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1 Introduction

Risk measurement, with its crucial importance for financial institutions such as banks, insurance

companies and investment funds, has drawn a lot of attention in both academia and industry over the

past several decades. Although a financial risk, often modeled by a probability distribution, cannot be

characterized by a single number, sometimes one needs. The determination of regulatory capital is one

such example, the ranking of risks another. For such purposes, quantitative tools that map risks to numbers

were introduced, and they are called risk measures.

Over the past three decades, Value-at-Risk (VaR) became the benchmark (Jorion (2006)). Expected

Shortfall (ES), an alternative to VaR which is coherent (Artzner et al. (1999)), is arguably the second

most popular risk measure in use. In two recent consultative documents BCBS (2012, 2013), the Basel

Committee on Banking Supervision proposed to take a move from VaR to ES for the measurement of

market risk in banking. Under Solvency 2 and the Swiss Solvency Test, the same discussion takes place

within insurance regulation; see for instance Sandström (2010) and SCOR (2008). As a consequence,

there have been extensive debates on issues related to diversification, aggregation, economical interpre-

tation, optimization, extreme behavior, robustness, and backtesting of VaR and ES. We omit a detailed

analysis here and refer to Embrechts et al. (2014), Emmer et al. (2014) and the references therein.

Here are some of the issues raised: VaR is not coherent, but it is elicitable (Gneiting (2011)), easy

to backtest and more robust with respect to statistical uncertainty, as argued in Gneiting (2011) and Cont

et al. (2010); ES is coherent, but not elicitable and difficult to backtest. There have been extensive discus-

sions on the problematic diversification and aggregation issues of VaR due to its lack of subadditivitity;

see for example Embrechts et al. (2013). Danı́elsson et al. (2005) argue that the violation of subadditivity

for VaR is rare in practice. VaR, being a quantile, does not address the crucial “what if” question. Where-

as this was clear since its introduction within the financial industry around 1994, it took some serious

financial crises to bring this issue fully onto the regulatory agenda.

The importance of robustness properties of risk measures has only fairly recently become a focal

point of regulatory attention. By now, numerous academic as well as applied papers address the topic.

Conflicting views typically result from different notions of robustness; Embrechts et al. (2014) contains

a brief discussion and some references. In this paper the measurement of aggregated risk positions under

uncertainty with respect to the dependence structure of the underlying risk factors will be discussed. We

will show that ES enjoys a new notion of aggregation-robustness which VaR generally does not.

The mathematical property of (non-)subaddivity of a risk measure becomes relevant upon analyzing

the aggregate position of a portfolio. As often is the case in practice, the dependence structure among

individual risks in a portfolio is difficult to obtain from a statistical point of view, while the marginal

distributions of the individual risks (assets) may typically be easier to model; see for instance Embrechts

et al. (2013) and Bernard et al. (2014). Modeling a high-dimensional dependence structure is well-known

to be data-costly, and dimension reduction techniques such as vine copulas, hierarchical structures, and

very specific parametric models often have to be implemented. Whereas such simplifying techniques in

general create computational and modeling ease, they typically involve considerable model uncertainty.

This leads to a notion of dependence uncertainty (DU) in risk aggregation, a concept of main interest for

this paper.
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From a mathematical or statistical point of view it is clearly better to look at robustness properties

of a model at the level of the joint distribution of the risk factors. The main reason for separating the

two (marginals, dependence) is because of processes in practice, where indeed the two are often modeled

separately. This is particularly true in a stress testing environment.

Hence for this paper, we introduce the notion of aggregation-robustness to study properties of risk

measures for aggregation in the presence of dependence uncertainty. The new notion is based on the

classic notion of robustness for statistical functionals in e.g. Huber and Ronchetti (2009). However, as

opposed to the conclusions in Cont et al. (2010), we show that when model uncertainty lies solely at

the level of the dependence structure, coherent distortion risk measures (such as ES) are continuous

with respect to weak convergence of the underlying distributions, whereas VaR in general is not. This

result supports the use of ES for risk aggregation, especially when statistical information on marginal

distributions is reliable.

Under DU, the attainable values of VaR and ES lie in an interval. This interval can be seen as

a measurement of model uncertainty for a particular risk measure. When a risk measure is applied to

an aggregate position of a portfolio, the ratio between the risk measure of the aggregate risk and the

summation of the risk measures of the marginal risks is called a diversification ratio. The diversification

ratio measures how good the risks in a portfolio hedge (compensate for) each other. With only models

for marginal distributions available, the diversification ratio also takes values in a DU-interval.

To study the DU-interval of VaR and ES, and their diversification ratios, one needs to calculate the

worst-case and best-case values of VaR and ES under dependence uncertainty. Due to the subadditivity of

ES, the worst-case value of ES is the summation of the ES of the marginal risks. However, the other three

quantities (best- and worst-case VaR, best-case ES) are, in general, unknown. Partial results do exist. The

worst-case value of VaR for n = 2 was given in Makarov (1981) based on early results in multivariate

probability theory. Embrechts and Puccetti (2006) gave a dual bound for the worst-case VaR for n > 3

in the homogeneous model, i.e. all marginal risks have the same distribution. Partial solutions for the

worst-case and best-case values of VaR are to be found in Wang et al. (2013), Puccetti and Rüschendorf

(2013) and Bernard et al. (2014), based on the notion of complete mixability (CM) introduced in Wang

and Wang (2011). A fast algorithm to numerically calculate the worst-case and best-case values of VaR

under general conditions was introduced in Embrechts et al. (2013); this is the so-called Rearrangement

Algorithm (RA). For the best-case ES, some partial analytical results can be found in Bernard et al. (2014)

and Cheung and Lo (2013), and a numerical procedure was proposed by Puccetti (2013).

In most of the existing analytical results, it is assumed that the marginal distributions have to be

identical (homogeneous case), with some extra conditions on the shape of the underlying risk factor den-

sities (assumed to exist). In this paper, we relax the assumptions on the marginal distributions. Instead of

explicit values for the worst-case and best-case VaR, we obtain approximations. The new results obtained

can be used within a discussion on capital requirement; they moreover yield a DU-interval for VaR and

its diversification ratio.

Further understanding of the worst-case VaR can be obtained through the asymptotic behavior as the

number of risks in the portfolio grows to infinity, i.e. a large portfolio regime. In the homogeneous case,

Puccetti and Rüschendorf (2014) obtained an asymptotic equivalence between the worst-case VaR and the
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worst-case ES under dependence uncertainty, and this under a strong condition of complete mixability.

The condition on the identical marginal distributions was later weakened by Puccetti et al. (2013) (based

on further results on complete mixability) and Wang (2014) (based on a duality theory in Rüschendorf

(1982)). It was finally removed by Wang and Wang (2014) (based on a notion of extremely negative

dependence). When the marginal distributions are not identical, Puccetti et al. (2013) also obtained the

asymptotic equivalence under the assumption that only finitely many different choices of the marginal

distributions can appear; this mathematically allows a reduction to the case of identical marginal distri-

butions. In this paper, we give a unifying result on this asymptotic equivalence, by allowing the marginal

distributions to be arbitrary. Only weak uniformity conditions on the moments of the marginal distribu-

tions are required for our results to hold. These conditions are easily justified in practice and are necessary

for the most general equivalence to hold. The new results lead to the asymptotic DU-spread of VaR and

ES, and show that VaR in general yields a larger DU-spread compared to ES.

The rest of the paper is organized as follows. In Section 2 we introduce the notion of aggregation-

robustness and show that ES is aggregation-robust but VaR is not. In Section 3 we give new bounds on

the diversification ratios under dependence uncertainty, and establish an asymptotic equivalence between

VaR and ES under a worst-case scenario. The dependence uncertainty spread of VaR and that of ES

are derived and compared in Section 4. In Section 5, numerical examples are presented to illustrate our

results. Section 6 draws some conclusions. All proofs are put in the Appendix.

Throughout the paper, we let (Ω,A,P) be a standard atomless probability space and L0 := L0(Ω,A,P)

be the set of all real-valued random variables (rvs) on that probability space. Elements of L0, rvs, will

often be referred to as risks. Their distribution functions we simply refer to as distributions. We write

X ∼ F to denote F(x) = P(X 6 x), x ∈ R. We also denote the generalized inverse function of F by

F−1(p), that is F−1(p) = inf{t ∈ R : F(t) > p} for p ∈ (0, 1], and F−1(0) = inf{t ∈ R : F(t) > 0}.

2 Robustness of VaR and ES for risk aggregation

2.1 Robustness of risk measures

The robustness of a statistical functional or an estimation procedure describes the sensitivity to

underlying model deviations and/or data changes. Different definitions and interpretations of robustness

exist in the literature; see for example Huber and Ronchetti (2009) from a purely statistical perspective,

Hansen and Sargent (2007) in the context of economic decision making, and Ben-Tal et al. (2009) within

optimization. In statistics, robustness mainly concerns the so-called distributional (or Hampel-Huber)

robustness: the statistical consequences when the shape of the actual underlying distribution deviates

slightly from the assumed model.

A risk measure ρ is a function which maps a risk in a set X to a number, ρ : X → (−∞,+∞],

where X ⊂ L0, typically contains L∞, and is closed under addition and positive scaler multiplication.

A risk measure is law-invariant if it only depends on the distribution of the risk. We omit the general

introduction of risk measures, and refer the interested reader to Föllmer and Schied (2011). Since law-

invariant risk measures are a specific type of statistical functionals, their robustness properties are already

extensively studied in the statistical literature; see e.g. Huber and Ronchetti (2009).
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In this paper, we focus on the two most popular risk measures: Value-at-Risk (VaR) at confidence

level p, defined as

VaRp(X) = inf{x ∈ R : P(X 6 x) > p}, p ∈ (0, 1), X ∈ L0, (2.1)

and the Expected Shortfall (ES) at confidence level p, defined as

ESp(X) =
1

1 − p

∫ 1

p
VaRq(X)dq, p ∈ (0, 1), X ∈ L0. (2.2)

Clearly, VaRp(X) = F−1(p) for p ∈ (0, 1), the generalized inverse of F at p, where X ∼ F. Though

typically in (2.2) it is assumed that E[|X|] < ∞, we may occasionally allow that ESp(X) = ∞ for some

X. On the other hand, VaRp(X) is always a finite number for all X ∈ L0. Both risk measures occur

most frequently in the setting of solvency requirements for financial institutions, hence the appearance of

“regulatory risk measures” in the title of the paper.

It is often argued in the literature that quantile-based risk measures, such as VaR, are more robust as

compared to mean-based risk measures, such as ES; the notion of robustness used most often is Hampel’s

(Hampel et al. (1986)). ES is only robust with respect to stronger metrics (e.g. the Wasserstein distance,

Dobrushin (1970)); arguments of this type can be found in, for instance, Cont et al. (2010), Kou and

Peng (2014) and Emmer et al. (2014). More general results on continuity of law-invariant risk measures

with respect to certain metrics on sets of probability measures are provided in Krätschmer et al. (2014).

It is well-known that the qualitative robustness of a statistical estimator, as in Hampel et al. (1986), is

equivalent to the continuity of the corresponding risk measure at the true distribution. Thus, to analyze

statistical robustness, one typically studies the continuity at distributions of a risk measure. Based on such

consideration, we say that a law-invariant risk measure is robust at a distribution F if it is continuous at

F in some metric. To be precise, ρ is robust if d(Fn, F) → 0 implies ρ(Xn) → ρ(X), where d is some

distance between distributions, Xn ∼ Fn, n = 1, 2, . . . and X ∼ F. For example, the Lévy distance in

Huber and Ronchetti (2009) is used in Cont et al. (2010) to measure the difference between any two

univariate distributions F and G:

d(F,G) := inf{ε > 0 : F(x − ε) − ε < G(x) < F(x + ε) + ε, ∀x ∈ R}. (2.3)

Note that the Lévy distance metrizes weak topology on the set of distributions. Other metrics can also

be used for the analysis of robustness; see Krätschmer et al. (2012, 2014) and Cambou and Filipovic

(2014). It is a very classical result that the p-th (lower) quantile functional F 7→ F−1(p) (and so VaRp) is

weakly continuous at each F0 for which the mapping s 7→ F−1
0 (s) is continuous at s = p. A more general

result can be found, for instance, in Lemma 21.2 of van der Vaart (1998). In Krätschmer et al. (2014) it

is argued that Hampel’s notion of (statistical) robustness is less relevant for risk management. Using a

different definition, they introduce a continuous scale of robustness.

In the following we will introduce a new, in our opinion practically relevant notion of robustness

for risk aggregation, which favors ES over VaR.
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2.2 Aggregation-robustness

In this section, we show that VaR is more sensitive to model uncertainty at the level of dependence

than ES. For single risks Xi, i = 1, . . . , n, the aggregate risk S is simply defined as S = X1 + · · ·+Xn. Often

in practice, a joint model of X1, . . . , Xn is modeled in two stages: n marginal distributions F1, . . . , Fn and

a dependence structure (often through a copula C). Whereas the modeling of marginal distributions is

fairly standard, the dependence structure can be really difficult to model, statistically estimate and test.

Considerable model uncertainty, which is often different in nature from the model uncertainty of marginal

distributions, arises from modeling the dependence structure. In the following, we study sensitivity with

respect to uncertainty in the dependence structure; for the purpose of this paper we assume the marginal

distributions F1, . . . , Fn are given.

When the dependence structure between the risks is unknown, the possible distributions of S form

a set. We denote the (F1, . . . , Fn)-admissible class as

Sn(F1, . . . , Fn) = {X1 + · · · + Xn : Xi ∼ Fi, i = 1, . . . , n},

which for simplicity we further denote as Sn = Sn(F1, . . . , Fn) if (F1, . . . , Fn) is clear from the context.

Sn is the set of all possible aggregate risks. Note that for notational convenience, we left out portfolio

weight factors; these can easily be reintroduced when necessary. Risk aggregation with dependence un-

certainty concerns the probabilistic and statistical behavior of S ∈ Sn; in particular, Sn is closed with

respect to weak topology (see Bernard et al. (2014)). We say that an admissible class Sn is compatible

with a risk measure ρ : X → (−∞,+∞] if Xi ∈ X, Xi ∼ Fi (note that this implies Sn ⊂ X since X is

closed under addition) and ρ(Xi) < ∞, for i = 1, . . . , n.

Definition 2.1 (Aggregation-robustness) A law-invariant risk measure ρ : X → (−∞,+∞] is aggregation-

robust, if ρ is continuous with respect to weak convergence in each admissible class Sn compatible with

ρ.

Note that aggregation-robustness is relative to the choice of X, the domain of the risk measure

considered.

The robustness character of Definition 2.1 in intuitively clear. If the joint distributions of (X1, . . . , Xn)

and (Y1, . . . ,Yn) are close according to the Lévy metric, then the distributions of X1 + · · · + Xn and

Y1 + · · · + Yn are also close according to the Lévy metric. As a consequence, ρ is insensitive to small

perturbations of the joint distribution of the underlying risk factors, keeping the marginal distributions

of the individual risks fixed. It is clear that Hampel’s robustness, as discussed above, without the restric-

tion of risks being in a common admissible class, implies aggregation-robustness. When the dependence

structure is modeled by copulas, our definition of robustness implies that a risk measure is insensitive to

the copula of the individual risks when the marginal distributions are assumed to be known. The fact that

in Definition 2.1 we look at risks in Sn reflects our interest in aggregation and diversification. One could

of course look at other functional-robustness definitions beyond aggregation (summation).

Example 2.2 (VaR is not aggregation-robust) For t ∈ [0, 1], let Xt and Yt have joint distribution Ct,

Ct(x, y) = txy + (1 − t)(max{min{x, 1/2} + min{y, 1/2} − 1/2, 0} + max{x + y − 3/2, 0}), x, y ∈ [0, 1].
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It is easy to see that Xt and Yt are both U[0, 1] distributed, hence Ct is a copula, for t ∈ [0, 1]. Note that

Ct, t ∈ (0, 1) is a mixture of the independence copula C1 and another copula

C0 : [0, 1]2 → [0, 1], (x, y) 7→ max{min{x, 1/2} + min{y, 1/2} − 1/2, 0} + max{x + y − 3/2, 0}.

C0 is the ordinal sum of two Fréchet lower copulas; see Nelsen (2006, Section 3.2.2).

It is immediate that the distribution of Xt + Yt for t ∈ (0, 1] is symmetric, centered at 1, with

positive density on the interval (1/2,3/2). Thus, VaR1/2(Xt + Yt) = 1. It is also straightforward that X0 +

Y0 is a discrete rv on {1/2, 3/2} with VaR1/2(X0 + Y0) = 1/2. As a consequence, VaR1/2(X0 + Y0) ,

limt→0 VaR1/2(Xt + Yt). Based on the simple fact that Xt + Yt → X0 + Y0 weakly as t goes to zero, we

conclude that VaR1/2 is not aggregation-robust.

To build an example for VaRp, p ∈ (1/2, 1), let A be a random event of probability 2 − 2p, indepen-

dent of Xt and Yt, and let Zt = IAXt, Wt = IAYt for each t ∈ [0, 1]. By construction it is clear that Zt, Wt,

t ∈ [0, 1] are all identically distributed, and

VaRp(Zt + Wt) = VaR1/2(Xt + Yt), t ∈ [0, 1].

Analogous to the above argument, we have that d(Zt + Wt,Z0 + W0)→ 0 as t goes to zero, but VaRp(Z0 +

W0) , limt→0 VaRp(Zt+Wt). Putting a negative sign in front of Zt and Wt we obtain that VaRp, p ∈ (0, 1/2)

is also discontinuous in an admissible class. This shows that VaRp is not aggregation-robust for any

p ∈ (0, 1). ut

The non-aggregation-robustness of VaRp essentially comes from the fact that it is not continuous

with respect to weak convergence (Hampel’s robustness). Suppose that VaRp as a quantile function is

not continuous at some distribution, say F0. One may find Fn, n ∈ N, which converges to F0 weakly,

but F−1
n (p), n ∈ N does not converge to F−1

0 (p); if in addition, such Fn, n ∈ N and F0 lie in the same

admissible class, then VaRp is not aggregation-robust. That leads to the construction in Example 2.2.

In the above example, the joint distribution Ct with a small t > 0 can be seen as the joint distribution

C0 influenced by a small perturbation. It is moreover worth noting that in Example 2.2, the marginal

distributions of Xt and Yt are continuous with positive densities. Hence, even if the true marginal dis-

tributions are known to have positive densities, VaR can still be discontinuous in aggregation. When

one considers absolutely continuous models for a single risk, one safely has the Hampel’s robustness of

VaRp; however when one has several absolutely continuous marginal models, it is not sufficient for the

aggregation-robustness of VaRp. On the other hand, we will see that ES is aggregation-robust, although

it is well-known to be non-robust in Hampel’s sense since it is discontinuous at any distribution with

respect to weak topology.

Remark 2.3 One may sometimes define VaR (quantile) as a set-valued function: for p ∈ (0, 1) and X ∈ L0,

qp(X) = [inf{x ∈ R : P(X 6 x) > p}, inf{x ∈ R : P(X 6 x) > p}] = [VaRp(X),VaRp+(X)]. (2.4)

Since VaRp is not continuous with respect to weak convergence in some admissible classes, qp in (2.4) is

also not continuous in the same sense.
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For generality, we study the aggregation-robustness of distortion risk measures, defined as

ρ(X) =

∫
R

xdh(F(x)), X ∈ X, X ∼ F, (2.5)

where X is a set of random variables such that the integral in (2.5) is properly defined, and h : [0, 1] →

[0, 1] is a non-decreasing function with h(0) = 0, h(1) = 1; h is called the distortion function of ρ. If h

has left-limit and is right-continuous, i.e. h is a probability measure on [0, 1], then

ρ(X) =

∫ 1

0
F−1(t)dh(t), X ∈ X, X ∼ F. (2.6)

See Wang et al. (1997) for distortion risk measures in the context of insurance premium calculations,

Kusuoka (2001) for their connection with coherent risk measures, and Cont et al. (2010) for their robust-

ness properties. A distortion risk measure ρ is coherent if and only if h is convex, in which case ρ is called

a spectral risk measure; see Acerbi (2002). Distortion risk measures are also closely related to L-statistics;

see Huber and Ronchetti (2009, Section 3.3). For p ∈ (0, 1), VaRp and ESp are special cases of distortion

risk measures, with distortion functions h(t) = I{t>p}, t ∈ [0, 1] and h(t) = I{t>p}(t − p)/(1 − p), t ∈ [0, 1],

respectively.

Note that X has to be closed under addition, hence it may not contain all X such that the integral in

(2.5) is properly defined. For coherent distortion risk measures, one may consider the following set X0:

X0 = {X ∈ L0 : E[|X|I{X<0}] < ∞} ⊃ L1.

It is easy to check by the convexity of h that all coherent distortion risk measures are properly defined on

X0. Our main result on aggregation-robustness now becomes:

Theorem 2.4 All coherent distortion risk measures on X0 with a continuous distortion function are

aggregation-robust.

As a coherent distortion risk measure has a convex distortion function, by assuming continuity

we are only excluding a jump of the distortion function at 1. Theorem 2.4 tells that when the model

uncertainty lies at the level of dependence but not at the level of the marginal distributions, coherent

distortion risk measures, such as ES, are continuous with respect to weak convergence.

Our result can be interpreted as the following: for X ∼ F, even adding constraints on marginal

distributions, F 7→ VaRp(X) is still not continuous (with respect to weak convergence), whereas F 7→

ESp(X) is continuous with these constraints; it should not be interpreted as an argument against the classic

continuity results of VaR, noting that VaR is continuous at most commonly used distributions in financial

risk management.

Remark 2.5 Cont et al. (2010) also introduced the notion of C-robustness, where C is a set of distribu-

tions. A risk measure ρ is C-robust if ρ is continuous in C with respect to the Lévy distance; see Cont

et al. (2010, Proposition 2). Using this notion, VaRp is Cp-robust, where Cp is the set of distributions

F for which F−1 is continuous at p. If we denote by D(Sn) the set of all possible distributions of an

admissible class Sn, then ρ is aggregation-robust if and only if ρ is D(Sn)-robust for all possible choices

of n ∈ N and D(Sn), in which Sn is compatible with ρ.
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Our result can be interpreted using weak convergence in the admissible classSn. For S , S 1, S 2, · · · ∈

Sn and S k → S weakly as k → ∞, we have that ESp(S k) → ESp(S ) as k → ∞ by Theorem 2.4. As

illustrated by Example 2.2, the convergence VaRp(S k)→ VaRp(S ) as k → ∞ may fail to hold.

In the case X = L∞, we obtain that a continuous distortion function is a necessary and sufficient

condition for the aggregation-robustness of distortion risk measures.

Theorem 2.6 A distortion risk measure on X = L∞ is aggregation-robust if and only if its distortion

function h is continuous on [0, 1].

Finally, we remark that it would be of much interest to characterize aggregation-robust statistical

functionals (risk measures) other than the class of distortion risk measures. Such a characterization is

beyond the scope of this paper and we leave it for future work.

3 Bounds on VaR aggregation

In Section 2 we mainly looked at the sensitivity properties of risk measures on aggregated risks

under small changes of the underlying dependence assumptions. In this section, for VaR, we concentrate

on deviations (possibly) far away from some true underlying, though unknown dependence structure.

Such results can be used to analyze extreme scenarios for risk aggregation and may be helpful in order

to determine conservative capital requirements under model (i.e. dependence) uncertainty; for a real life

example on this, see Aas and Puccetti (2014).

3.1 Aggregation and diversification under dependence uncertainty

We start with the motivating notion of diversification ratio, which is closely related to the aggrega-

tion of VaR. Given a portfolio consisting of individual risks X1, . . . , Xn, the diversification ratio of VaR at

confidence level p ∈ (0, 1) is defined as

∆
p
n =

VaRp(X1 + · · · + Xn)∑n
i=1 VaRp(Xi)

.

The diversification ratio measures a kind of diversification benefit, and is for instance widely used in

operational risk (see examples in Embrechts et al. (2013)). In the latter context, Xi corresponds to next

year’s operational risk loss in business line i, i = 1, . . . , n (n = 8, typically); often explicit models for the

loss-dependence among business lines are not available. For capital charge purposes, one estimates the

total capital requirement for the superposition of the risks in each business line. One then typically adds

up the risk measures across all business lines, and multiplies by a factor which is an estimate of ∆p
n . For

this purpose, one needs a joint model of the risks X1, . . . , Xn.

With a known joint distribution of (X1, . . . , Xn), ∆p
n may be calculated theoretically. If ∆p

n 6 1, we

say there is a diversification benefit in the portfolio; if ∆p
n > 1, we say there is a diversification penalty

in the portfolio. When F1, . . . , Fn are known and the joint model of (X1, . . . , Xn) is unspecified, the worst

diversification ratio is defined as

∆
p
n =

sup{VaRp(X1 + · · · + Xn) : Xi ∼ Fi, i = 1, . . . , n}∑n
i=1 VaRp(Xi)

=
sup{VaRp(S ) : S ∈ Sn}∑n

i=1 VaRp(Xi)
.
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By definition ∆
p
n > 1 if

∑n
i=1 VaRp(Xi) > 0. In the following we denote the comonotonic VaR by

VaR+
p(S n), i.e.

VaR+
p(S n) =

n∑
i=1

VaRp(Xi).

Note here that S n is symbolic and does not represent a particular rv. The calculation of ∆
p
n , as a measure

of the worst-case diversification effect of VaR, serves two purposes:

– Conservative capital requirement. ∆
p
nVaR+

p(S n) can be used as the most conservative capital require-

ment in the case of given (or estimated) marginal distributions F1, . . . , Fn of the individual risks.

– Measurement of model uncertainty. If ∆
p
n is small, then the model uncertainty is small, and the risk

measure VaR is considered as less problematic in risk aggregation; capital requirement principles

based on VaR+
p become more plausible. If ∆

p
n is large, then the model uncertainty is severe, and

arguments of diversification benefit need to be taken with care.

The best diversification ratio, replacing the sup by an inf, can be studied similarly. Since we are more

interested in the worst-case (corresponding to a conservative capital requirement), we omit a discussion

of the best diversification ratio.

In the recent literature, it was shown that the value of ∆
p
n is closely related to the risk measure ES.

Denote the worst-case ES by ESp(S n) = sup{ESp(S ) : S ∈ Sn}; since ES is subadditive and comonotonic

additive, we have that

ESp(S n) =

n∑
i=1

ESp(Xi) = ES+
p(S n),

where the latter +-notation is in line with the notation used for the comonotonic VaR case. Since VaR

is bounded by ES, the worst-case VaR is bounded by the worst-case ES. If VaR+
p(S n) > 0, we have the

following direct upper bound for ∆
p
n :

1 6 ∆
p
n 6

ES+
p(S n)

VaR+
p(S n)

=
ESp(S n)

VaR+
p(S n)

. (3.1)

See also Embrechts et al. (2014) for a discussion on this upper bound. Later in this section we will show

that the second inequality in (3.1) is asymptotically sharp as n→ ∞.

By definition, calculation of the worst diversification ratio is equivalent to the calculation of the

worst-case VaR

VaRp(S n) := sup{VaRp(S ) : S ∈ Sn}. (3.2)

For the history and a general discussion on problems related to (3.2) from the perspective of quanti-

tative risk management, we refer to Embrechts et al. (2014). When F1 = F2 = · · · = Fn =: F, i.e.

the homogeneous case, Wang et al. (2013) obtained VaRp(S n) for F with a tail-decreasing density. If

F1, . . . , Fn are not identical, explicit calculations of VaRp(S n) and ∆
p
n are not available in general. Em-

brechts et al. (2013) introduced the Rearrangement Algorithm to numerically calculate VaRp(S n) based

on a discretized approximation.

Regarding the asymptotic behavior of VaRp(S n) and ∆
p
n , Puccetti and Rüschendorf (2014) obtained

that, as n→ ∞,
VaRp(S n)

ESp(S n)
→ 1, (3.3)
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in the homogeneous case under a condition of complete mixability for the marginal distributions. See

also Wang (2014) and Wang and Wang (2014) for weaker conditions so that (3.3) holds. Puccetti et al.

(2013) considered the case when there are finitely many different marginal distributions in the sequence

F1, F2, . . . and obtained the same equivalence (3.3). A consequence of (3.3) is that

lim
n→∞

∆
p
n = lim

n→∞

ESp(S n)
VaR+

p(S n)
, (3.4)

given that the right-hand limit exists. That is, the second inequality in (3.1) is asymptotically sharp.

However, as mentioned above, the existing results only deal with the (almost) homogeneous case, and

some specific assumptions on the marginal distributions need to be imposed. Later in this section, we will

provide analytical approximations for VaRp(S n) and ∆
p
n . Based on these results, we will give a proof of

(3.3) and (3.4) under very general conditions and, moreover, obtain a rate of convergence.

3.2 Bounds on VaR aggregation for a finite number of risks

In this section, we will give inequalities for the worst-case and best-case VaR and its diversification

ratio. For a distribution Fi, define

µ(i)
p,q =

1
q − p

∫ q

p
F−1

i (t)dt,

for 1 > q > p > 0, i = 1, . . . , n. Note that µ(i)
0,q and µ(i)

p,1 might be infinite. Using the above notation, it is

immediate that

ESp(S n) =

n∑
i=1

ESp(Xi) =

n∑
i=1

µ(i)
p,1.

For future discussion, we also denote the best-case VaR by VaRp(S n), that is

VaRp(S n) = inf
S∈Sn

VaRp(S ),

and the best-case ES by ESp(S n), that is

ESp(S n) = inf
S∈Sn

ESp(S ).

Analytical formulas for each of VaRp(S n), VaRp(S n) and ESp(S n) are not available under general

assumptions on the marginal distributions; see Bernard et al. (2014) and Embrechts et al. (2014) for

existing results on VaRp(S n), VaRp(S n) and ESp(S n).

The following theorem contains our main result regarding approximations of VaRp(S n) and VaRp(S n).

Theorem 3.1 For any distributions F1, . . . , Fn, we have for p ∈ (0, 1),

sup
q∈(p,1]

 n∑
i=1

µ(i)
p,q − max

i=1,...,n
(F−1

i (q) − F−1
i (p))

 6 VaRp(S n) 6 ESp(S n), (3.5)

and
n∑

i=1

µ(i)
0,p 6 VaRp(S n) 6 inf

q∈[0,p)

 n∑
i=1

µ(i)
q,p + max

i=1,...,n
(F−1

i (q) − F−1
i (p))

 . (3.6)

In particular, if F1, . . . , Fn are supported on [a, b], a < b, a, b ∈ R, then

ESp(S n) − (b − a) 6 VaRp(S n) 6 ESp(S n). (3.7)
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Note that in the case when all marginal distributions are bounded, VaRp(S n) and ESp(S n) differ by at most

a constant which does not depend on n. Theorem 3.1 can also be formulated for the worst diversification

ratio of VaR.

Corollary 3.2 For any distributions F1, . . . , Fn, suppose that VaR+
p(S n) > 0. We have for p ∈ (0, 1),

sup
q∈(p,1]


∑n

i=1 µ
(i)
p,q −maxi=1,...,n(F−1

i (q) − F−1
i (p))

VaR+
p(S n)

 6 ∆p
n 6

ESp(S n)
VaR+

p(S n)
. (3.8)

In particular, if F1, . . . , Fn are supported in [a, b], a < b, a, b ∈ R, then

ESp(S n)
VaR+

p(S n)
−

b − a
VaR+

p(S n)
6 ∆

p
n 6

ESp(S n)
VaR+

p(S n)
. (3.9)

In the homogeneous case, i.e. F := F1 = F2 = . . . , the left-hand side and right-hand side of (3.9) both

converge to ESp(X)
VaRp(X) as n→ ∞, where X ∼ F, assuming VaRp(X) , 0. In the following, we will study the

limit of the worst- and best-case VaR and its diversification ratio under general marginal assumptions, as

n goes to infinity.

3.3 Asymptotic equivalence and limit of the worst diversification ratio

Based on Theorem 3.1, we now derive the asymptotic equivalence between the worst-case VaR and

the worst-case ES under very weak general conditions. For an asymptotic analysis, some uniformality

conditions on Fi, i ∈ N need to be imposed. In what follows, Xi is any rv with distribution Fi, i ∈ N.

Define the following conditions, for some p ∈ (0, 1) and k > 1:

(a) E[|Xi − E[Xi]|k] < M for some M > 0;

(b) lim infn→∞ n−1/k ∑n
i=1 ESp(Xi) = +∞, and

(b*) C0 := lim infn→∞
1
n
∑n

i=1 ESp(Xi) > 0.

The above conditions only concern the moments of Fi, i ∈ N, and they are quite weak and commonly

satisfied. Condition (a) is a uniform boundedness condition, ensuring that the aggregate portfolio S n does

not contain a single risk with a too heavy tail that dominates the other risks. Condition (b) is assumed to

guarantee that the average ES of the sequence of risks does not vanish to zero too fast. Without (a) or (b),

the limiting portfolio would exhibit a finite-n behavior. Hence, in view of an asymptotic analysis, both

conditions are reasonable. The condition (b*) is a stronger version of (b). In particular, in the homoge-

neous case when Fi, i ∈ N are identical, ESp(X1) > 0 implies (b*) and hence it also implies (b). We also

remark that condition (a*) below is stronger than condition (a):

(a*) E[|Xi|
k] is uniformly bounded.

Theorem 3.3 Suppose that the distributions Fi, i ∈ N, satisfy (a) and (b) for some p ∈ (0, 1) and k > 1,

then

lim
n→∞

VaRp(S n)

ESp(S n)
= 1. (3.10)
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If, in addition, (b) is replaced by (b*), then for sufficiently large n,

1 >
VaRp(S n)

ESp(S n)
> 1 −Cn−1+1/k, (3.11)

where

C =

(
1

1 − p
k

k − 1
+ 1

)
M1/k

C0
+ ε > 0,

M is given in (a), C0 is given in (b*), and ε is any fixed positive real number.

Theorem 3.3 establishes the asymptotic equivalence of the worst-case ES and the worst-case VaR for risk

aggregation for general, possibly inhomogeneous portfolios. As mentioned in Section 3.1, homogeneous

or almost-homogeneous cases for which (3.10) holds were previously obtained in the literature. While

existing methods of proof were mainly based on the theory of complete mixability, an extension using

the same techniques to arbitrarily many different marginal distributions was not possible.

Similarly to Theorem 3.3, we can obtain the limit of the best-case VaR bounds. In the following we

define the left-tail ES (LES) as

LESp(X) =
1
p

∫ p

0
VaRq(X)dq = −ES1−p(−X),

and denote its best-case value under dependence uncertainty by

LESp(S n) := inf
S∈Sn

LESp(S ) =

n∑
i=1

LESp(Xi) =

n∑
i=1

µ(i)
0,p,

where the second equality can be seen from the symmetry between ES and LES. For the best-case VaR

bounds, we use a slightly different set of conditions. For some p ∈ (0, 1) and k > 1:

(c) lim infn→∞ n−1/k ∑n
i=1 LESp(Xi) = +∞, and

(c*) C0 := lim infn→∞
1
n
∑n

i=1 LESp(Xi) > 0.

The following corollary is obtained from Theorem 3.3 by symmetry:

Corollary 3.4 Suppose that the distributions Fi, i ∈ N, satisfy (a) and (c) for some p ∈ (0, 1) and k > 1,

then

lim
n→∞

VaRp(S n)

LESp(S n)
= 1. (3.12)

If, in addition, (c) is replaced by (c*), then for sufficiently large n,

1 >
VaRp(S n)

LESp(S n)
> 1 −Cn−1+1/k, (3.13)

where

C =

(
1

1 − p
k

k − 1
+ 1

)
M1/k

C0
+ ε > 0,

M is given in (a), C0 is given in (c*), and ε is any fixed positive real number.

Remark 3.5 The conditions (c) and (c*) are slightly stronger than (b) and (b*), respectively, and this

asymmetry is due to the fact that we mainly consider the cases when the aggregate risk measures LES and

ES are positive. The asymmetry can be trivially removed by assuming lim infn→∞ |
1
n
∑n

i=1 LESp(Xi)| > C0

instead of (c).
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Finally, we remark that the limit of ∆
p
n as n → ∞ can be obtained directly from Theorem 3.3.

Suppose the continuous distributions Fi, i ∈ N satisfy (a) and (b) for some p ∈ (0, 1) and k > 1, then, as

n→ ∞,

∆
p
n

VaR+
p(S n)

ESp(S n)
→ 1.

If in addition, Rp := lim
n→∞

ESp(S n)
VaR+

p(S n)
exists in [1,∞], then ∆p

n → Rp as n→ ∞.

4 Uncertainty spread of VaR and ES

In addition to the distribution-wise continuity as discussed in Section 2, in this section, based on

results obtained in Section 3, we study the uncertainty spread of VaR and ES when the dependence

structure is unspecified. This quantifies the magnitude of dependence uncertainty in a model for risk

aggregation. We show that VaR generally exhibits a larger spread compared to ES. This result suggests

that VaR is more sensitive to dependence uncertainty compared to ES and can be seen as a supporting

argument for Theorem 2.4. For p ∈ (0, 1) we define the dependence uncertainty spread (DU-spread) of

VaRp as

VaRp(S n) − VaRp(S n),

and of ESp as

ESp(S n) − ESp(S n).

See Embrechts et al. (2014) for a discussion on the DU-spread of VaR and its relevance in risk manage-

ment.

By definition ESp(X) > VaRp(X) for any risk X and the inequality is strict when X is continuous.

Naturally, when switching from VaR to ES for the purpose of capital requirement, one should consider a

lower confidence level for ES. In the most recent consultative document BCBS (2013), it was proposed

that for internal risk models, VaR0.99 should be replaced by ES0.975 which often yields a similar value

to VaR0,99 for light-tailed risks. Under the Swiss Solvency Test (SST), VaR0.995 is used to compare with

ES0.99 to calculate the capital requirement for the change in the Risk Bearing Capital (RBC) over a one-

year period; see EIOPA (2011, p.32). Kou and Peng (2014) also proposed that, in order to compare with

ESp, one could use the corresponding Median Shortfall (MS), which is the median of the conditional tail

distribution above VaRp, and hence satisfies

MSp(X) = VaR(p+1)/2(X);

thus, it is consistent with the SST regime. Hence, it may be useful to compare the DU-spread of VaRq and

that of ESp for q > p. The following proposition compares the DU-spread of VaRq and that of ESp in the

asymptotic sense. In what follows, we denote by µn the summation of the means of F1, . . . , Fn, assumed

to exist. We need an additional condition to avoid degenerate cases: for some p ∈ (0, 1),

(d) lim infn→∞(µn)−1∑n
i=1 ESp(Xi) > 1.

Theorem 4.1 Suppose 1 > q > p > 0.
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(i) Suppose that the distributions Fi, i ∈ N, satisfy (a), (c) and (d), then

lim inf
n→∞

VaRq(S n) − VaRq(S n)

ESp(S n) − ESp(S n)
= lim inf

n→∞

ESq(S n) − LESq(S n)

ESp(S n) − ESp(S n)
> lim inf

n→∞

ESq(S n) − µn

ESp(S n) − µn
> 1. (4.1)

(ii) Suppose that the distributions Fi, i ∈ N, are identical and equal to a non-degenerate distribution

F, and E[|X|k] < ∞ for some k > 1, where X ∼ F, then

lim inf
n→∞

VaRq(S n) − VaRq(S n)

ESp(S n) − ESp(S n)
>

ESq(X) − LESq(X)
ESp(X) − E[X]

> 1. (4.2)

Theorem 4.1 suggests that VaR is overall more sensitive to dependence uncertainty for large n,

compared to ES. Numerical evidence of the comparison of DU-spread for VaR and ES at the same level

can be found in Section 5, even for small values of n. Note that, although the DU-spread of ES is smaller

than that of VaR asymptotically, both risk measures have a rather large uncertainty spread in general,

suggesting that dependence uncertainty in risk aggregation must be taken with care no matter whether ES

or VaR is chosen as the underlying risk measure; see Aas and Puccetti (2014) for values in the context of

a real life example.

Remark 4.2 In the homogeneous case, for any continuous distribution F, the limit of the DU-spread ratio

in (4.2) is strictly greater than 1 since LESq(X) < E[X] and ESq(X) > ESp(X). In the case q = p, we note

that, for light-tailed risks X, LESp(X) is slightly smaller than E[X]; for heavy-tailed risks X, LESp(X)

can be significantly smaller than E[X], leading to a much larger DU-spread of VaR. From Theorem 4.1,

we can also see that, approximately, the VaRq interval under DU is [
∑n

i=1 LESq(Xi),
∑n

i=1 ESq(Xi)] and the

ESp interval under DU is [
∑n

i=1 E[Xi],
∑n

i=1 ESp(Xi)].

In the following we give a result for finite n, in the case of bounded risks. A proof can be directly

obtained from Theorem 3.1.

Corollary 4.3 Suppose that 1 > q > p > 0, the distributions F1, . . . , Fn are supported in [a, b], a < b,

a, b ∈ R, and
n∑

i=1

(
ESq(Xi) + E[Xi] − ESp(Xi) − LESq(Xi)

)
> 2(b − a), (4.3)

where Xi ∼ Fi, i = 1, . . . , n, then

VaRq(S n) − VaRq(S n)

ESp(S n) − ESp(S n)
> 1.

Note that in Corollary 4.3, since ESq(Xi) > ESp(Xi) and E[Xi] > LESq(Xi), the left-hand side of (4.3) is

the summation of n non-negative terms while the right-hand side of (4.3) is a constant, hence (4.3) holds

for n sufficiently large as long as the summation of the left-hand side of (4.3) diverges as n→ ∞.

We remark that it remains theoretically unclear under what conditions the DU-spread of VaRq is

larger than (or equal to) that of ESp for finite n and q > p. In all our numerical examples (see Section 5

below), VaRq always has a larger DU-spread than ESp.
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5 Numerical examples

As suggested by BCBS (2013), the risk measure ES0.975 is a candidate proposed to replace VaR0.99.

The SST (see EIOPA (2011)) used VaR(1+p)/2 to compare with ESp. Based on such considerations, in this

section, we provide the worst-case and the best-case values of VaR0.99, VaR0.9875, VaR0.975 and ES0.975

for different portfolios under dependence uncertainty. We compare the dependence uncertainty spread of

VaR and ES in each model, and also look at the influence on the number n of risks in the portfolio. The

numerical calculation is carried out through the Rearrangement Algorithm (RA) described in Embrechts

et al. (2013), with discretization step ∆x = 10−6. The following three models are considered, and the

results for n = 5, 10, 20 are reported in Tables 5.1-5.3.

(A) (Mixed portfolio) S n = X1 + · · · + Xn, where Xi ∼ Pareto(2 + 0.1i), i = 1, . . . , 5; Xi ∼ Exp(i − 5),

i = 6, . . . , 10; Xi ∼ Log–Normal(0, (0.1(i − 10))2), i = 11, . . . , 20.

(B) (Light-tailed portfolio) S n = Y1 + · · · + Yn, where Yi ∼ Exp(i), i = 1, . . . , 5; Yi ∼Weibull(i − 5, 1/2),

i = 6, . . . , 10; Yi
d
= Yi−10, i = 11, . . . , 20.

(C) (Pareto portfolio) S n = Z1 + · · · + Zn, where Zi ∼ Pareto(1.5), i = 1, . . . , 20.

Table 5.1 Bounds obtained with RA (∆x = 10−6), Model (A): mixed portfolio.

n = 5 n = 10 n = 20

best worst spread best worst spread best worst spread

ES0.975(S n) 22.48 44.88 22.40 22.52 55.59 33.07 29.15 102.35 73.20

VaR0.975(S n) 9.79 41.46 31.67 10.04 52.67 42.63 21.44 100.65 79.21

VaR0.9875(S n) 12.06 56.21 44.16 12.06 69.03 56.98 22.12 126.63 104.51

VaR0.99(S n) 12.96 62.01 49.05 12.96 75.34 62.38 22.29 136.30 114.01
ES0.975(S n)

VaR0.975(S n)
1.08 1.06 1.02

Table 5.2 Bounds obtained with RA (∆x = 10−6), Model (B): light-tailed portfolio.

n = 5 n = 10 n = 20

best worst spread best worst spread best worst spread

ES0.975(S n) 4.72 10.71 5.99 24.55 63.19 38.63 31.33 126.38 95.04

VaR0.975(S n) 3.69 10.57 6.88 13.61 61.41 47.81 13.61 125.73 112.13

VaR0.9875(S n) 4.38 12.15 7.77 19.20 78.75 59.55 19.20 160.75 141.55

VaR0.99(S n) 4.61 12.66 8.05 21.21 84.80 63.59 21.21 172.96 151.75
ES0.975(S n)

VaR0.975(S n)
1.01 1.03 1.01

From Tables 5.1-5.3, we have the following observations:

(i) The worst-case VaR at level 0.975 and the worst-case ES at level 0.975 are very close, even for

small values of n, in all models considered (cf. Theorem 3.3, (3.10)).

(ii) The ratio between the worst-case VaR at level 0.975 and the worst-case ES at level 0.975 goes to

1 as n grows large. In the heavy-tailed model (C), the convergence is relatively slow (cf. Theorem

3.3, (3.11)).
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Table 5.3 Bounds obtained with RA (∆x = 10−6), Model (C): Pareto portfolio.

n = 5 n = 10 n = 20

best worst spread best worst spread best worst spread

ES0.975(S n) 103.8 172.6 68.8 166.2 345.1 178.9 266.2 690.3 424.1

VaR0.975(S n) 15.7 130.6 114.9 21.8 291.3 269.5 43.5 620.8 577.3

VaR0.9875(S n) 22.6 207.3 184.7 27.6 462.4 434.8 46.7 985.5 938.8

VaR0.99(S n) 25.5 240.5 215.0 30.5 536.5 506.0 47.5 1143.6 1096.0
ES0.975(S n)

VaR0.975(S n)
1.32 1.19 1.11

(iii) The DU-spreads of VaR0.99, VaR0.985 and VaR0.975 are larger than those of ES0.975 in all considered

models (cf. Theorem 4.1).

(iv) In the heavy-tailed Model (C), the DU-spreads of VaR are significantly larger than those of ES (cf.

Remark 4.2).

6 Conclusion

In this paper, we considered the risk measures VaR and ES under dependence uncertainty. We

introduced the notion of aggregation-robustness and showed that all coherent distortion risk measures,

including ES, are aggregation-robust whereas VaR is not. We also derived bounds for the worst-case and

best-case VaR in aggregation and its diversification ratio under dependence uncertainty. An asymptotic

equivalence between VaR and ES for inhomogeneous portfolios under the weakest known conditions on

the marginal distributions was established. It was shown that when the number of risks in aggregation is

large, VaR generally exhibits a larger uncertainty spread compared to ES at the same or a lower confidence

level. Numerical examples were provided to support our theoretical results. The main results in this paper

suggest that ES is less sensitive with respect to dependence uncertainty in aggregation, and it typically

has a smaller uncertainty spread compared to VaR.
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A Proofs

A.1 A useful lemma

Before presenting the main proofs, we first state a lemma that is essential in proving the main

results in Sections 3 and 4 in this paper. Recall the definitions of the essential supremum and the essential
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infimum of rvs: for any rv S ,

ess-supS = sup{t : P(S 6 t) < 1},

and

ess-infS = inf{t : P(S 6 t) > 0}.

We denote S n = X1 + · · · + Xn in the following. We remind the reader that such S n is different from the

symbolic one in the notation of VaRp(S n). We hope this will not lead to notational confusion.

Lemma A.1 Suppose that (Fi, i ∈ N) is a sequence of distributions on [0, 1], then there exist Xi ∼ Fi,

i ∈ N, such that for each n ∈ N,

ess-supS n − ess-infS n 6 1. (A.1)

Proof We first show that if X and Y are countermonotonic and both take values in [0, 1], then ess-sup(X +

Y) − ess-inf(X + Y) 6 1. Since X and Y are countermonotonic, there exist U ∼ U[0, 1] such that X =

F−1(U) and Y = G−1(1−U) where F and G are the distributions of X and Y , respectively. For u, v ∈ (0, 1),

one of F−1(u) − F−1(v) and G−1(1 − u) −G−1(1 − v) is non-positive. Hence,

F−1(u) + G−1(1 − u) − (F−1(v) + G−1(1 − v))

= (F−1(u) − F−1(v)) + (G−1(1 − u) −G−1(1 − v))

6 max{F−1(u) − F−1(v),G−1(1 − u) −G−1(1 − v)}

6 1.

Thus,

ess-sup(X + Y) − ess-inf(X + Y) = sup
u∈(0,1)

{F−1(u) + G−1(1 − u)} − inf
v∈(0,1)

{F−1(v) + G−1(1 − v)} 6 1.

Let X1 ∼ F1. For k > 2, let Xk be countermonotonic with S k−1. Since ess-sup(X1) − ess-inf(X1) 6 1, by

induction we get that ess-sup(S k) − ess-inf(S k) = ess-sup(S k−1 + Xk) − ess-inf(S k−1 + Xk) 6 1 for all

k > 2. ut

Remark A.2 Lemma A.1 is of independent interest in the theory of negative dependence. Indeed, it shows

that an extremely negatively dependent sequence always exists for uniformly bounded marginal distribu-

tions. The definition of and details on extremely negative dependence can be found in Wang and Wang

(2014). In the latter paper, it was shown that an extremely negatively dependent sequence always ex-

ists for identical marginal L1-distributions. Lemma A.1, as a new contribution, confirms that the same

statement holds for inhomogeneous marginal distributions if we assume uniform boundedness.

The following useful corollary is directly implied by Lemma A.1.

Corollary A.3 Suppose that (Fi, i ∈ N) is a sequence of distributions with bounded support, then there

exist Xi ∼ Fi, i ∈ N, such that for each n ∈ N,

|S n − E[S n]| 6 Ln. (A.2)

where Ln is the largest length of the support of Fi, i = 1, . . . , n, that is,

Ln = max{ess-supXi − ess-infXi : Xi ∼ Fi, i = 1, . . . , n}.
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A.2 Proof of Theorem 2.4

Proof Suppose ρ is a coherent distortion risk measure with distortion function h. Since h is increasing

and convex on (0,1), its has a left-derivative on (0, 1), denoted as

δ(t) := lim
x→0+

h(t) − h(t − x)
x

, t ∈ (0, 1).

It follows from (2.6) that ρ(X) =
∫ 1

0 VaRt(X)dh(t) =
∫ 1

0 VaRt(X)δ(t)dt. Note that, since Sn is compatible

with a coherent risk measure ρ, we have that E[|Xi|] < ∞, Xi ∼ Fi, i = 1, . . . , n. For q ∈ (1/2, 1), define

ρ̃q(X) =
1

1 − h(q)

∫ 1

q
VaRt(X)δ(t)dt, X ∈ X0.

We can easily check that ρ̃q is also a coherent distortion risk measure.

For any S ∈ Sn(F1, . . . , Fn), write S = X1 + · · · + Xn, where Xi ∼ Fi, i = 1, . . . , n. For q ∈ (1/2, 1),

we have that ∣∣∣∣∣∣ρ(S ) −
∫ q

1−q
VaRt(S )δ(t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1−q

0
VaRt(S )δ(t)dt +

∫ 1

q
VaRt(S )δ(t)dt

∣∣∣∣∣∣
6

∣∣∣∣∣∣
∫ 1−q

0
VaRt(S )δ(t)dt

∣∣∣∣∣∣ +
∣∣∣(1 − h(q))ρ̃q(S )

∣∣∣
6 δ(1 − q)

∫ 1−q

0
|VaRt(S )|dt +

∣∣∣(1 − h(q))ρ̃q(S )
∣∣∣ .

Note that

∣∣∣(1 − h(q))ρ̃q(S )
∣∣∣ 6 ∣∣∣∣∣∣∣(1 − h(q))

n∑
i=1

ρ̃q(Xi)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

i=1

∫ 1

q
VaRt(Xi)δ(t)dt

∣∣∣∣∣∣∣ .
On the other hand, by the comonotonic additivity of VaRt, t ∈ (0, 1), we have that∫ 1−q

0
|VaRt(S )|dt =

∫ 1−q

0
|VaRt(S I{S>0}) + VaRt(S I{S<0})|dt

6

∫ 1−q

0
VaRt(S I{S>0})dt +

∫ 1−q

0
VaR1−t(−S I{S<0})dt

6

∫ 1−q

0
VaRt(|S |)dt +

∫ 1−q

0
VaR1−t(|S |)dt

6 2(1 − q)ESq(|S |)

6 2(1 − q)
n∑

i=1

ESq(|Xi|)

= 2
n∑

i=1

∫ 1

q
VaRt(|Xi|)dt.

Note that for i = 1, . . . , n, ρ(Xi) < ∞ implies that
∫ 1

q VaRt(Xi)δ(t)dt → 0 as q → 1, and that E[|Xi|] < ∞

implies that
∫ 1

q VaRt(|Xi|)dt → 0 as q→ 1. As a consequence, as q→ 1,

η(q) :=

∣∣∣∣∣∣ρ(S ) −
∫ q

1−q
VaRt(S )δ(t)dt

∣∣∣∣∣∣→ 0
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uniformly in S ∈ Sn. Therefore, for each ε > 0, there exists 1/2 < q < 1 such that η(q) < ε/3. By

Theorem 1 of Cont et al. (2010), the distortion risk measure

ρ̂q(X) :=
1

2q − 1

∫ q

1−q
VaRt(X)δ(t)dt, X ∈ X0

is continuous at all distributions with respect to weak convergence. As a consequence, for fixed q ∈

(1/2, 1) and S , S 1, S 2, · · · ∈ Sn, S k → S weakly as k → ∞, we have that there exists K0 ∈ N such that for

k > K0, |ρ̂q(S k) − ρ̂q(S )| < ε/3. Therefore, as k → ∞,

|ρ(S k) − ρ(S )| 6 (2q − 1)|ρ̂q(S k) − ρ̂q(S )| + 2η(q) < ε.

Since ε is arbitrary, we conclude that ρ is aggregation-robust. ut

A.3 Proof of Theorem 2.6

Proof We first show that distortion risk measures with a continuous distortion function on [0, 1] are

aggregation-robust. Since X = L∞, we suppose for some M > 0, |Xi| 6 M, Xi ∼ Fi for all i = 1, . . . , a.s.

For q ∈ (1/2, 1), we have that

η(q) :=

∣∣∣∣∣∣ρ(S ) −
∫ q

1−q
VaRt(S )dh(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1−q

0
VaRt(S )dh(t) +

∫ 1

q
VaRt(S )dh(t)

∣∣∣∣∣∣
6 nMh(1 − q) + nM(h(1) − h(q))→ 0,

uniformly in S ∈ Sn. The rest of the proof is similar to the proof of Theorem 2.4.

Now suppose that h is discontinuous at p ∈ (0, 1). Using the same argument in Example 2.2, we can

see that ρ is not aggregation-robust. The case when h is discontinuous at p = 0 or p = 1 can be obtained

with similar counter-examples. ut

A.4 Proof of Theorem 3.1

We will use the following lemma, where an alternative definition of VaR is used:

VaR∗p(X) = inf{x ∈ R : P(X 6 x) > p}, p ∈ (0, 1).

The following Lemma is analogous to Lemma 4.3 of Bernard et al. (2014), with the continuity condition

on the marginal distributions removed. In the following Sn = Sn(F1, . . . , Fn).

Lemma A.4 For p ∈ (0, 1),

sup
S∈Sn

VaR∗p(S ) = sup{ess-infS : S ∈ Sn(Fp,1, . . . , Fp,n)}, (A.3)

and

inf
S∈Sn

VaRp(S ) = inf{ess-supS : S ∈ Sn(F p
1 , . . . , F

p
n )}, (A.4)

where Fp,i is the distribution of F−1
i (p + (1 − p)U), and F p

i is the distribution of F−1
i (pU), i = 1, . . . , n,

for a rv U uniformly distributed on [0, 1].
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Proof We only need to show (A.3), as (A.4) is symmetric to (A.3). First, we show that

sup
S∈Sn

VaR∗p(S ) 6 sup{ess-infS : S ∈ Sn(Fp,1, . . . , Fp,n)} =: a0.

For any T ∈ Sn, denote its distribution by FT . Let U ∼ U[0, 1] such that T = F−1
T (U), and denote by

A0 = {U > p}. Write T = X1 + · · · + Xn where Xi ∼ Fi, i = 1, . . . , n. It is clear that the conditional rv

T |A0 = X1|A0 + · · ·+ Xn|A0 is dominated (in stochastic order) by some S 0 ∈ Sn(Fp,1, . . . , Fp,n) since each

Xi|A0 is dominated by some X̂i ∼ Fp,i. This implies that ess-supT0 6 a0 where T0 is distributed as T |A0.

Therefore, VaR∗p(T ) = ess-supT0 6 a0.

Next we show that

sup
S∈Sn

VaR∗p(S ) > a0.

Note that, by Lemma 4.2 of Bernard et al. (2014), there exists S 0 ∈ Sn(Fp,1, . . . , Fp,n) such that ess-infS 0 =

a0. Let U0 be a U[0, 1] rv, independent of S 0. Write

T1 =

n∑
i=1

F−1
i (U0)I{U0<p} + S 0I{U0>p}.

It is easy to check that T1 ∈ Sn. As a consequence, VaR∗p(T1) > ess-supS 0 = a0. ut

Proof (Proof of Theorem 3.1) We first show that for p ∈ (0, 1) and q ∈ (p, 1],

sup{ess-infS : S ∈ Sn(Fp,1, . . . , Fp,n)} >
n∑

i=1

µ(i)
p,q − max

i=1,...,n
(F−1

i (q) − F−1
i (p)). (A.5)

Since the case when F−1
i (q) = ∞ for some i is trivial, we suppose that F−1

i (q) < ∞ for all i = 1, . . . , n.

Let F(i)
p,q be the conditional distribution of Wi = F−1

i (p + (q − p)U) for 0 < p < q 6 1. By Corollary

A.3, there exist rvs Xi ∼ F(i)
p,q, i = 1, . . . , n, such that

X1 + · · · + Xn >
n∑

i=1

µ(i)
p,q − max

i=1,...,n
(F−1(q) − F−1(p)).

Let Zi, i = 1, . . . , n be any rv with distribution Fq,i, and let C be a set independent of X1, . . . , Xn,Z1, . . . ,Zn

for which P(C) = (q − p)/(1 − p). Define Yi = XiIC + Zi(1 − IC) for i = 1, . . . , n. It is straightforward to

check that Yi has distribution Fp,i, and

Y1 + · · · + Yn > X1 + · · · + Xn >
n∑

i=1

µ(i)
p,q − max

i=1,...,n
(F−1

i (q) − F−1
i (p)).

Thus

ess-inf(Y1 + · · · + Yn) >
n∑

i=1

µ(i)
p,q − max

i=1,...,n
(F−1

i (q) − F−1
i (p)),

and we obtain (A.5). Since VaRp(X) > VaR∗r (X) for any r < p and any rv X, we have that

VaRp(S n) > lim
r→p−

(
sup
S∈Sn

VaR∗r (S )
)
> lim

r→p−

 n∑
i=1

µ(i)
r,q − max

i=1,...,n
(F−1

i (q) − F−1
i (r))


=

n∑
i=1

µ(i)
p,q − max

i=1,...,n
(F−1

i (q) − F−1
i (p)).
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Note that here we use the fact that F−1
i is left-continuous for each i. Now, we have (A.5), and with Lemma

A.4, we obtain the first inequality in (3.5). On the other hand,

VaRp(S n) 6 sup
S∈Sn

VaR∗p(S ) = sup{ess-infS : S ∈ Sn(Fp,1, . . . , Fp,n)} 6
n∑

i=1

µ(i)
p,1

always holds. Thus we obtain (3.5). We can show (3.6) similarly. ut

A.5 Proof of Theorem 3.3

Proof First, let us assume that E[Xi] = 0 for all i ∈ N. Note that ESp(S n) =
∑n

i=1 ESp(Xi) =
∑n

i=1 µ
(i)
p,1

for Xi ∼ Fi. We use (3.5) and take qn = 1 − n−1 for n large enough such that qn > p. By (b), we have∑n
i=1 µ

(i)
p,1 > 0 for large n.

Note that by (a), E[|Xi|
k] 6 M uniformly. Therefore, [F−1

i (t)]k(1− t) 6 M for t ∈ (0, 1), and we have

F−1
i (t) 6

( M
1 − t

)1/k

, t ∈ (0, 1), i ∈ N.

Note that for Xi ∼ Fi,

µ(i)
p,1 − µ

(i)
p,qn

=
1

1 − p
E[XiI{Xi>F−1

i (p)}] −
1

qn − p
E[XiI{F−1

i (qn)>Xi>F−1
i (p)}]

6
1

1 − p
E[XiI{Xi>F−1(qn)}]

=
1

1 − p

∫ 1

qn

F−1
i (t)dt

6
1

1 − p

∫ 1

qn

( M
1 − t

)1/k

dt

=
1

1 − p
1

1 − 1/k
M1/k(1 − qn)1−1/k.

As a consequence we have

sup
S∈Sn

VaRp(S ) >
n∑

i=1

µ(i)
p,qn
− max

i=1,...,n
(F−1

i (qn) − F−1
i (p))

>
n∑

i=1

µ(i)
p,1 −

n∑
i=1

(µ(i)
p,1 − µ

(i)
p,qn

) − max
i=1,...,n

F−1
i (qn)

>
n∑

i=1

µ(i)
p,1 −

n∑
i=1

1
1 − p

1
1 − 1/k

M1/k(1 − qn)1−1/k −

(
M

1 − qn

)1/k

=

n∑
i=1

µ(i)
p,1 −

1
1 − p

1
1 − 1/k

M1/kn1/k − M1/kn1/k

=

n∑
i=1

µ(i)
p,1 − O(n1/k). (A.6)

By (b), it follows that

1 >
VaRp(S n)∑n

i=1 µ
(i)
p,1

> 1 −
O(n1/k)∑n

i=1 µ
(i)
p,1

→ 1 as n→ ∞,
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hence we obtain (3.10).

Now for the case that E[Xi] , 0 for some i ∈ N, we denote by F∗i the distribution of Xi − E[Xi], and

by

S
∗
n = {Y1 + · · · + Yn : Yi ∼ F∗i , i = 1, . . . , n}.

Then, by (A.6), with Sn replaced by S∗n, we have

sup
S∈Sn

VaRp(S ) = sup
S∈S∗n

VaRp(S ) +

n∑
i=1

E[Xi]

=

n∑
i=1

(µ(i)
p,1 − E[Xi]) − O(n1/k) +

n∑
i=1

E[Xi]

=

n∑
i=1

µ(i)
p,1 − O(n1/k).

Thus, (A.6) still holds for Sn in the case E[Xi] , 0 for some i.

When (b*) holds, by (A.6), we have that

1 >
VaRp(S n)∑n

i=1 µ
(i)
p,1

> 1 −

(
1

1−p
k

k−1 + 1
)

M1/k(n1/k)∑n
i=1 µ

(i)
p,1

> 1 −Cn−1+1/k,

for n sufficiently large. This leads to (3.11) and completes the proof of the theorem. ut

A.6 Proof of Theorem 4.1

Proof (i) Denote an = VaRq(S n), bn = VaRq(S n), cn = ESq(S n), and dn = LESq(S n). We have that

lim inf
n→∞

an − bn

cn − dn
= lim inf

n→∞

an/cn − bn/cn

1 − dn/cn
= lim inf

n→∞

an/cn − (bn/dn)(dn/cn)
1 − dn/cn

.

Note that by (d), we have that lim supn→∞ dn/cn < 1. Further, by Theorem 3.3 and Corollary 3.4,

we have that an/cn → 1 and bn/dn → 1. As a consequence,

lim inf
n→∞

an − bn

cn − dn
> 1.

Since cn > an > bn > dn, we have that

an − bn

cn − dn
6 1 ⇒ lim

n→∞

an − bn

cn − dn
= 1.

Write
ESq(S n) − LESq(S n)

ESp(S n) − ESp(S n)
=

VaRq(S n) − VaRq(S n)

ESp(S n) − ESp(S n)
×

an − bn

cn − dn
,

and we obtain the first equality in (4.1). The rest of (4.1) follows by noting that ESq(X) > ESp(X) >

E[X] > LESq(X) for any rv X and any 0 < p 6 q < 1.

(ii) It can be obtained from part (i) by noting that (a), (c) and (d) are all satisfied by the distribution of

X + c, where c is some constant. ut
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Krätschmer, V., Schied, A. and Zähle, H. (2012). Qualitative and infinitesimal robustness of tail-

dependent statistical functionals. Journal of Multivariate Analysis, 103, 35–47.
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Puccetti, G. and Rüschendorf, L. (2013). Sharp bounds for sums of dependent risks. Journal of Applied

Probability, 50(1), 42–53.
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