied directly.

Below we discuss an interesting consequence of Theorem 4.2 in the theory of risk measures.

A risk measure is a mapping from a set (typically, a convex cone) of random variables X to R.

A classic interpretation of ρ(X) is the capital requirement for a risk X ∈ X held by a financial

institution. Most commonly-used risk measures are law-determined, i.e. ρ(X) only depends

on the distribution of X. We refer to Föllmer and Schied (2011, Section 4) for more on risk

measures.

One important property for risk measures is the comonotonic additivity (see Kusuoka, 2001):

for comonotonic random variables X,Y ∈ X , ρ(X + Y ) = ρ(X) + ρ(Y ). This interprets into

that the capital requirement principle ρ does not allow diversification benefit for comonotonic

risks. Another important property for risk measures is preserving convex order : for X,Y ∈ X ,

X 6cx Y implies that ρ(X) 6 ρ(Y ). This interprets into that the capital requirement principle ρ

penalizes on the more volatile risk Y compared to the more stable risk X; see for instance Föllmer

and Schied (2011, Section 4.5). VaR and ES defined in Section 3 are both law-determined and

comonotonic additive, and ES also preserves convex order. The following corollary builds up a

bridge between those two concepts.

Corollary 4.3. Let ρ be a comonotonic additive risk measure. Define risk measure ρ̂(X) for

X ∼ F as

ρ̂(X) = sup
Y ∈C(F )

ρ(Y ), X ∈ L1.

Then ρ̂ is comonotonic additive and preserves convex order.

Proof. That ρ̂ preserves convex order follows from that the set C(F ) is increasing as F is in-

creasing in convex order. In the following we show that ρ̂ is comonotonic additive. Let X ∼ F
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and Y ∼ G be comonotonic random variables and H = F ⊕ G. By Theorem 4.2, we have

that C(H) = {X1 + Y1 : X1 ∈ C(F ), Y1 ∈ C(G)} = {Xc
1 + Y c1 : (Xc

1 , Y
c
1 ) ∈ C(F,G)} where

C(F,G) := {(Xc
1 , Y

c
1 ) : Xc

1 ∈ C(F ), Y c1 ∈ C(G), Xc
1 , Y

c
1 comonotonic}. Hence,

ρ̂(X + Y ) = sup
Z∈C(H)

ρ(Z) = sup
(Xc

1 ,Y
c
1 )∈C(F,G)

ρ(Xc
1 + Y c1 )

= sup
(Xc

1 ,Y
c
1 )∈C(F,G)

ρ(Xc
1) + ρ(Y c1 )

= sup
X1∈C(F ),Y1∈C(G)

ρ(X1) + ρ(Y1)

= sup
X1∈C(F )

ρ(X1) + sup
Y1∈C(G)

ρ(Y1)

= ρ̂(X) + ρ̂(Y ).

This completes the proof.

Remark 4.3. If a monetary risk measure ρ is comonotonic additive and preserves convex order,

then ρ must be a spectral risk measure; see Yaari (1987) and Acerbi (2002).

5 Conclusion

In this paper, for integrable distributions F1, . . . , Fn, we studied the set Dn of the sums of

n random variables with given respective distributions F1, . . . , Fn, and the set Cn of the sums of

random variables that are smaller than F1, . . . , Fn in convex order. We obtained some theoretical

properties of Dn ⊂ Cn, and showed that Dn has a limit C1 after scaling by 1/n, as n → ∞. It

was also shown that random variables in Cn can be represented by comonotonic sums of random

variables smaller than the corresponding marginal distributions in convex order. The techniques

provided in this paper are directly related to open questions regarding dependence uncertainty

in quantitative risk management. We remark that a characterization of Dn is still generally not

yet clear.

Acknowledgement

We thank Carole Bernard, Giovanni Puccetti, Bin Wang, two referees, an Associate Editor,

and an Editor for helpful comments and discussions on an earlier version of this paper. This

work was carried out during the period of T. Mao’s postdoctoral fellowship supported by the

Department of Statistics and Actuarial Science, University of Waterloo. T. Mao was supported

by the Fundamental Research Funds for the Central Universities and the NNSF of China (Nos.

11301500, 11371340, 11271347). R. Wang acknowledges support from the Natural Sciences and

Engineering Research Council of Canada (NSERC).

18



References

Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aver-

sion. Journal of Banking and Finance, 26(7), 1505–1518.

Bernard, C., Jiang, X. and Wang, R. (2014). Risk aggregation with dependence uncertainty.

Insurance: Mathematics and Economics, 54, 93–108.
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Embrechts, P., Puccetti, G. and Rüschendorf, L. (2013). Model uncertainty and VaR aggregation.

Journal of Banking and Finance, 37(8), 2750–2764.
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