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Abstract

Risk aggregation with dependence uncertainty refers to the sum of individual risks with

known marginal distributions and unspecified dependence structure. We introduce the

admissible risk class to study risk aggregation with dependence uncertainty. The admissible

risk class has some nice properties such as robustness, convexity, permutation invariance

and affine invariance. We then derive a new convex ordering lower bound over this class and

give a sufficient condition for this lower bound to be sharp in the case of identical marginal

distributions. The results are used to identify extreme scenarios and calculate bounds on

Value-at-Risk as well as on convex and coherent risk measures and other quantities of

interest in finance and insurance. Numerical illustrations are provided for different settings

and commonly-used distributions of risks.
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1 Introduction

In quantitative risk management, risk aggregation refers to the (probabilistic) behavior of

an aggregate position S(X) associated with a risk vector X = (X1, · · · , Xn), where X1, · · · , Xn

are random variables representing individual risks (one-period losses or profits). In this paper, we

focus on the most commonly studied aggregate risk position, that is the sum S = X1 + · · ·+Xn,

since it has important and self-explanatory financial implications as well as tractable probabilistic

properties.

In practice, there exist efficient and accurate statistical techniques to estimate the respec-

tive marginal distributions of X1, · · · , Xn. On the other hand, the joint dependence structure

of X is often much more difficult to capture: there are computational and convergence issues

with statistical inference of multi-dimensional data, and the choice of multivariate distributions

is quite limited compared to the modelling of marginal distributions. However, an inappropriate

dependence assumption can have important risk management consequences. For example, using

the Gaussian multivariate copula can result in severely underestimating probability of simulta-

neous default in a large basket of firms (McNeil et al. (2005)). In this paper, we focus on the

case when the marginal distributions of X1, · · · , Xn are known and the dependence structure of

X is unspecified. This scenario is referred to as risk aggregation with dependence uncertainty.

To study the aggregate risk when the information of dependence is unavailable or unreliable,

we introduce the concept of admissible risk as a possible aggregate risk S with given marginal

distributions but unknown dependence structure.

We are particularly interested in the convex order of elements in an admissible risk class.

Generally speaking, convex order is consistent with preferences among admissible risks for all

risk-avoiding investors. Previous studies on convex order of admissible risks mainly focused on

the sharp upper bound for a general number n of individual risks and the sharp lower bound for

n = 2 (for example, see Denuit et al. (1999), Tankov (2011) and Bernard et al. (2012, 2013a)).

In this paper, however, we focus on the sharp lower bound when n > 3, which is known to be an

open problem for a long time. We show that the existence of a convex ordering minimal element

in an admissible risk class is not guaranteed by providing a counterexample, and give conditions

under which it exists. One of the conditions involves checking complete mixability (Wang and

Wang (2011)). In the last section we propose a numerical technique to check this property, which

suggests that the Gamma and Log-Normal distributions are completely mixable.

As we will show, a convex ordering lower bound can be useful to quantify model risk and in

many financial applications. A first application is to quantify model risk in capital requirements.

Regulators and companies are usually more concerned about a risk measure ρ(S) (as a measure

of risk exposure or as capital requirements needed to hold the position S over a pre-determined
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period) instead of the exact dependence structure of X itself. When a given dependence structure

is chosen, ρ(S) can be computed exactly. However, when the dependence structure is unspecified,

ρ(S) can take a range of possible values, which can then be interpreted as a measure of model

uncertainty (Cont (2006)) with the absence of information on dependence. The assessment of

aggregate risks S with given marginal distributions and partial information on the dependence

structure, has been extensively studied in quantitative risk management. A large part of the

literature focuses on properties of a specific risk measure when there is no extra information on

the dependence structure, for instance: bounds on the distribution function and the Value-at-

Risk (VaR) of S were studied by Embrechts et al. (2003), Embrechts and Puccetti (2006) and

Wang et al. (2013), among others; convex ordering bounds on S were studied by for example

Denuit et al. (1999), Dhaene et al. (2002) and Wang and Wang (2011). Some numerical methods

to approximate bounds on risk measures were recently provided by Puccetti and Rüschendorf

(2012), Embrechts et al. (2013), and Puccetti (2013). Another direction in the literature has

been to study the case when marginals are fixed, and some extra information on the dependence

is available; see Cheung and Vanduffel (2013) for convex ordering bounds with given variance;

Bernard et al. (2013b) for VaR bounds with a variance constraint; Kaas et al. (2009) for the

worst Value-at-Risk with constraints of positively quadrant dependence and some given measures

of dependence for n = 2; Embrechts and Puccetti (2006) for bounds on the distribution of S

when the copula of X is bounded by a given copula; Tankov (2011) and Bernard et al. (2012,

2013a) for bounds on S when n = 2; see also the Herd index proposed by Dhaene et al. (2012)

based on the maximum variance of aggregate risk with estimated marginal variances. We refer to

Embrechts and Puccetti (2010) for an overview on risk aggregation with no or partial information

on dependence. Note that our work is fundamentally different from the literature on the lower

bounds on ρ(S) obtained by conditioning methods (e.g. Rogers and Shi (1995), Kaas et al.

(2000), Valdez et al. (2009)).

Another contribution is to show that the convex ordering lower bound gives the explicit

expression of the infimum and supremum of VaR (and proves the intuition behind the numerical

bounds obtained for example by Embrechts et al. (2013); Puccetti and Rüschendorf (2012)).

Convex ordering bounds are also directly related to bounds on convex expectations1 and on

general law-invariant convex risk measures, including coherent risk measures. Convex expec-

tations appear naturally in many practical problems such as basket options (Tankov (2011),

d’Aspremont and El Ghaoui (2006), Hobson et al. (2005), Albrecher et al. (2008)), discrete vari-

ance options pricing (Keller-Ressel and Clauss (2012)), stop-loss premiums for aggregate risk,

variances and expected utilities. Examples are discussed extensively in Section 5. Coherent risk

1A convex (concave) expectation is computed as E [f(S)] where f : R→ R is a convex (concave) function.
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measures were introduced in Artzner et al. (1999) and later extended by Delbaen (2002) and

Kusuoka (2001), among others. See also McNeil et al. (2005) for an overview. In Section 5, we

will discuss how convex ordering bounds lead to bounds on convex and coherent risk measures.

An important application for the financial industry is to obtain bounds on the coherent risk mea-

sure Tail-Value-at-Risk2 (TVaR) of a joint portfolio S = X1 + · · · + Xn, when the dependence

between individual assets X1, · · · , Xn is unknown. More details and applications are given in

Section 5.

The rest of the paper is organized as follows. In Section 2 we introduce the concept of

admissible risk class and derive its properties. The main results of this paper focus on this class.

Section 3 provides a new convex ordering lower bound over the admissible risk class, for both

homogeneous and heterogeneous risks. It is shown that under some conditions, this bound is

sharp in the homogeneous case. Section 4 gives a connection between the convex ordering lower

bound and bounds on the Value-at-Risk. Bounds on convex risk measures and other applications

are then given in Section 5. Some numerical illustrations can be found in Section 6. Concluding

remarks are given in Section 7.

2 Admissible Risk

Assume that all random variables live in a general atomless probability space (Ω,A,P).

This means that for all A ⊂ Ω with P(A) > 0, there exists B ( A such that P(B) > 0. The

atomless assumption is very weak: in our context it is equivalent to that there exists at least one

continuously distributed random variable in this space (roughly, (Ω,A,P) is not a finite space).

In particular, it does not prevent discrete variables to exist. In such a probability space, we

can generate sequences of independent random vectors with any distribution. We denote by

L0(Ω,A,P) the set of all random variables defined in the atomless probability space (Ω,A,P).

See Proposition 6.9 of Delbaen (2002) for details of atomless probability spaces. More discussions

on risk measures defined on such spaces can also be found in this paper.

Throughout the paper, we call aggregate risk the sum S = X1 + · · ·+Xn where Xi are non-

negative random variables (individual risks) and n is a positive integer. Here the non-negativity

is assumed just for the convenience of our discussion.

As already mentioned before, we consider that for each i = 1, · · · , n the distribution of

Xi is known while the joint distribution of X := (X1, X2, · · · , Xn) is unknown. In other words,

marginal distributions of individual risks Xi are given and their dependence structure (copula) is

2The TVaR of S at level p ∈ [0, 1) is defined as TVaRp(S) = 1
1−p

∫ 1
p VaRα(S)dα, where VaR is the Value-at-

Risk measure.
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unspecified. To formulate the problem mathematically, define the Fréchet class Fn(F1, · · · , Fn)

as the set of random vectors with given marginal distributions F1, · · · , Fn,

Fn(F1, · · · , Fn) = {X : Xi ∼ Fi, i = 1, · · · , n} ,

where Xi ∼ Fi means that Xi ∈ L0(Ω,A,P) has the distribution Fi. The Fréchet class is the

most natural setup to describe the case when marginal distributions are known and dependence

is unspecified. It was used in the literature when studying copulas and dependence in risk

management; we refer to recent review papers of Embrechts and Puccetti (2010) and Dhaene et al.

(2002). Note that when more information on the dependence is available, the possible aggregate

risks belong to subsets of Fn(F1, · · · , Fn). However, in this paper we study the aggregate risk

when marginal distributions are given and the dependence structure is completely unknown,

which is called an admissible risk.

Definition 2.1 (Admissible risk). An aggregate risk S is called an admissible risk of marginal

distributions F1, · · · , Fn if it can be written as S = X1+ · · ·+Xn where Xi ∼ Fi for i = 1, · · · , n.

The admissible risk class is defined by the set of admissible risks of given marginal distributions:

Sn(F1, · · · , Fn) = {admissible risk of marginal distributions F1, · · · , Fn}

= {X1 + · · ·+Xn : Xi ∼ Fi, i = 1, · · · , n} .

Remark 2.1. It is clear that Sn(F1, · · · , Fn) = {X1n : X ∈ Fn(F1, · · · , Fn)} where 1n is the

column n-vector with all elements being 1. At a first look, one may think the admissible risk

class is a trivial reformulation of the Fréchet class. However, the study of an admissible risk class

is completely different from the study of a Fréchet class and is of interest in risk aggregation. For

example, the structure of an admissible risk depends highly on the marginal distributions, while

the structure of every Fréchet class is clearly marginal-independent and is fully characterized.

We believe that this difference is exactly why copula techniques work well for the study of Fréchet

classes but not the admissible risk class3. On the other hand, considering the aggregate risk is a

one-dimensional quantity, the Fréchet class contains redundant n-dimensional information which

greatly increases the difficulty of statistical inference.

The definition of admissible risks concerns only the distribution of random variables. Note

that if S1 and S2 have the same distribution, then S1 ∈ Sn(F1, · · · , Fn)⇔ S2 ∈ Sn(F1, · · · , Fn)

by the atomless property of the probability space (see Theorem 2.1 (i) below). Hence, the study

of Sn(F1, · · · , Fn) is equivalent to the study of the admissible distribution class defined as

Dn(F1, · · · , Fn) = {distribution of S : S ∈ Sn(F1, · · · , Fn)} .
3For example, when n > 3, depending on the marginal distributions, the minimal convex ordering element is

obtained with different structures or even does not exist.
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We first give properties of the admissible risk class Sn(F1, · · · , Fn) and the corresponding

admissible distribution class Dn(F1, · · · , Fn). For simplicity, we denote by F = (F1, · · · , Fn),

G = (G1, · · · , Gn), IA is the indicator function for the set A ∈ A, and Ta,b is an affine operator

on univariate distributions such that for a, b ∈ R,

Ta,b(distribution of X) = distribution of aX + b.

We also use F⊗G to denote the distribution of X+Y where X ∼ F and Y ∼ G are independent,

i.e. (F ⊗G)(x) =
∫ x
−∞ F (x− y)dG(y), and use

d
= and

d→ to denote equality and convergence in

law, respectively. We say that a probability space is rich enough if in this probability space, for

any random variable X1 and any copula C, there exist a random vector X = (X1, . . . , Xn) with

copula C.

Theorem 2.1 (Properties of the admissible risk class).

(i) (law invariance) Suppose that the probability space (Ω,A,P) is rich enough. If S1
d
= S2,

then S1 ∈ Sn(F)⇔ S2 ∈ Sn(F).

(ii) (convexity) If S1 ∈ Sn(F), S2 ∈ Sn(G), then IAS1+(1−IA)S2 ∈ Sn(P(A)F+(1−P(A))G)

for A ∈ A independent of S1 and S2. In particular,

(a) if S1, S2 ∈ Sn(F), then IAS1 + (1− IA)S2 ∈ Sn(F) for A ∈ A independent of S1 and

S2;

(b) if S ∈ Sn(F) ∩Sn(G), then S ∈ Sn(λF + (1− λ)G) for λ ∈ [0, 1]. That is, Sn(F) ∩

Sn(G) ⊂ Sn(λF + (1− λ)G) for λ ∈ [0, 1].

(iii) (independent sum) If S1 ∈ Sn(F) and S2 ∈ Sn(G) are independent, then S1 + S2 ∈

Sn(F1 ⊗G1, · · · , Fn ⊗Gn).

(iv) (dependent sum) If S1 ∈ Sn(F) and S2 ∈ Sm(G), then S1+S2 ∈ Sn+m(F1, · · · , Fn, G1, · · · , Gm).

(v) (affine invariance) S ∈ Sn(F) ⇔ aS + b ∈ Sn(Ta,b1F1, · · · , Ta,bnFn) for a, bi ∈ R, i =

1, · · · , n and b =
∑n
i=1 bi.

(vi) (permutation invariance) Let σ be an n-permutation, then Sn(F) = Sn(σ(F)).

(vii) (robustness) If F
(k)
i → Fi pointwise when k → +∞ and for i = 1, · · · , n, then

(a) each S ∈ Sn(F) is the weak limit of a sequence Sk ∈ Sn(F
(k)
1 , · · · , F (k)

n );

(b) each weakly convergent sequence Sk ∈ Sn(F
(k)
1 , · · · , F (k)

n ) has its weak limit S ∈

Sn(F);
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(c) (completeness) If Sk ∈ Sn(F), k = 1, 2, · · · , and Sk
d→ S, then S ∈ Sn(F).

It is well-known that the Fréchet class has similar properties. Hence, a straightforward

proof is given in Appendix A.

The above theorem can help to identify possible aggregate risks when the marginal distri-

butions are known. To summarize, the admissible risk class Sn(F) has good properties: the

corresponding distribution class Dn(F) is a convex set; the sums of admissible risks are also in

some admissible risk classes; the admissible risk class is affine and permutation invariant with

respect to marginal distributions; any admissible risk class is complete. Finally, the admissi-

ble risk classes are robust with respect to marginal distribution; if the estimation of marginal

distribution is almost accurate, the resulting admissible risk class is also almost accurate.

Remark 2.2. If we naturally extend the univariate-distributional operators: addition (+), scaler-

multiplication (·), convolution-type product (⊗), affine operation (Ta,b) and convergence (→) to

the sets of distributions (element-wise operations), then (ii), (iii), (v), (vi) and (vii) can be

written in terms of operations on sets of the form Dn(·), as follows

(ii) λDn(F) + (1−λ)Dn(G) ⊂ Dn(λF + (1−λ)G) and Dn(F)∩Dn(G) ⊂ Dn(λF + (1−λ)G);

(iii) Dn(F)⊗Dn(G) ⊂ Dn(F1 ⊗G1, · · · , Fn ⊗Gn);

(v) Dn(Ta,b1F1, · · · , Ta,bnFn) = Ta,bDn(F), where b =
∑n
i=1 bi;

(vi) Dn(F) = Dn(σ(F)).

(vii) Dn(F
(k)
1 , · · · , F (k)

n )→ Dn(F) if F
(k)
i → Fi.

Remark 2.3. The general characterization of an admissible risk class is an open problem. Note

that the determination of whether S belongs to Sn(F1, · · · , Fn) is equivalent to the determination

of whether F, F1, · · · , Fn are jointly mixable as defined in Wang et al. (2013), where F is the

distribution function of −S. The research on joint mixability is known to be highly challenging

and still limited in the existing literature.

As already mentioned in the introduction, the study of the admissible risk class Sn(F) is

of interest in risk management and has been studied from different aspects. One of the most

important issue is to quantify aggregate risk under extreme scenarios. Fortunately, although a full

characterization of the admissible risk class is unavailable, extreme scenarios are mathematically

tractable. Note that all admissible risks of given marginal distributions (F1, · · · , Fn) have the

same mean when it exists, it is thus natural to consider variability in the class. In this paper,

we measure variability with convex order and focus on extreme scenarios of risks in Sn(F) in

the sense of convex order.
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3 Convex Ordering Bounds on Admissible risks

3.1 Convex order and known results

Convex order is a preference between two random variables valid for all risk-avoiding in-

vestors.

Definition 3.1 (Convex order). Let X and Y two random variables with finite mean. X is

smaller than Y in convex order, denoted by X ≺cx Y , if for every convex functions f ,

E[f(X)] 6 E[f(Y )].

It immediately follows that X ≺cx Y implies E[X] = E[Y ]. This order is thus well-adapted

to our problem as all variables in Sn(F) have the same mean. Note that convex order is an order

on distributions only, hence we do not really need to specify random variables in our discussion.

Convex order on aggregate risks has been extensively studied in actuarial science since it is

closely related to stop-loss order, which is involved in insurance premium calculations. More

discussions on stochastic orders on aggregate risks can be found in Müller (1997a,b). From now

on, our objective is to find convex ordering bounds for the set Sn(F1, · · · , Fn). Applications are

numerous as it will appear clearly in subsequent sections.

We denote by G−1(t) = inf{x : G(x) > t} for t ∈ (0, 1] the pseudo-inverse function for any

monotone function G : R+ → [0, 1], and in addition let G−1(0) = inf{x : G(x) > 0} throughout

the paper. A well-known result is that the sharp upper convex ordering bound in Sn(F1, · · · , Fn)

is F−11 (U) + · · · + F−1n (U) where U is a uniform distribution over the interval (0, 1) (that we

write U ∼ U [0, 1]). The special scenario X = (F−11 (U), · · · , F−1n (U)) is called the comonotonic

dependence scenario (Kaas et al. (2009)). We obtain

X1 +X2 + · · ·+Xn ≺cx F
−1
1 (U) + · · ·+ F−1n (U).

We refer to Dhaene et al. (2002) for details on comonotonicity.

The rest of the paper focuses on the much more complex issue consisting of determining

the lower bound. When there are only two variables, n = 2, the minimum is obtained by the

counter-monotonic dependence scenario:

F−11 (U) + F−12 (1− U) ≺cx X1 +X2

where U ∼ U [0, 1]. Proofs for this assertion can be found in Meilijson and Nadas (1979), Tchen

(1980) and Rüschendorf (1980, 1983). The sharp lower bound for n > 3 is obtained in Wang

and Wang (2011) in the special case when marginal distributions are identical with a monotone

density function. In general, the lower bound for n > 3 is unknown. Observe that in the
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counter-monotonic scenario for n = 2, when the risk F−11 (U) is large (U close to 1), the other

risk F−12 (1−U) is small (1−U close to 0). Intuitively speaking, the optimal dependence structure

for a convex ordering lower bound should be concentrated as much as possible, and thus a large

loss X1 must be “compensated” by a small loss X2. This intuition is going to be extended to the

case when there are n > 3 risks in Section 3.3 (in the case of homogeneous risks) and in Section

3.4 (in the case of heterogeneous risks).

First a natural question is the existence of a convex ordering (global) minimal element in

an admissible risk class. Since convex order is a partial order, the existence of such minimal

element is not trivial. For n = 1 and n = 2, the minimum exists for any marginal distributions.

One may think that a convex ordering minimal element always exists in an admissible risk class

also for n > 3; for example, the Rearrangement Algorithm (RA), proposed in Puccetti and

Rüschendorf (2012) and improved in Embrechts et al. (2013) and Puccetti (2013), can be used

to find a convex ordering minimal element without proving its existence. However, it turns out

that the existence of a convex ordering minimal element is generally not guaranteed as shown

in the following counterexample.

3.2 Existence of the convex ordering minimal element

Example 3.1. Let F1 be a discrete distribution on {0, 3, 8} with equal probability, F2 be a

discrete distribution on {0, 6, 16} with equal probability, and F3 be a discrete distribution on

{0, 7, 13} with equal probability. In our example, the sample space are divided into three disjoint

subsets A1, A2, A3 with equal probability 1/3. Let ωi ∈ Ai, i = 1, 2, 3. We verify two scenarios:

(a) Consider first the following dependence structure
X1(ω1) X2(ω1) X3(ω1)

X1(ω2) X2(ω2) X3(ω2)

X1(ω3) X2(ω3) X3(ω3)

 =


3 16 0

0 6 13

8 0 7


It is easy to verify that the distribution ofXi is Fi, i = 1, 2, 3. The distribution ofX1+X2+X3

is on {19, 19, 15} with equal probability. Thus, E[(X1 +X2 +X3 − 19)+] = 0.

(b) Consider another dependence structure
X1(ω1) X2(ω1) X3(ω1)

X1(ω2) X2(ω2) X3(ω2)

X1(ω3) X2(ω3) X3(ω3)

 =


0 16 0

3 0 13

8 6 7


It is easy to verify that the distribution ofXi is Fi, i = 1, 2, 3. The distribution ofX1+X2+X3

is on {16, 16, 21} with equal probability. Thus, E[(16−X1 −X2 −X3)+] = 0.
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Note that both g(x) = (x − 19)+ and g(x) = (16 − x)+ are convex functions. Hence, if there

exists a convex ordering minimal element S in the admissible risk class S3(F1, F2, F3), it must

satisfy E[(S−19)+] = 0 and E[(16−S)+] = 0. However, we can see that when X1 = 8, no matter

what values of X2 and X3 take, S will be either > 19 or < 16. That means E[(S − 19)+] = 0

and E[(16− S)+] = 0 cannot be satisfied simultaneously by the same S ∈ S3(F1, F2, F3).

Remark 3.1. The above example shows that the minimal element w.r.t. convex order may not

exist in an admissible risk class.

(i) This observation implies that the minimum of E[g(S)] over S ∈ Sn(F1, · · · , Fn) for different

convex functions g or for different TVaRα(S) with α ∈ (0, 1) may not be obtained with the

same dependence structure. Thus, in particular a global solution to the infimum problem

inf
S∈Sn(F1,··· ,Fn)

E[g(S)]

for all convex functions g is not available.

(ii) This observation implies that the Rearrangement Algorithm (RA) of Puccetti and Rüschendorf

(2012) may not lead to the minimum value of E[g(S)] or TVaRα(S), since different choices

of g or α may lead to different optimal structures.

(iii) In what follows, we provide cases of admissible risk class with a minimal element w.r.t. con-

vex order for homogeneous marginal distributions satisfying some conditions. A remaining

question is to find for which marginal distributions F1, · · · , Fn, the admissible risk class

must contain a minimum w.r.t. convex order. The question turns out to be non-trivial to

answer.

Under some conditions the minimal element exists and can be characterized. We first

start with the case when all risks have the same distribution, F1 = · · · = Fn (homogeneous

risks). This case significantly reduces the complexity of the problem and it is still relevant in

practice. For example, it is useful for an insurer who has a portfolio of identically distributed

policyholders’ individual risks. In another context, it can be used to find bounds on prices

of variance options when subsequent stocks’ log-returns are identically distributed (see Section

5.4). We then generalize the study to the case when the distributions Fi can be different (case

of heterogeneous risks).

3.3 Convex ordering lower bounds for homogeneous risks

Let F be a distribution on R+ with finite mean and n a positive integer. Although we are

interested in the case of n > 3, but the theorems in this paper also hold for the cases of n = 1

10



and n = 2. We first consider the homogeneous case and give a lower convex ordering bound on

Sn(F, · · · , F ) in Theorems 3.1 and 3.2. Let us define H(·) and D(·) that are two key quantities

in the derivation of this lower bound.

∀x ∈
[
0,

1

n

]
, H(x) = (n− 1)F−1((n− 1)x) + F−1(1− x), (3.1)

∀a ∈
[
0,

1

n

)
, D(a) =

n

1− na

∫ 1
n

a

H(x)dx = n

∫ 1−a
(n−1)a F

−1(y)dy

1− na
. (3.2)

We use the convention that D
(
1
n

)
= H

(
1
n

)
and H(0) = +∞ when the support of F is un-

bounded. The possible infiniteness of H(0) is for convenience only and will not be problematic

in what follows. Note also that D(a) is always finite since
∫ 1

n

a
H(x)dx 6

∫ 1
n

0
H(x) = E [X1]

is finite (as F is a distribution with finite mean). Let us give some intuition about these two

quantities. From the last expression of D(a), it is clear that D(a) is directly related to the

average sum when its components (X1, · · · , Xn) are all in the middle of the distribution (also

called body of the distribution). Precisely,

D(a) =

n∑
j=1

E
[
Xj

∣∣Xj ∈
[
F−1((n− 1)a), F−1(1− a)

]]
(3.3)

because P
(
Xj ∈ [F−1((n− 1)a), F−1(1− a)]

)
= 1 − na and X1, X2, · · · , Xn all have the same

distribution. It is also clear that H(x) and D(a) can be easily calculated for a given distribution

F .

Intuitively, the dependence scenario to attain the convex ordering lower bound is constructed

such that when one of the Xi is large then all the others are small (all Xi are in the tails of the

distribution; the pair (Xi, Xj) is counter-monotonic for large Xi and j 6= i) and when one of

the Xi is of medium size (in the body of the distribution) we treat the sum
∑
iXi as a constant

equal to its conditional expectation as in (3.3). Precisely, the lower bound in the coming theorem

corresponds exactly to the following dependence structure. The probability space is split into

two parts: the tails (with probability na for a small value of a ∈ [0, 1/n]) and the body (with

probability 1−na). H(·) gives the values of S in the tails and D(a) is the value of S in the body

of the distribution. To this end, for a ∈
[
0, 1

n

]
, we introduce a random variable

Ta = H(U/n)I{U∈[0,na]} +D(a)I{U∈(na,1]}, (3.4)

where U ∼ U [0, 1]. The atomless assumption of the probability space (Ω,A,P) allows us to

generate such U , and since we only care about distributions to prove convex order, we do not

specify the random variable U . In Theorem 3.1, we prove that Ta is a convex ordering lower

bound given that H(·) satisfies a monotonicity property. In the proof of Theorem 3.2, we find

the best convex ordering bound and exhibit the worst dependence structure explicitly.
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Theorem 3.1 (Convex ordering lower bound for homogeneous risks). Suppose condition (A)

holds:

(A) for some a ∈
[
0, 1

n

]
, H(x) is non-increasing on the interval [0, a] and limx→a−H(x) > D(a),

then,

(i) Ta ≺cx S for all S ∈ Sn(F, · · · , F );

(ii) Tu ≺cx Tv for all 0 6 u 6 v 6 1
n . Thus, the most accurate lower bound is obtained by the

largest a such that (A) holds.

Proof. All proofs are trivial for the case of n = 1, so we only provide the case for n > 2.

(i) Let X ∈ Fn(F, · · · , F ), S = X1n ∈ Sn(F, · · · , F ) and Ta be defined in (3.4). It is

straightforward to check

E [Ta] =

∫ na

0

H(u/n)du+ (1− na)D(a)

= n

∫ a

0

H(u)du+ n

∫ 1
n

a

H(u)du

= n

∫ 1
n

0

(
(n− 1)F−1((n− 1)u) + F−1(1− u)

)
du

= n

∫ 1

0

F−1(u)du

= E [S] .

Let FS and FTa
be the cdf of S and Ta respectively, and further let U1, · · · , Un be U [0, 1]

random variables such that F−1(Ui) = Xi for i = 1, · · · , n. Such U1, · · · , Un always exist

in an atomless probability space. Our goal is to show that

∀c ∈ [0, 1] ,

∫ 1

c

F−1Ta
(t)dt 6

∫ 1

c

F−1S (t)dt. (3.5)

Property (3.5) together with E[Ta] = E[S] is equivalent to Ta ≺cx S (for example, see

Theorem 2.5 of Bäuerle and Müller (2006)).

To obtain this, denote AS(u) =
⋃
i{Ui > 1 − u} and let W (u) = P(AS(u)). Obviously

u 6 W (u) 6 nu, W is continuous and non-decreasing (as all the Ui are continuously

distributed as U(0, 1), hence for u > s, W (u)−W (s) = P(AS(u) \AS(s)) 6 n(u− s)). For

c ∈ [0, na], let u? = W−1(c), it then follows that c > u? > c/n and {Ui ∈ [1− c/n, 1]} ⊂

{Ui ∈ [1− u?, 1]} ⊂ AS(u?). Note that P(AS(u?)) = c, therefore

P (AS(u?) \ {Ui ∈ [1− c/n, 1]}) = c− c/n = P (Ui ∈ [0, (n− 1)c/n]) .

Since Xi = F−1(Ui) is non-decreasing in Ui and the above two sets have the same measure,

we have

E
[
I{Ui∈[0,(n−1)c/n]}Xi

]
6 E

[
IAS(u?)\{Ui∈[1−c/n,1]}Xi

]
. (3.6)
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It follows that

E
[
I{U6c}Ta

]
= E

[
I{U6c}H(U/n)

]
= n

∫ c/n

0

(
(n− 1)F−1((n− 1)x) + F−1(1− x)

)
dx

= n

∫ (n−1)c
n

0

F−1(t)dt+ n

∫ 1

1−c/n
F−1(t)dt

= nE
[
(I{Ui∈[0,(n−1)c/n]} + I{Ui∈[1−c/n,1]})Xi

]
6 nE

[
(IAS(u?)\{Ui∈[1−c/n,1]} + I{Ui∈[1−c/n,1]})Xi

]
where the inequality follows from (3.6). We then find that E

[
I{U6c}Ta

]
6 nE

[
IAS(u?)Xi

]
=

E
[
IAS(u?)S

]
. Thus we have

E
[
I{U6c}Ta

]
6 E

[
IAS(u?)S

]
. (3.7)

Note that H(x) is non-increasing on [0, a] and limx→a−H(x) > D(a). Thus for c ∈ [0, na],

E
[
I{U6c}Ta

]
= E

[
I{U6c}H(U/n)

]
=

∫ 1

1−c
F−1Ta

(t)dt. (3.8)

Also note that

E
[
IAS(u?)S

]
6
∫ 1

1−c
F−1S (t)dt (3.9)

since P(AS(u?)) = c. It follows from (3.7), (3.8) and (3.9) that for any c ∈ [0, na],∫ 1

1−c
F−1Ta

(t)dt 6
∫ 1

1−c
F−1S (t)dt. (3.10)

For x ∈ [0, 1− na], let G(x) =
∫ 1

x
F−1S (t)dt −

∫ 1

x
F−1Ta

(t)dt. Note that
∫ 1

x
F−1S (t)dt is

concave, and F−1Ta
(t) = D(a) is a constant when t ∈ [0, 1− na), hence G(x) is concave over

[0, 1− na). Since G is concave, G(0) = E[S]− E[Ta] = 0, and G(1− na) > 0 by (3.10), we

have G(x) > 0 over [0, 1− na]. Thus∫ 1

c

F−1Ta
(t)dt 6

∫ 1

c

F−1S (t)dt (3.11)

for any c ∈ [0, 1]. This implies Ta ≺cx S.

(ii) For 0 6 u 6 v 6 1
n , it can be easily checked that the distribution of Tu is a fusion of the

distribution of Tv, and thus Tu ≺cx Tv (see Theorem 2.8 of Bäuerle and Müller (2006) for

the definition of a fusion and a proof of this assertion).

Remark 3.2. We formulate the two following observations:
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1. Assumption (A) in Theorem 3.1 is often verified in practice. Notice indeed thatH(0) = +∞

when the support of F is unbounded. For such distributions F , it is reasonable to assume

that H(x) is non-decreasing over some interval [0, a] as it will be illustrated with examples

later.

2. For a bounded distribution F , if H(0) < D(0), we have a = 0 and T0 = E[S].

3. It is straightforward to check that if (A) holds, then the distribution function of Ta is

FTa(t) = P(Ta 6 t) = (1− nH−1(t))I{t>Da}. (3.12)

Theorem 3.1 (ii) shows that the most accurate convex ordering lower bound over Sn(F, · · · , F )

is obtained by Ta with the largest possible a. The next theorem characterizes the sharpness of

this bound, which is closely connected with the concept of Complete Mixability (CM) introduced

by Wang and Wang (2011).

Definition 3.2 (Complete Mixability). A distribution function F on R is n-completely mixable

(n-CM) if there exist n random variables X1, . . . , Xn identically distributed as F such that

X1 + · · ·+Xn = nµ (3.13)

for some µ ∈ R called a center of F . A distribution function F on R is called n-CM on an

interval I (finite or infinite) if the conditional distribution of F on I is n-CM.

As F has finite mean, if F is n-CM, then its center is unique and equal to the mean. Note

that F is n-CM is equivalent to nE[X] ∈ Sn(F, · · · , F ), where X ∼ F. Some straightforward

examples and properties of completely mixable distributions are given in Wang and Wang (2011)

and Puccetti et al. (2012). By Theorem 3.1, one needs to find the largest possible a to get the

most accurate lower bound. This motivates us to define cn by

cn = inf

{
c ∈

[
0,

1

n

]
: H(c) 6 D(c)

}
. (3.14)

Note that cn is the largest possible a satisfying limx→a−H(x) > D(a). When F is a continuous

distribution, H(cn) = D(cn). On the other hand, cn is exactly the smallest possible a such

that F on I =
[
F−1((n− 1)a), F−1(1− a)

]
satisfies the mean condition necessary for the CM

property. See, for example, (7) in Proposition 2.1 of Wang and Wang (2011) for more details on

this condition.

Theorem 3.2 (Sharp convex ordering lower bound for homogeneous risks). Suppose

(A’) H(x) is non-increasing on the interval [0, cn], where cn is given by (3.14)

then Tcn ≺cx S for all S ∈ Sn(F, · · · , F ). Moreover, Tcn ∈ Sn(F, · · · , F ) that is Tcn is sharp if
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(B) holds:

(B) F is n-CM on the interval I =
[
F−1((n− 1)cn), F−1(1− cn)

]
.

Proof. Tcn ≺cx S follows from Theorem 3.1 by noting that limx→cn−H(x) > D(cn) from the

definition of cn in (3.14). Let us prove the second half of the theorem. When condition (B)

holds, that is F is n-CM on I, there exist random variables Y1, · · · , Yn from the conditional

distribution F on I such that Y1 + · · ·+ Yn is a constant. Thus, as Y has finite mean (because

F has finite mean), Y1 + · · · + Yn = nE(Y1) = D(cn) by (3.2) and (3.3). Now we construct

S ∈ Sn(F1, · · · , Fn) which has the same distribution as Tcn , by imposing a special dependence

structure. For each i, when Xi ∈ I (the body part), we let Xi = Yi and when Xi 6∈ I (the tail

part), we let (Xi, Xj) be counter-monotonic for each j 6= i. That is,

Xi = I{U>ncn}Yi + I{U6ncn}F
−1(Vi), (3.15)

where U ∼ U [0, 1], (V1, · · · , Vn) is independent of U and uniformly distributed on the line

segments

O =

n⋃
k=1

{(v1, · · · , vn) : vj = (n− 1)(1− vk), vk ∈ [1− cn, 1] , j = 1, · · · , n, j 6= k}. (3.16)

We can check that Vi is uniformly distributed on [0, (n− 1)cn] ∪ [1− cn, 1] , and thus the distri-

bution of F−1(Vi) is the conditional distribution of F on R+ \ I. Moreover by construction, Yi

has the conditional distribution of F on I. It follows that Xi ∼ F. Then

S =

n∑
i=1

(
I{U>ncn}Yi + I{U6ncn}F

−1(Vi)
)

= I{U>ncn}D(cn) + I{U6ncn}

n∑
i=1

F−1(Vi).

Note that
n∑
i=1

F−1(Vi) =

n∑
i=1

I{Vi>1−cn}(F
−1((n− 1)(1− Vi)) + F−1(Vi)) =

n∑
i=1

I{Vi>1−cn}H(1− Vi),

and for t > 0,

P

(
n∑
i=1

F−1(Vi) 6 t

)
= P

(
n∑
i=1

I{Vi>1−cn}H(1− Vi) 6 t

)

= E

(
n∑
i=1

I{Vi>1−cn}P(H(1− Vi) 6 t|Vi > 1− cn)

)
= P(H(1− V1) 6 t|V1 > 1− cn)

= P (H(V ) 6 t)

for some V ∼ U [0, cn], independent of U . Note that the second equality holds because {Vi >

1− cn} are mutually exclusive. Therefore, S
d
= I{U>ncn}D(cn) + I{U6ncn}H(V )

d
= Tcn , and thus

Tcn ∈ Sn(F, · · · , F ).
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Theorem 3.3 (Necessity and sufficiency of condition (B)). Suppose H(x) is strictly decreasing

on [0, cn], then

(i) Tcn ∈ Sn(F, · · · , F ) if and only if (B) holds.

(ii) Ta 6∈ Sn(F, · · · , F ) for all a < cn.

Proof. (i) The “⇐” part follows directly from Theorem 3.2. Let us show the “⇒” part. We

begin by showing this assertion in the discrete case. Let F be any continuous distribution

on R+, with F−1 strictly increasing. Let G be the distribution of F−1(V ) where V is a

discrete uniform distribution on {0, 1
K , · · · ,

K−1
K } for some large number K > n and let

T̂cn be defined as Tcn with F replaced by G:

T̂cn = Ĥ(U/n)I{U∈[0,ncn]} + D̂I{U∈(ncn,1]}, (3.17)

where Ĥ(x) = (n− 1)G−1((n− 1)x) +G−1(1− x), U ∼ U [0,1],

cn = inf

{
c ∈

{
0,

1

K
, · · · ,

⌊
K

n

⌋
1

K

}
: Ĥ(c) 6

n

1− nc

∫ 1
n

c

Ĥ(x)dx

}
,

and D̂ := n
1−ncn

∫ 1
n

cn
Ĥ(x)dx is a constant.

Note that G−1(t) = F−1(t) for t = 0, 1
K , · · · ,

K−1
K , and G−1(x) = F−1( bxKcK ) for x ∈ [0, 1).

Thus, H(t) = Ĥ(t) for t = 0, 1
K , · · · ,

K−1
K , and the interval I =

[
G−1((n− 1)cn), G−1(1− cn)

]
.

Note that since G is discrete, this function Ĥ is not non-increasing, but this would not hurt

our proof since we are not using the results in convex order. To simulate the strict decreas-

ing property, we assume

min
i6x<i+1

Ĥ
( x
K

)
> max
i+16x<i+2

Ĥ
( x
K

)
for i = 0, · · · ,Kcn − 2. (3.18)

Suppose T̂cn = X1n ∈ Sn(G, · · · , G) for X ∈ Fn(G, · · · , G). Let us show that this implies

G is n-CM on I. Note that by definition of T̂cn and (3.18),

P
[
T̂cn −G−1

(
1− 1

K

)
∈
[
(n− 1)G−1 (0) , (n− 1)G−1

(
(n− 1)

1

K

))]
=

n

K
,

and

P
[
T̂cn > (n− 1)G−1

(
(n− 2)

1

K

)
+G−1

(
1− 1

K

)]
= 0.

This implies that when one of Xi takes the value G−1
(
1− 1

K

)
, all the others must take

values in
[
G−1 (0) , G−1

(
(n− 1) 1

K

))
, by observing that G−1(x) is strictly increasing. Using

this argument again, we obtain that when one of Xi takes the value G−1
(
1− 2

K

)
, all the

others must take values in
[
G−1

(
(n− 1) 1

K

)
, G−1

(
(n− 1) 2

K

))
. Eventually, we have that
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for all 1 6 j < Kcn, when Xi takes the value G−1
(
1− j

K

)
, all the others must take values

in
[
G−1

(
(n− 1) j−1K

)
, G−1

(
(n− 1) jK

))
. The remaining part is

P
[
T̂cn = D̂

]
= 1− ncn.

Let A = {T̂cn = D̂}. The conditional distribution of Xi on A is exactly the conditional

distribution G on I, since {Xi 6∈ I} has been contained in the set Ac. Since T̂cn is a constant

on A, we have G is n-CM on I. The above proof shows that for a discrete distribution

G, if G−1 is strictly increasing and Ĥ satisfies (3.18), then Tcn is admissible implies that

the conditional distribution is n-CM on I. To prove the case of F being continuous, we

can simply replace 1
K by an infinitesimal dt, and the condition (3.18) becomes that H is

strictly decreasing. Note that H being strictly increasing is sufficient for F−1 to be strictly

increasing on [1− ncn, 1], which is sufficient for our proof.

(ii) By (3.2), we know D(a) is a strictly decreasing function of a. Suppose a < cn and let

c = 1
2a+ 1

2cn, then c < 1
n and D(a) > D(c). It is straightforward to check that

E[(Ta −D(a))+] = E[Ta]−D(a) = E[Tc]−D(a) < E[(Tc −D(a))+]

since P(Tc < D(a)) > P(Tc = D(c)) > 1− nc > 0. This shows Tc 6≺cx Ta by the definition

of convex order. Since c < cn, we have H(c) > D(c), and by Theorem 3.1 Tc ≺cx S for any

S ∈ Sn(F, · · · , F ). Thus we conclude that Ta 6∈ Sn(F, · · · , F ) for a < cn.

To summarize, using our result together with the comonotonic upper bound, sharp convex

ordering bounds for S ∈ Sn(F, · · · , F ) are given by

Tcn ≺cx S ≺cx nF
−1(U)

where U ∼ U [0, 1]. nF−1(U) is always admissible, and when (A’) and (B) hold, Tcn is also

admissible. Thus the upper and lower bounds are both sharp.

Recall that in the proof of Theorem 3.2, an optimal structure for X to attain X1+· · ·+Xn
d
=

Tcn can be described as follows. The probability space are divided into two parts:

• For each j, if Xj is large, then each Xi, i 6= j is small and (Xi, Xj) is counter-monotonic.

This part has probability ncn.

• For each j, if Xj is of medium size, then each Xi, i 6= j is also of medium size, and the

sum X1 + · · ·+Xn is a constant. This part has probability 1− ncn.
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From the proof of Theorem 3.3, we can see that when H(x) is strictly decreasing on [0, cn],

the optimal structure can only be the one described above. It may be interesting to point out

that the well-known counter-monotonic scenario, which only exists for n = 2, is a special case

of the above optimal structure (as we have seen, on the set {X1 > F−1(cn)}, X1 and X2 are

counter-monotonic; on the set {X1 6 F−1(cn)}, S is a constant, which implies X1 and X2 are

also counter-monotonic). Also the copula QFn defined in Wang and Wang (2011) and Wang et

al. (2013) for F with a decreasing density is also a special case of the above optimal structure.

One may wonder how the conditions in Theorems 3.1 and 3.2 are satisfied by commonly

used distributions of risks. The following proposition gives some criteria to verify properties (A),

(A’) and (B) theoretically.

Proposition 3.4 (Criteria for properties (A), (A’) and (B)). (i) If H(x) is convex, then it is

non-increasing on [0, cn] and (A’) holds.

(ii) If F admits a non-increasing conditional density on I =
[
F−1((n− 1)cn), F−1(1− cn)

]
,

then (B) holds.

(iii) If F admits a non-increasing density, then (A’) and (B) hold.

(iv) If F−1 is C2 over [0, 1) and limx→1+

[
F−1

]′
(x) = +∞, then H(x) is decreasing in a

neighborhood of 0 (and therefore (A) holds for small value of a).

Proof. (i) Since limx→cn+H(x) is not less than the average of H(x) on [cn,
1
n ], H(x) is non-

increasing in a left neighborhood of cn. This means H(x) is non-increasing on [0, cn] by

the convexity of H(·).

(ii) This follows from Corollary 2.9 in Wang and Wang (2011).

(iii) With F being concave, F−1 is convex and H(x) is convex. The conclusion follows from (i)

and (ii). Theorem 3.2 is thus a generalization of Theorem 3.4 in Wang and Wang (2011).

(iv) We have that

H ′(x) = (n− 1)2
[
F−1

]′
((n− 1)x)−

[
F−1

]′
(1− x)

For x → 0,
[
F−1

]′
(1 − x) tends to +∞, and (n − 1)2

[
F−1

]′
((n − 1)x) is bounded (since

F−1 is C2 over [0, 1)). Therefore H ′(x) 6 0 in a neighborhood of 0.

Example 3.2. For a uniform distribution F , although H(x) is in fact increasing, we have cn = 0

and (A’) and (B) are satisfied, as the density function of F is a non-increasing function. In that
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case, T0 = E[S] is the sharp convex ordering lower bound over Sn(F, · · · , F ). This is because

U [0, 1] is n-CM.

Example 3.3. Pareto and Gamma distributions (with shape parameter α 6 1) satisfy (A’) and

(B) since they have non-increasing densities.

Numerical results suggest that most commonly used distributions, such as Pareto, Log-

Normal and Gamma distributions satisfy (A’) and (B). In practice, it is simple to check condition

(A’) for a given F either theoretically or numerically. For example, in the case of the Pareto,

Gamma or Log-Normal distributions, we represent the function H(x) in Figure 1 and observe

immediately that H(x) first decreases, passes the point cn and then increases (moreover, H(x)

is likely to be convex). The vertical lines in Figure 1 display cn and it is clear that H(x) is

decreasing on [0, cn] in the four panels. In general, condition (B) in Theorem 3.2 is theoretically

difficult to prove, except for several known classes given in Wang and Wang (2011) and Puccetti

et al. (2012). We propose a numerical technique to check this condition in Section 6.
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H(x) for Gamma Distribution
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Panel A: H(x) for Pareto(1,3), n = 3. Panel B: H(x) for Gamma(2,0.5), n = 3.

3.4 Convex ordering lower bounds for heterogeneous risks

In this section we give a lower bound for heterogeneous risks based on Theorem 3.1. Consider

n distributions F1, F2, · · · , Fn on R+ with finite mean. We here look for a convex ordering lower

bound over the heterogeneous set Sn(F1, F2 · · · , Fn) of admissible risks. This result is then

illustrated by numerical examples in Section 6.2. Let

F =
1

n

n∑
i=1

Fi,
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Panel C: H(x) for Log-Normal(0,1), n = 3. Panel D: H(x) for Log-Normal(0,1), n = 10.

Figure 1: H(x) as a function of x for the Pareto, Gamma and LogNormal distributions.

and H(·) and D(·) be defined by (3.1) and (3.2) similarly as in the previous section for homoge-

neous risks. Next, define Ta = H(U/n)I{U∈[0,na]} + D(a)I{U∈(na,1]} as in (3.4), and we use the

same condition (A) as in Theorem 3.1 for H(·) and D(·).

We have the following theorem as a generalization of Theorem 3.1.

Theorem 3.5 (Convex ordering lower bound for heterogeneous risks).

(i) Sn(F1, · · · , Fn) ⊂ Sn(F, · · · , F ).

(ii) Suppose (A) holds, then Ta ≺cx S for all S ∈ Sn(F1, · · · , Fn).

Proof. (i) Let σk, k = 1, 2, · · · , n! be all different n-permutations. By Theorem 2.1 (i)(b) and

(iv), we have

Sn(F1, · · · , Fn) =

n!⋂
k=1

Sn(σk(F1, · · · , Fn)) ⊂ Sn

(
n!∑
k=1

λkσ(F1, · · · , Fn)

)
,

where λk > 0, k = 1, 2, · · · , n! and
∑n!
k=1 λk = 1. Take λk = 1

n! for all k then we get

Sn(F1, · · · , Fn) ⊂ Sn(F, · · · , F ).

(ii) By Theorem 3.1 and (i), Ta ≺cx S for all S ∈ Sn(F, · · · , F ), and hence Ta ≺cx S for all

S ∈ Sn(F1, · · · , Fn).

Remark 3.3. Theorem 3.5 (i) states that if a risk is admissible of marginal distributions F1, · · · , Fn,

then it is admissible of marginal distributions F, · · · , F . Unlike the bound in Theorem 3.2,

the sharpness of the bound in Theorem 3.5 (ii) is difficult to characterize. In general, the
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set Sn(F1, · · · , Fn) may be a proper subset of Sn(F, · · · , F ), and hence Tcn may belong to

Sn(F, · · · , F ) but may not belong to Sn(F1, · · · , Fn). Numerical evidence of this strict inclu-

sion is given in Section 6, where we also observe that the bound tends to be more precise when

the marginal distributions F1, F2,...,Fn are similar.

4 Equivalence of Convex Ordering and Value-at-Risk Bounds

The convex ordering lower bound in an admissible risk class can directly be used to derive

the lower bound on any convex functional and examples include TVaR and will be studied in

Section 5. It turns out that convex ordering bounds are also closely related to VaR bounds. The

key result of this section is the equivalence between the convex ordering lower bound and the

bounds on the Value-at-Risk (VaR) and is given in Corollary 4.7. The intuition of Corollary 4.7

below has already been observed recently, such as in the numerical algorithm for bounds on VaR

in Embrechts et al. (2013). However, to our knowledge, there is so far no rigorous proof of this

conclusion. We note that some lemmas used in this section are obtained in literature in other

forms within different contexts. Here for the sake of completeness we provide all the proofs.

Throughout, we denote by L0(Ω,A,P) the set of random variables in the atomless proba-

bility space (Ω,A,P). Traditionally, the Value-at-Risk of level p is defined as

VaRp(X) = inf{x : P(X 6 x) > p}, p ∈ (0, 1), (4.1)

and the upper Value-at-Risk of level p is defined as

VaR∗p(X) = inf{x : P(X 6 x) > p}, p ∈ (0, 1).

Both definitions are needed at this moment for a mathematical discussion. However Corollary

4.7 clarifies the relationship.

We first show the existence of extreme elements in an admissible risk class with respect to

VaRp and VaR∗p.

Lemma 4.1. VaR∗p : L0(Ω,A,P) → R is an upper semi-continuous function and VaRp :

L0(Ω,A,P)→ R is a lower semi-continuous function.

Proof. Suppose random variables Sk → S0 weakly. Denote the distribution function of Sk by Fk

for k = 0, 1, · · · . By definition VaR∗p(Sk) = inf{x : Fk(x) > p} and VaRp(Sk) = inf{x : Fk(x) >

p} for all k = 0, 1, · · · . Since G(F ) := inf{x : F (x) > p} is an upper semi-continuous function of

F , H(F ) := inf{x : F (x) > p} is a lower semi-continuous function of F , and Fk → F0 weakly,

we have lim supk→∞VaR∗p(Sk) 6 VaR∗p(S0) and lim infk→∞VaRp(Sk) > VaRp(S0).
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In the following, we denote

VaR∗p = sup
S∈Sn(F1,··· ,Fn)

VaR∗p(S)

and

VaRp = sup
S∈Sn(F1,··· ,Fn)

VaRp(S).

Lemma 4.2. There exists T ∈ Sn(F1, · · · , Fn) such that VaR∗p(T ) = supS∈Sn(F1,··· ,Fn) VaR∗p(S),

and there exists T ∈ Sn(F1, · · · , Fn) such that VaRp(T ) = infS∈Sn(F1,··· ,Fn) VaRp(S).

Proof. By definition, there exists a sequence of Tk ∈ Sn(F1, · · · , Fn), k = 1, 2, · · · , such that

VaR∗p(Tk)→ VaR∗p. First we note that any admissible risk class is a complete set (see Section 2).

Thus, there is a subsequence of {Tk} which converges to an admissible risk T ∈ Sn(F1, · · · , Fn).

We only need to show that VaR∗p(T ) > lim supk→∞VaR∗p(Tk) = VaR∗p. This is directly implied

by the upper semi-continuity of VaR∗p. The case for the infimum of VaR is similar.

In the following we suppose F1, · · · , Fn are continuous cdf. We denote Fi,p for p ∈ (0, 1)

as the conditional distribution of Fi on [F−1i (p),∞) (upper tail), and F pi for p ∈ (0, 1) as the

conditional distribution of Fi on (−∞, F−1i (p)) (lower tail). We denote the (essential) supremum

and infimum of the range of a random variable X by supX and inf X, respectively. The next

lemma is intuitive and formalizes the fact that the supremum for VaR is obtained by only

studying the distributions beyond the VaR. This is used for example in the algorithm presented

in Embrechts et al. (2013).

Lemma 4.3. Suppose F1, · · · , Fn are continuous. For p ∈ (0, 1),

sup
S∈Sn(F1,··· ,Fn)

VaR∗p(S) = sup{inf S : S ∈ Sn(F1,p, · · · , Fn,p)}.

Proof. By Lemma 2.1 in Wang et al. (2013), there exists a vector X = (X1, · · · , Xn) ∈ Fn(F1, · · · , Fn)

such that T = X1 + · · · + Xn, {T > VaR∗p(T )} = {Xi > F−1i (a)} for each i = 1, · · · , n and

VaR∗p(T ) = supS∈Sn(F1,··· ,Fn) VaR∗p(S). Note that there exists Sp ∈ Sn(F1,p, · · · , Fn,p) such

that inf Sp = sup{inf S : S ∈ Sn(F1,p, · · · , Fn,p)}, by the same argument as in the proof of

Lemma 4.2.

Define Z = T I{T<VaR∗
p(T )}+SpI{T>VaR∗

p(T )}. It is easy to see that Z ∈ Sn(F1, · · · , Fn) and

VaR∗p(Z) = inf Sp. On the other hand, let T ′ have the conditional distribution of T on the set

{T > VaR∗p(T )}. It follows that T ′ ∈ Sn(F1,p, · · · , Fn,p). Hence VaR∗p(T ) = inf T ′ 6 inf Sp by

the definition of Sp. In conclusion, VaR∗p(T ) 6 inf Sp = VaR∗p(Z) 6 VaR∗p(T ) since VaR∗p(T ) =

VaR∗p, and hence VaR∗p = inf Sp.

Lemma 4.4. If F−1i , i = 1, · · · , n are continuous, then VaR∗p is a continuous function of

p ∈ (0, 1).
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Proof. Take (Y1, · · · , Yn) ∈ Fn(F1,p, · · · , Fn,p) such that inf(Y1 + · · · + Yn) = sup{inf S : S ∈

Sn(F1,p, · · · , Fn,p)}. This is always possible by Lemma 4.2. Write T1 = Y1+· · ·+Yn and let Ui =

Fi,p(Yi), i = 1, · · · , n. For ε ∈ (0, p), we take T2 =
∑n
i=1 F

−1
i,p−ε(Ui) ∈ Sn(F1,p−ε, · · · , Fn,p−ε).

Since F−11,p−ε, · · · , F
−1
n,p−ε are continuous and bounded from below, we can conclude that inf T1−

inf T2 → 0 as ε ↘ 0. Thus, VaR∗p−ε > inf(Z1 + · · · + Zn) → inf(Y1 + · · · + Yn) = VaR∗p as

ε↘ 0.

The next lemma shows that the supremum (infimum) of VaR∗p and VaRp are the same in

an admissible risk class (although they may not be both attained).

Lemma 4.5. Suppose Fi has positive density on its support, i = 1, · · · , n. For p ∈ (0, 1),

sup
S∈Sn(F1,··· ,Fn)

VaRp(S) = sup
S∈Sn(F1,··· ,Fn)

VaR∗p(S), inf
S∈Sn(F1,··· ,Fn)

VaRp(S) = inf
S∈Sn(F1,··· ,Fn)

VaR∗p(S).

Proof. By definition, VaR∗p−ε 6 VaRp 6 VaR∗p. Since Fi has positive density and F−1i is con-

tinuous, VaR∗p is continuous and we have VaRp = VaR∗p. The proof for the infimum is the

same.

Lemma 4.5 confirms that we do not need to distinguish between VaRp and VaR∗p when

we study the supremum and infimum over an admissible risk class. In summary, the following

theorem is now straightforward and it is obtained by combining the results of Lemmas 4.3 and

4.5.

Theorem 4.6. Suppose Fi has positive density on its support, i = 1, · · · , n, then

sup
S∈Sn(F1,··· ,Fn)

VaRp(S) = sup{inf S : S ∈ Sn(F1,p, · · · , Fn,p)},

and

inf
S∈Sn(F1,··· ,Fn)

VaRp(S) = inf{supS : S ∈ Sn(F p1 , · · · , F pn)}.

The corollary below connects the convex ordering bounds and bounds on the Value-at-Risk.

Corollary 4.7. Suppose Fi has positive density on its support, i = 1, · · · , n.

(a) Suppose Sp is a convex ordering minimal element in Sn(F1,p, · · · , Fn,p) for p ∈ (0, 1)

sup
S∈Sn(F1,··· ,Fn)

VaRp(S) = inf Sp.

(b) Suppose Sp is a convex ordering minimal element in Sn(F p1 , · · · , F pn) for p ∈ (0, 1)

inf
S∈Sn(F1,··· ,Fn)

VaRp(S) = supSp.
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Remark 4.1. The above corollary shows that the technique used to find convex ordering minimal

elements in an admissible risk class in this paper can also be applied to find the bounds for the

Value-at-Risk. Note that as pointed out in Section 3, the convex ordering minimal element in

an admissible risk class may not exist.

We apply the results obtained in Section 3 to the bounds on VaR for homogeneous risks.

Throughout this section and the next section, n is a positive integer (although only n > 3 is of

interest). For any distribution F , we use the conditions (A), (A’) and (B) introduced in Section

3:

(A) For some a ∈
[
0, 1

n

]
, H(x) is non-increasing on [0, a] and limx→a−H(x) > D(a).

(A’) H(x) is non-increasing on the interval [0, cn].

(B) The distribution F is n-CM on the interval I =
[
F−1((n− 1)cn), F−1(1− cn)

]
.

Here, for consistency, H(x) andD(a) are defined as in Section 3.3 for given F (when the marginals

are inhomogeneous, let F = 1
n

∑n
i=1 Fi), and cn is defined by (3.14). (A) is used for both

homogeneous and heterogeneous risks, while (A’) and (B) are used only for homogeneous risks.

In the following Corollary, when we say (A), (A’) or (B) holds for Fp (or F p), we mean that the

distribution F in (A), (A’) or (B) should be replaced by Fp (or F p) wherever applicable.

Corollary 4.8. Suppose F1, · · · , Fn are continuous distributions. Denote by Fp = 1
n

∑n
i=1 Fi,p

and F p = 1
n

∑n
i=1 F

p
i for p ∈ (0, 1).

(a) If (A) holds for the distribution Fp and some a > 0, then

sup
S∈Sn(F1,··· ,Fn)

VaRp(S) 6
n
∫ 1−a
(n−1)a F

−1
p (y)dy

1− na
.

Moreover, in the homogeneous case F1 = · · · = Fn = F , the above bound is sharp for a = cn

if (A’) and (B) hold for Fp, and F has positive density on its support.

(b) We always have

inf
S∈Sn(F1,··· ,Fn)

VaRp(S) > (n− 1)(F p)−1(0) + (F p)−1(1).

Moreover, in the homogeneous case F1 = · · · = Fn = F , the above bound is sharp if (A’)

and (B) hold for F p.

Remark 4.2. Corollary 4.8 (b) holds trivially true without any assumptions for homogeneous

risks. It is somewhat surprising that with (A’) and (B), this trivial bound is sharp. The main

result of explicit VaR bounds for tail-monotone densities in Wang et al. (2013) is directly implied

by Corollary 4.8 and the complete mixability of monotone densities. In this paper, our proof is

much simpler than the proof in Wang et al. (2013).
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Remark 4.3. The results in this section benefited from earlier communications and discussions

with Steven Vanduffel. Corollary 4.7 was also obtained independently in Bernard et al. (2013b)

for VaR∗.

5 Bounds on Convex Risk Measures and Convex Expec-

tations

Apart from the bounds on the Value-at-Risk, our results on convex order also apply natu-

rally to bounds on convex risk measures and in particular on coherent risk measures as well as

on convex expectations.

5.1 Convex and coherent risk measures

A risk measure is a mapping from random variables to real numbers, which can be used as

capital requirement to regulate risk assumed by market participants. For a detailed introduction

on risk measures and more specifically on coherent risk measures, we refer to Artzner et al.

(1999). Consider a risk measure as ρ : L0(Ω,A,P) → R ∪ {∞}. Most discussions focus on risk

measures on Lp(Ω,A,P) for p ∈ [1,∞]. Delbaen (2009) studied the case of non-integrable random

variables, and proved that there exist no finite convex risk measures defined on Lp(Ω,A,P) for

p ∈ [0, 1). Since convex order is defined for L1 random variables, we restrict our discussion on

ρ : L1(Ω,A,P) → R. Let X,X1, X2, · · · ∈ L1(Ω,A,P). Recall the following properties of a risk

measure ρ(·)

(1) Monotonicity: if X1 6 X2 then ρ(X1) 6 ρ(X2).

(2) Translation invariance: ρ(X +m) = ρ(X) +m for m ∈ R.

(3) Subadditivity: ρ(X1 +X2) 6 ρ(X1) + ρ(X2).

(4) Positive homogeneity: ρ(λX) = λρ(X) for λ > 0.

(5) Convexity: ρ(λX1 + (1− λ)X2) 6 λρ(X1) + (1− λ)ρ(X2) for λ ∈ [0, 1].

(6) Law invariance: if X1
d
= X2, then ρ(X1) = ρ(X2).

(7) L1-Fatou property: if Xn → X in L1, then ρ(X) 6 lim inf ρ(Xn).

The importance of properties (1-5) in risk management is rather obvious4 and well explained

in Artzner et al. (1999). (6) is most often assumed and is used when connecting convex order

4Note that these properties are formulated to apply to non-negative risks. Some authors assume ρ(−1) = 1

and apply risk measures on losses variables that are negative.
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and risk measures (for example, see Bäuerle and Müller (2006)). Recall that convex order is

based on distributional properties only and thus (6) is needed for applying our results to convex

order. (7) is a continuity property on the risk measure ρ(·) with respect to convergence in L1

(it is typically assumed when studying risk measures on an atomless probability space). Some

justifications for the continuity property (7) can be found in Delbaen (2002) and Bäuerle and

Müller (2006).

A risk measure is coherent if it satisfies properties (1-4). It immediately follows that a

coherent risk measure satisfies also (5). Recall that a coherent risk measure has the typical dual

representation

ρ(X) = sup
Q∈Q

EQ[X]

where Q is some family of probability measures on Ω. This was introduced in Artzner et al.

(1999) in a finite state probability space and discussed in Delbaen (2002) in a more general

probability space.

A risk measure on L∞(Ω,A,P) is called a convex risk measure, defined in Föllmer and

Schied (2002), if it satisfies properties (1,2,5) (relaxing subadditivity and positive homogeneity).

A dual representation is also given in the same paper. The concept was later studied in Svindland

(2008) and Kaina and Rüschendorf (2009), for more general probability spaces. A recent review

of convex and coherent measures can be found in Föllmer and Schied (2010).

5.2 Bounds on convex risk measures of admissible risk

In practice, information about dependence is limited. Bounds on a convex (or coherent)

risk measure ρ(S) over the admissible risk class Sn(F1, · · · , Fn) are thus of much importance in

risk management. The consistency of convex order and convex risk measures is given in Theorem

4.3 of Bäuerle and Müller (2006). Since it is well-known that the convex ordering upper bound

of Sn(F1, · · · , Fn) is given by the comonotonic scenario of X, a sharp upper bound on ρ(S) over

S ∈ Sn(F1, · · · , Fn) is ρ(nF−1(U)) where U ∼ U [0, 1] and it is well-discussed in the literature

(for a review, see Dhaene et al. (2006)). On the other hand, the lower bound on ρ(S) over

S ∈ Sn(F1, · · · , Fn) is unknown in the literature except for n = 2. Using the results in Section

3, we are able to give a lower bound on ρ(S), as follows.

Corollary 5.1 (Bounds on convex risk measures of admissible risk). For every risk measure ρ

satisfying (5-7), i.e. law-invariant, convex, L1-Fatou, if (A) holds, then

inf
S∈Sn(F1,··· ,Fn)

ρ(S) > ρ(Ta), (5.1)

where Ta is defined by (3.4). Moreover, in the homogeneous case F1 = · · · = Fn = F , if (A’)

and (B) hold, then the above bound is sharp for a = cn.
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Proof. The inequality (5.1) is a corollary of Theorem 3.5 in this paper and Theorem 4.3 of

Bäuerle and Müller (2006). The sharpness in the homogeneous case is implied by Theorem

3.2.

Remark 5.1. Note that we assume finite means for F, F1, · · · , Fn, thus only the behavior of ρ

on L1(Ω,A,P) matters. In Corollary 5.1, we do not require ρ to satisfy (1,2), and thus ρ is

not necessarily a convex risk measure as defined in Föllmer and Schied (2002) and does not

necessarily have a financial interpretation. A law-invariant coherent risk measure with the Fatou

property is thus only a special case in this corollary.

5.3 Bounds on TVaR of admissible risk

The Tail Value-at-Risk (TVaR; it has other names such as CTE, AVaR, CVaR and ESF in

different contexts) is defined as

TVaRp(X) =
1

1− p

∫ 1

p

VaRα(X)dα, p ∈ [0, 1).

As it satisfies (1-7), it is a coherent risk measure. Furthermore, every risk measure on L1(Ω,A,P)

satisfying (1-7) has a representation of

ρ(X) = sup
µ∈P0

∫ 1

0

TVaRp(X)µ(dp) (5.2)

where P0 is a compact, convex set of probability measures on [0, 1] (for this result, see Bäuerle and

Müller (2006); Kusuoka (2001)). Due to the increasing importance of TVaR in risk management

(see e.g. Panjer (2006) and recent regulations of Basel Committee on Banking Supervision

(2010, 2012)) and the representation (5.2) of law-invariant coherent risk measures, bounds for

TVaRp(S) are of practical interest.

Theorem 5.2 (Bounds on TVaR of admissible risk).

(a) For p ∈ [0, 1], if (A) holds, then

inf
S∈Sn(F1,··· ,Fn)

TVaRp(S) >

 1
1−p [E [S]− pD(a)] p 6 1− na;

n
1−p

∫ (1−p)/n
0

H(x)dx p > 1− na.
(5.3)

(b) In the homogeneous case F1 = · · · = Fn = F , the bound (5.3) is sharp for a = cn if (A’)

and (B) hold.

(c) In the homogeneous case F1 = · · · = Fn = F , if (A) holds for a > 1−p
n , then

inf
S∈Sn(F,··· ,F )

TVaRp(S) =
n

1− p

∫ (1−p)/n

0

H(x)dx (5.4)
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if

inf
S∈Sn(FJ ,··· ,FJ )

P
(
S > H

(
1− p
n

))
= 0, (5.5)

where FJ is the conditional distribution of F on J =
[
F−1

(
(n−1)(1−p)

n

)
, F−1

(
1− 1−p

n

)]
.

Proof. (a) By Corollary 5.1 we have TVaRp(S) > TVaRp(Ta). We just need to verify that

TVaRp(Ta) =

 1
1−p [E [S]− pD(a)] p 6 1− na;

n
1−p

∫ (1−p)/n
0

H(x)dx p > 1− na,

which can be directly calculated from the distribution of Ta in (3.12).

(b) It is follows from (a) and Corollary 5.1.

(c) We only need to show that there exists a random variable S ∈ Sn(F, · · · , F ) such that

TVaRp(S) 6 n
1−p

∫ (1−p)/n
0

H(x)dx. Let Y = (Y1, · · · , Yn) ∈ Fn(FJ , · · · , FJ) and T = Y1n

such that P
(
T > H

(
1−p
n

))
= 0. Such T always exists since infT∈Sn(FJ ,··· ,FJ ) P (T > t) is

attainable by T ∈ Sn(FJ , · · · , FJ) for any t ∈ R; see the introduction of Rüschendorf (1983).

Let Z = (Z1, · · · , Zn) ∈ Fn(FJc , · · · , FJc) where FJc is the conditional distribution of F on

R+ \ J and W = Z1n such that P
(
W > H

(
1−p
n

))
= 1. Such W always exists and can be

constructed by (3.16). Let S = (1−IA)T+IAW for i = 1, · · · , n, where A ∈ A is independent

of T and W and P(A) = p. It is easy to check that F = (1 − p)FJ + pFJc , and hence

S ∈ Sn(F, · · · , F ) by Theorem 2.1 (i). Since P
(
S > H

(
1−p
n

))
= pP

(
W > H

(
1−p
n

))
6 p,

we have VaRp(S) 6 H
(
1−p
n

)
and

TVaRp(S) =
1

1− p

∫ 1

p

VaRα(S)dα 6
1

1− p
E[W ] =

n

1− p

∫ (1−p)/n

0

H(x)dx.

Remark 5.2. In practice, typical values of p for TVaR are close to 1, such as 0.95, 0.99 and

0.995. From Theorem 5.2 we can tell that the lower bound on TVaRp(S) for p > 1 − na is

n
1−p

∫ (1−p)/n
0

H(x)dx and it does not depend on a any more. In the homogeneous case, for

p close to 1, the sharpness of the lower bound (5.4) does not require the conditions (A’) and

(B). Instead, it is guaranteed by a much weaker condition (5.5) (note that the condition (5.5)

is weaker than (A’) and (B) since (B) requires supS∈Sn(FI ,··· ,FI) P (S = D(cn)) = 1) and the

monotonicity of H(x) in a neighborhood of 0. The bounds (5.3) and (5.4) are also very easy to

compute.

As an illustration of the results on TVaR, Figure 2 displays a numerical comparison of TVaR

for Log-Normal(0,1) risks under three dependence scenarios: comonotonic risks, independent

risks and the convex lower bound.
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Remark 5.3. We can always use discrete distributions to approximate the marginal distributions

F1, · · · , Fn. When a discrete approximation is used, the optimization over all possible dependence

structures becomes a finite-state problem, and hence it can be solved numerically. For example,

Puccetti (2013) used the Rearrangement Algorithm (RA) to calculate the bounds on TVaR over

the admissible risk class. There are three notable facts about the merits of our theoretical results

compared to the RA approximation. First, our result gives an explicit form and a sharpness

condition, while the RA only gives a numerical approximation. Second, although being easy

to implement, there is yet no proof that the RA approximation converges to the sharp lower

bound on the TVaR as the number of discretization steps m goes to infinity. Third, the RA

becomes slow when the dimension n or the number of discretization steps m is large. Our method

only needs to numerically find cn and the complexity does not depend on n. We provide some

numerical examples in Section 6.
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Figure 2: TVaRp(S), p ∈ [0, 0.995) for Log-Normal(0,1) risks, n = 3.

5.4 Convex expectation and applications in finance and insurance

A convex (concave) expectation of a random variable X is defined as E[f(X)] where f :

R→ R is a convex (concave) function. If f is convex and bounded, then E[f(X)] satisfies (5-7)

and thus is a risk measure as described in Corollary 5.1. Theoretically, E[f(X)] can be infinity.

By definition of convex order, we have a straightforward corollary about the lower bound on

a convex expectation (or upper bound on a concave expectation) over the admissible risk class
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Sn(F1, · · · , Fn),

E [f(S)] = E [f(X1 +X2 + · · ·+Xn)] , (5.6)

regardless of E[f(S)] being finite or infinite. Recall that when f is convex, the upper bound can

be computed explicitly with the comonotonic dependence scenario.

Corollary 5.3 (Bounds on convex expectations of admissible risk). For a convex function f , if

(A) holds, then

inf
S∈Sn(F1,··· ,Fn)

E [f(S)] > n

∫ a

0

f(H(x))dx+ (1− na)f(D(a)). (5.7)

Specifically, in the homogeneous case

inf
S∈Sn(F,··· ,F )

E [f(S)] > n

∫ a

0

f(H(x))dx+ (1− na)f(D(a)), (5.8)

and moreover, the equality in (5.8) holds for a = cn if (A’) and (B) hold.

Remark 5.4. Corollary 5.3 can be seen as a generalization of Jensen’s inequality as (5.7) is simply

Jensen’s inequality when a = 0. It can also be seen as a generalization of Theorem 3.5 of Wang

and Wang (2011), where monotone densities were assumed.

Although finite convex expectations can be viewed mathematically as a special case of law-

invariant risk measures, the application and financial interpretation of convex expectations are

different from those of risk measures. Some quantities of interest that can be viewed as a convex

or concave expectation of the aggregate risk S include the variance of a joint portfolio, the price

of a European basket option, the expected utility of a joint portfolio, the stop-loss premium

of an aggregate loss; the price of a European option on the realized variance of an asset price

process, the expected n-period return, and some convex risk measures such as the entropic risk

measure ρ(X) = 1
θ logE[eθX ]. Bounds on convex or concave expectations help to analyze risks

under best or worst case scenarios when the information on dependence is unreliable.

The last section gives some further illustration and proposes a method to check property

(B) numerically.

6 Numerical Illustrations

Considering the conditions (A), (A’) and (B) are sometimes difficult to check, we give

some numerical illustrations in this section. As mentioned in Remark 5.3, a natural idea is to

construct a discretization of the marginal distributions F1, · · · , Fn, then the optimization over

all possible dependence structures becomes a finite-state problem and is always solvable. For

each discretization, we find the optimal discrete structure with respect to minimal convex order,

and compare some quantities such as variance and TVaR with our theoretical results.
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The Rearrangement Algorithm (RA) introduced in Puccetti and Rüschendorf (2012) and

also used in Embrechts et al. (2013) and Puccetti (2013) is a quick algorithm to provide discrete

numerical approximations for the optimal structure with respect to minimal convex order. In the

following, the RA is used to approximate the lower bound on E[f(S)] for some convex functions

f and for TVaRp(S) when p = 0.95. We compare the RA approximation with the lower bound

suggested by Theorem 5.2 and Corollary 5.3. The numerical results suggest that the lower bound

for homogeneous risks is very likely to be sharp.

6.1 Homogeneous case

In this section, we compare the RA approximation with the lower bound suggested by

Corollary 5.3 and Theorem 5.2 for different settings of homogeneous risks. We take the number

of discretization steps in the RA as m = 106.

Numerical results are given in Table 1 in 6 different settings. For each setting, we also give

the TVaR under the assumption of independence and comonotonicity to show the impact of

various dependence assumptions. Note that the Gamma and Lognormal distributions above do

not have a decreasing density and therefore theoretically we do not know whether they satisfy

(B), while for the Pareto distributions we know the bounds given in Theorem 5.2 and Corollary

5.3 are sharp.

From Table 1, we conclude that the bounds obtained for homogeneous risks in Theorems

3.2 and 5.2 are very likely to be sharp for all above distributions.

6.2 Heterogeneous Case

For the heterogeneous case, in Table 2 we give numerical examples of two portfolios of

different Pareto risks, three portfolio of different Lognormal risks, and a mixed portfolio of

Pareto, Lognornal and Gamma risks. We take the number of discretization steps in the RA as

m = 106.

From Table 2, it appears that the bounds given in Theorem 3.5 are quite accurate in general.

Note also that the theoretical bounds tend to be more precise when the distributions are similar.

This confirms the intuition provided when deriving the lower bound for heterogeneous risks in

Section 3.4.
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Table 1: RA results vs theoretical bounds, homogeneous case

We consider 6 different settings: Pareto(1,3), Pareto(1,4) with n = 4, Gamma(2,0.5), Gamma(3,1)

with n = 3, Log-Normal(0,1) with n = 3 and n = 10. Three quantities are calculated: the

variance: f(S) = (S − nµ)2 where µ = E[X1], the European call option prices f(S) = (S −K)+

when K = nµ, and the TVaR of S at level 95%.

Pareto(θ, α); n Gamma(α, β); n LogN(µ, σ2); n

(1,3); 4 (1,4); 4 (2,0.5); 3 (3,1); 3 (0,1); 3 (0,1); 10

Variance

RA 1.3545 0.2615 0.7466 0.0986 5.9521 3.3022

Corollary 5.3 1.3545 0.2615 0.7466 0.0986 5.9521 3.3022

Option price with strike K = nµ

RA 0.2321 0.1113 0.1866 0.0510 0.6232 0.1978

Corollary 5.3 0.2321 0.1113 0.1866 0.0510 0.6232 0.1978

TVaR at level 0.95

RA 9.4804 7.0015 15.1154 10.0061 13.0523 20.3763

Theorem5.2 9.4803 7.0015 15.1154 10.0061 13.0524 20.3762

Independent 11.0973 8.1136 24.2280 16.2629 16.4025 35.7371

Comonotonic 16.2845 11.2782 35.5077 22.8052 25.6710 85.5700
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Table 2: RA results vs theoretical bounds, heterogeneous case

Three quantities are calculated: the variance: f(S) = (S − K)2 where K =
∑n
i=1 E[Xi], the

European call option price f(S) = (S −K)+, and the TVaR of S at level 95%.

Xi ∼ Pareto(1, αi), i = 1, 2, 3 Xi ∼LogN(i/10, 1), i = 1, · · · , n X1 ∼Pareto(1,3)

(α1, α2, α3) n X2 ∼LogN(1,0.5)

(3, 4, 5) (3.5, 4, 4.5) 3 5 10 X3 ∼Gamma(3,1)

Variance

RA 0.6028 0.3343 9.0882 10.3479 15.3348 0.7889

Corollary 5.3 0.5888 0.3314 9.0677 10.3132 15.1851 0.5041

Option price with strike K =
∑n
i=1 E[Xi]

RA 0.1726 0.1413 0.7701 0.6419 0.4665 0.2474

Corollary 5.3 0.1725 0.1412 0.7699 0.6404 0.4604 0.1389

TVaR at level 0.95

RA 6.4255 5.8755 16.0766 21.7828 39.0200 10.5445

Theorem5.2 6.4235 5.8748 16.0749 21.7729 38.8892 9.9818

Independent 7.0484 6.6550 20.1592 31.0085 66.2389 14.1519

Comonotonic 9.1636 8.6144 31.4534 58.3221 154.4790 19.4410
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6.3 Checking condition (B)

Recall that Condition (B) in Theorem 3.2 corresponds to checking that F is n-CM on the

interval I = [F−1((n− 1)cn), F−1(1− cn)]. This is equivalent to

Var(S) := inf
S∈Sn(FI ,··· ,FI)

Var(S) = 0 (6.1)

where FI is the conditional distribution of F on I. Since the RA gives a discrete approximation

of the optimal dependence structure, (6.1) holds if the RA approximation of Var(S), denoted by

Var(S)m goes to zero when the number of discretization steps m goes to infinity (however, in

the opposite direction, (6.1) does not imply that Var(S)m → 0 since the convergence of the RA

approximation is not proved). To illustrate this convergence of the rearrangement algorithm, we

represent in Figures 3 and 4 the variance of the sum of n risks for different distributions as a

function of the discretization step m.
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Figure 3: Panels A and C display Var(S)m as a function of m for a Pareto distribution and

Panels B and D illustrate the speed of convergence in 1/m2.
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Figure 4: Panels A and C display Var(S)m as a function of m for a Pareto distribution and a

Gamma distribution and Panels B and D illustrate the speed of convergence in 1/m2.

From Figures 3 and 4, the RA approximations Var(S)m clearly converge to zero, at a rate

of m−2. Based on all the observations in Section 5, we have the following conjecture.

Conjecture 6.1. A Gamma or Log-Normal distribution F is n-CM on the interval I = [F−1((n−

1)cn), F−1(1− cn)] for any integer n, and the convex ordering bounds in Theorems 3.2 and 3.5

are sharp.

Even if we are not able to prove this conjecture at this moment, the numerical results clearly

show that the lower bounds on convex risk measures and convex expectations are sharp enough

to apply in practice, for identical or almost identical marginal distributions.
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7 Conclusions and Future Work

In this paper, we introduce and investigate the admissible risk class Sn(F1, · · · , Fn) =

{X1 + · · · + Xn : Xi ∼ Fi, i = 1, · · · , n} for given marginal risk distributions F1, · · · , Fn. We

give a new lower bound over Sn(F1, · · · , Fn). In the homogeneous case, F1 = · · · = Fn, we give

a sufficient condition for the new lower bound to be sharp. The results can be used to find sharp

bounds on convex risk measures and other quantities in finance when the dependence information

among individual risks is missing. Numerical illustrations suggest that the new lower bound is

likely to be sharp for most risk distributions and the conditions used in our main results are

usually satisfied.

Some future directions related to this topic include proving Conjecture 6.1. More generally,

we expect Conjecture 6.1 to hold for all unimodal densities given some smooth conditions and

also for heterogeneous risks under some additional conditions. Recall that the heterogeneous

analog of complete mixability is called joint mixability and is introduced in Wang et al. (2013).

Note that proving Conjecture 6.1 for heterogeneous risks is an open problem even in the case

of decreasing densities. Finally, it is of interest to determine conditions under which convex

ordering bounds for heterogeneous risks (over Sn(F1, · · · , Fn)) are sharp. We believe that these

research directions are all technically challenging and relevant to quantitative risk management.
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Kaina, M. and Rüschendorf, L. (2009). On convex risk measures on Lp-spaces. Mathematical

Methods of Operations Research, 69, 475–495.

39



Keller-Ressel, M. and G. Clauss (2012). Convex order of discrete, continuous and pre-

dictable quadratic variation & applications to options on variance. Working paper available

on ArXiv.

Kusuoka, S. (2001). On law invariant coherent risk measures. Advances in Mathematical Eco-

nomics, 3, 83–95.

McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Con-

cepts, Techniques, Tools. Princeton, NJ: Princeton University Press.

Meilijson, I., Nadas, A. (1979). Convex majorization with an application to the length of

critical paths. Journal of Applied Probability, 16, 671–677.

Müller, A. (1997). Stop-loss order for portfolios of dependent risks. Insurance: Mathematics

and Economics, 21, 219–223.

Müller, A. (1997). Stochastic orderings generated by integrals: A unified study. Advances in

Applied Probability, 29, 414–428.

Panjer, H. (2006). Operational Risk: Modeling Analytics, John Wiley & Sons.

Puccetti, G. (2013). Sharp bounds on the expected shortfall for a sum of dependent random

variables. Statistics and Probability Letters, 83(4), 1227-1232.
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Rüschendorf, L. (1980). Inequalities for the expectation of ∆-monotone functions, Zeitschrift

für Wahrscheinlichkeitstheorie, 54, 341–349.
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A Proof of Theorem 2.1

Proof.

(i) Suppose S1 ∈ Sn(F1, · · · , Fn). Write

S1 = X1 + · · ·+Xn, Xi ∼ Fi, i = 1, · · · , n.

Denote the joint distribution of (X1, · · · , Xn, S1) by H. Since the probability space is rich

enough, there exists a random vector (Y1, · · · , Yn, S2) with distribution H, and with S2 as

its last component. It follows immediately that S2 = Y1+· · ·+Yn and Yi ∼ Fi, i = 1, · · · , n.

That is S2 ∈ Sn(F1, · · · , Fn).

(ii) Write S1 = X1n and S2 = Y1n where X ∈ Fn(F) and Y ∈ Fn(G). Let B ∈ A be

independent of X and Y, and P(B) = P(A) (this is always possible in an atomless space).

It is easy to check that IAS1+(1−IA)S2
d
= IBS1+(1−IB)S2. Note that IBS1+(1−IB)S2 =

(IBX1 + (1− IB)Y1) + · · ·+ (IBXn + (1− IB)Yn) ∈ Sn(P(B)F + (1− P(B))G). It follows

that IAS1 + (1− IA)S2 ∈ Sn(P(A)F + (1− P(A))G).

(iii) Write S1 = X1n and S2 = Y1n where X ∈ Fn(F) and Y ∈ Fn(G). Let Z ∈ Fn(G) be

independent of X and Z
d
= Y. It is easy to check that S1 + S2

d
= X1n + Z1n. Note

that X1n + Z1n = (X + Z)1n ∈ Sn(F1 ⊗ G1, · · · , Fn ⊗ Gn). It follows that S1 + S2 ∈

Sn(F1 ⊗G1, · · · , Fn ⊗Gn).

(iv)-(vi) Trivial.

(vii) (a) Write S = X1n, where X ∈ Fn(F) and let C be the copula of X. Let Sk = Xk1n,

where Xk ∈ Fn(F
(k)
1 , · · · , F (k)

n ) with copula C. It is obvious that Sk
d→ S.

(b) Write Sk = Xk1n, where Xk ∈ Fn(F
(k)
1 , · · · , F (k)

n ) with copula Ck. Note that the

space of n-copulas is a compact space. Hence, there is a subsequence Cki of Ck such

that Cki has a limit. Then the subsequence Ski
d→ X1n where X ∈ Fn(F) with copula

C as the limit of Cki . Since Sk
d→ S, we have S

d
= X1n ∈ Sn(F).

(c) This is a special case of (vi)(b).
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