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Abstract

We give a new sufficient condition for a continuous distribution to be completely mixable, and we use this condition to show that
the worst-possible Value-at-Risk for the sum of d inhomogeneous risks is equivalent to the worst-possible Expected Shortfall under
the same marginal assumptions, in the limit as d → ∞. Numerical applications show that this equivalence holds also for relatively
small dimensions d.
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1. Motivation of the paper

In the past twenty years Value-at-Risk (VaR) has become
the standard risk measure for the calculation of minimum cap-
ital requirements under the Advanced Measurement Approach
(AMA) within the Basel II (shortly becoming Basel III) agree-
ment. The VaR of an loss random variable L, computed at a
probability level α ∈ (0, 1), is the α-quantile of its distribution,
defined as

VaRα(L) := F−1
L (α) = inf{x ∈ R : FL(x) > α}, (1.1)

where FL(x) = P(L ≤ x) is the distribution function of L. In
addition, let F−1

L (1) = inf{x ∈ R : FL(x) = 1} be the essential
supremum of the support of the distribution F. Probably
due to its immediate meaning (the probability that L exceeds
VaRα(L) is at most 1 − α) and mature statistical estimation,
VaR rapidly became the most popular risk measure used in
banking and insurance. At the same time, the academic world
warned against an irresponsible use of VaR in industry; see for
instance the early discussions given in Artzner et al. (1999)
and Embrechts et al. (2002). Indeed, a number of disad-
vantages have been identified with VaR, the most important
ones being its non-coherence (in that it fails the subadditivity
criterion possibly preventing diversification in a risk portfolio)
and its inability to capture the magnitude of extreme losses.
Finally, the recent financial crisis raised the question whether
VaR is still suitable as the default risk metric. The recent
document Basel Committee on Banking Supervision (2012)
seems to raise the possibility of a change. In the words of
the Committee (see p.41, question 8 in Basel Committee on
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Banking Supervision (2012) ) :

What are the likely operational constraints with moving
from VaR to ES, including any challenges in delivering robust
backtesting, and how might these be best overcome?

Thus, Expected Shortfall (ES) seems to be the official
candidate to replace VaR in the years to come. If the loss
random variable L satisfies E[|L|] < ∞, the ES computed at the
confidence level α ∈ (0, 1) is defined as the average of all VaRs
above the α-level, i.e.

ESα(L) :=
1

1 − α

∫ 1

α

VaRq(L) dq.

Unlike VaR, ES is a coherent risk measure (see Artzner et al.
(1999)) and considers both the size and likelihood of losses
above the α-quantile. ES is also a more conservative risk mea-
sure in the sense that

ESα(L) ≥ VaRα(L), for all α ∈ (0, 1).

However, ES has the big disadvantage of not being computable
when the random variable L under study does not possess a
finite expectation. This deficiency is particularly relevant for
instance in the treatment of Operational Risk, where the under-
lying loss random variables often follow infinite mean models;
see Gourier et al. (2009).

In this paper we consider an aggregate loss random variable
L of the form

L+
d :=

d∑
i=1

Li,

where L1, . . . , Ld correspond to marginal loss random variables
held by a bank/insurance company over a fixed time period. For
example, each Li may represent the yearly aggregate loss for a
specific risk type/business line or can be seen as the aggregate
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claim for a single yearly policy within a particular line of insur-
ance.

The computation of VaRα(L+
d ) and ESα(L+

d ) requires the
knowledge of the d-variate joint distribution function H of the
risk portfolio (L1, . . . Ld). In principle, the statistical estimation
of H requires a d-variate dataset for the past occurred losses. In
practice, such d-dimensional dataset is seldom available and,
typically, only the marginal distribution functions Fi of the
Li will be statistically estimated by the bank/insurance com-
pany. Throughout the paper, we will therefore assume that the
marginal distributions of the marginal losses Li are given but
no dependence information is known about the joint portfolio
(L1, . . . , Ld). Since there exist infinitely many joint models for
(L1, . . . , Ld) which are consistent with a given set of d marginal
distributions F1, . . . , Fd, for a fixed α ∈ (0, 1) we define the
worst-case VaR and the worst-case ES for the aggregate posi-
tion L+

d as

VaRα(L+
d ) := sup

{
VaRα(L1 + · · · + Ld); Li

d
= Fi, 1 ≤ i ≤ d

}
,

(1.2)

ESα(L+
d ) := sup

{
ESα(L1 + · · · + Ld); Li

d
= Fi, 1 ≤ i ≤ d

}
.

(1.3)

VaRα(L+
d ) and ESα(L+

d ) represent the largest (conservative) es-
timate of VaRα(L+

d ) and ESα(L+
d ), respectively, if only the

marginal distributions of the random variables L1, . . . , Ld are
known. Equivalently stated, if one assumes that the vector
(LC

1 , . . . , L
C
d ) has marginals F1, . . . , Fd and a dependence struc-

ture in the form of a copula C, the following inequalities will
hold for any possible choice of C:

VaRα(LC
1 + · · · + LC

d ) ≤ VaRα(L+
d ),

ESα(LC
1 + · · · + LC

d ) ≤ ESα(L+
d ).

We refer the reader unfamiliar with the concept of a copula
to McNeil et al. (2005, Chapter 5). For instance, if we take
that the risks (L1, . . . , Ld) are comonotonic as a special case of
dependence, we have

VaRα(L+
d ) ≥ VaRα(L1 + · · · + Ld) =

d∑
i=1

VaRα(Li); (1.4)

where the equality in (1.4) is implied by comononotic additivity
of VaR; see McNeil et al. (2005, Proposition 6.15).

Using also coherence of ES, it is easy to prove that the worst-
possible ES for L+

d is given by

ESα(L+
d ) =

d∑
i=1

ESα(Fi) =

d∑
i=1

1
1 − α

∫ 1

α

F−1
i (q) dq, (1.5)

where we use the notation ESα(Fi) to denote the ES of any ran-
dom variable having distribution Fi.

Due to incoherence of VaR, the computation of VaRα(L+
d ) is

much more difficult and, for a broad class of risk portfolios,
still open. The analytical computation of the worst VaR esti-
mate VaRα(L+

d ) is possible only in the homogeneous case where

the Li’s are identically distributed with a continuous distribution
having an ultimately decreasing density; see Wang et al. (2013)
and Puccetti and Rüschendorf (2013). The numerical compu-
tation of VaRα(L+

d ) in the general case of inhomogeneous port-
folios can be performed using the Rearrangement Algorithm
described in Embrechts et al. (2013) for dimensions d in the
several hundreds or possibly thousands. The numerical esti-
mates obtained (via the rearrangement algorithm) in Puccetti
(2013, Table 3) for VaRα(L+

d ) and ESα(L+
d ) constituted the main

motivation to investigate the asymptotic properties of the ratio
VaRα(L+

d )/ESα(L+
d ).

The main result presented in this paper is that under weak
marginal assumptions for the risk portfolio (L1, . . . , Ld) the
worst-possible VaR estimate VaRα(L+

d ) is equivalent to the
worst-possible ES estimate ESα(L+

d ), in the limit as d → ∞.
Formally we have that

lim
d→∞

VaRα(L+
d )

ESα(L+
d )

= 1. (1.6)

This case is of particular interest as internal models built by
financial institutions to fulfil the AMA approach in the Basel
and Solvency regulatory frameworks typically use a large num-
ber d of risk factors. Roughly speaking, under a conservative
rule for capital reserving, a VaR-based reserve will be equiv-
alent to a ES-based one for the dimensions d typically used
within quantitative risk management.

The limit result (1.6) has been proved in Puccetti and
Rüschendorf (2014) for a portfolio of risks having homoge-
neous marginals with monotone densities satisfying some extra
technical assumptions. In this paper we extend (1.6) to inho-
mogeneous risk portfolios using a new sufficient condition for
a continuous distribution to be completely mixable. This new
condition, given in Theorem 3.4 below, constitutes a strong the-
oretical achievement of independent interest in the theory of
completely mixable distributions. Based on this new condi-
tion, the asymptotic equivalence of worst-VaR and worst-ES
estimates holds for all inhomogeneous risk portfolios having a
finite number of (possibly bounded) marginals with a continu-
ous and positive density.

The practical consequences deriving from the limit re-
sult (1.6) are relevant:

• From a worst-case scenario perspective, a move from the
VaR to the ES risk metric seems to be robust when the
underlying mathematical models have finite expectations;
this gives a partial answer to the highlighted question by
the Basel committee.

• In the literature VaRα(L+
d ) has always been referred as a too

much conservative estimate of the capital reserve, ESα(L+
d )

to be preferred as its natural alternative. The result in (1.6)
actually shows that the two estimates are asymptotically
equivalent.

• Rewriting (1.6) as

VaRα(L+
d )

d→∞
'

d∑
i=1

1
1 − α

∫ 1

α

F−1
i (q) dq,
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gives a straightforward approximation to VaRα(L+
d ) which

allows to avoid any advanced analytical and numerical
techniques for the computation of the worst-possible VaR,
even for inhomogeneous risk portfolios.

The facts described above seem to be even more relevant to reg-
ulation in banking and insurance as the numerical applications
given in Section 5 suggest that the equivalence

VaRα(L+
d )

d→∞
' ESα(L+

d )

holds also for relatively small dimensions d.

Remark 1.1. In some literature, VaRα(L) is defined as inf{x ∈
R : FL(x) ≥ α}. In this paper we use inf{x ∈ R : FL(x) > α}
only for technical ease. The worst-possible value VaRα(L+

d ) for
both definitions are equivalent for continuous marginals (for
example, see Lemma 4.5 of Bernard, Jiang, and Wang (2013)).
Hence, the major results in this paper hold for both definitions.

2. Some preliminaries on complete mixability

As proved in Wang and Wang (2011), Wang et al. (2013)
and Puccetti and Rüschendorf (2013), the concept of complete
mixability plays a crucial role in the computation of the upper
VaR-bound defined in (1.2). First, we give a summary of the
existing results on completely mixable distributions which we
will use in the remainder. Throughout the paper, we identify
probability measures with the corresponding cumulative distri-
bution functions, and we always intend a limit of a sequence of
random variables under weak convergence.

Definition 2.1. A distribution function F on R is called n-
completely mixable (n-CM) if there exist n random variables
X1, . . . , Xn identically distributed as F such that

P(X1 + · · · + Xn = nk) = 1, (2.1)

for some k ∈ R. Any such k is called a center of F and any
vector (X1, . . . , Xn) satisfying (2.1) with Xi

d
= F, 1 ≤ i ≤ n, is

called an n-complete mix.

If F is n-CM and has finite first moment µ, then its center is
unique and equal to µ. We denote byMn(µ) the set of all n-CM
distributions with center µ, and by Mn =

⋃
µ∈RMn(µ) the set

of all n-CM distributions on R.

Definition 2.2. If X has distribution F, we say that F is n-
CM on the interval A ⊂ R if the conditional distribution of
(X | X ∈ A) is n-CM.

Complete mixability is a concept of negative dependence. It
is easy to see for instance that in dimension d = 2 complete
mixability implies countermonotonicity; see Embrechts et al.
(2013). A completely mixable dependence structure minimizes
the variance of the sum of risks with given marginal distribu-
tions. In fact, a risk vector (L1, . . . , Ld) with identically dis-
tributed marginals is a d-complete mix if and only if the vari-
ance of the sum of its components is equal to zero.

Not all univariate distributions F are d-CM: the set of all n-
CM distributions can be completely described only when n = 1
or n = 2. The class M1 consist of all degenerate distribu-
tions, while the class M2 of all the symmetric distributions;
see Proposition 2.3 in Wang and Wang (2011). The following
results are given in Wang and Wang (2011), Wang et al. (2013)
and Puccetti et al. (2012). We refer the reader to these refer-
ences for more properties and several examples of completely
mixable distributions.

Proposition 2.3. The following statements hold (for weak con-
vergence).

(i) The set Mn(µ) is convex, i.e. F,G ∈ Mn(µ) implies that
λF + (1 − λ)G ∈ Mn(µ), λ ∈ [0, 1]. Note instead that the
setMn is not convex – a counterexample is given in Wang
and Wang (2011).

(ii) If F ∈ Mn and G ∈ Mk, then n
n+k F + k

n+k G ∈ Mn+k.
Consequently, F ∈ Mn ∩Mk implies F ∈ Mn+k

(iii) The limit of a sequence of n-CM distribution functions
(with center µ) is n-CM (with center µ).

(iv) Fixed arbitrarily a, b ∈ R with a < b, the uniform distri-
bution on [a, b] is n-CM for all n ≥ 2.

(v) A n-discrete uniform distribution, that is a distribution
giving probability mass 1/n to each of the n points in its
support, is n-CM.

(vi) Any continuous distribution F on [0, 1] having a non-
decreasing density and satisfying the moderate mean con-
dition ∫ 1

0
xdF(x) ≤ 1 − 1/n

is n-CM.
(vii) For an arbitrary distribution F on [0, 1] having mean µ, a

necessary condition to be n-CM is that

1
n
≤ µ ≤ 1 −

1
n
.

Since we will use the properties listed in Proposition 2.3 fre-
quently, we will refer to them just using (i)–(vii) throughout the
paper.

3. A new sufficient condition to complete mixability

In this section we show that any continuous distribution on
a finite interval having a strictly positive density function is n-
completely mixable for n large enough.

First, we will need some subsidiary results. Denote by U
the uniform distribution on [0, 1] and by Gk, k ≥ 1, the set
of all discrete distributions function in [0, 1] having exactly k
different points in their supports. For n ≥ 3, define the set of
distribution functions

Nn(k) :=
{

F : F =
3
n

U +
n − 3

n
Gk, where Gk ∈ Gk

}
, k ≥ 1.

(3.1)

We will prove by induction on k that, for a fixed n ≥ 3,
Nn(k) ⊂ Mn, k ∈ N. The case n = 3 is implied by (iv), thus
in the remainder of this section we assume n ≥ 4. In order to
use induction, we first need to prove the cases k = 1 and k = 2.
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Lemma 3.1. Nn(1) ⊂ Mn.

Proof. Since G1 ∈ G1 is degenerate, then G1 ∈ Mn−3. More-
over, U ∈ M3 by (iv). Using (ii), we obtain that 3

n U + n−3
n G1 ∈

Mn. �

Lemma 3.2. Nn(2) ⊂ Mn.

Proof. Let δa be the degenerate distribution at point a ∈ R. We
can write any F ∈ Nn(2) as F = 3

n U + n−3
n G2, where G2 =

pδa + (1 − p)δb, for some 0 ≤ a < b ≤ 1 and p ∈ (0, 1). Denote
by µ the mean of F. We have

µ =
3
2n

+
n − 3

n
(pa + (1 − p)b).

[CASE 1] Assume that l := p(n − 3) ∈ N. Obviously 0 < l <
n − 3. Then we can write G2 as a uniform distribution on the
set {x1, . . . , xn−3} by taking xi = a, 1 ≤ i ≤ l, and xi = b, l + 1 ≤
i ≤ n − 3. Therefore, G2 is a (n − 3)-discrete distribution and
thus G2 ∈ Mn−3 by (v). The lemma then follows analogously
to Lemma 3.1.

[CASE 2] If p(n − 3) < N, we take l := bp(n − 3)c and
r := p(n − 3) − l. In this case we can write

G2 = (1 − r)H1 + rH2 (3.2)

as the convex combination of two (n − 3)-discrete distributions
H1 and H2. We take H1 := 1

n−3 (lδa + (q + 1)δb) and H2 :=
1

n−3 ((l + 1)δa + qδb), where q := n − 4 − l. Note that we can
assume r ≥ 1/2 wlog. At this point, H1 can be seen a uniform
distribution on the set {x1, . . . , xn−3} by taking xi = a, 1 ≤ i ≤ l,
and xi = b, l + 1 ≤ i ≤ n− 3. Analogously for H2. Therefore we
have that H1,H2 ∈ Mn−3. Note that this does not directly imply
by (ii) that G2 is (n − 3)-CM as H1 and H2 may have different
means.

Now, let F1 be the uniform distribution on the interval [0, 1−
2(b − a)r/3]. F1 ∈ M3 by (iv) while H1 ∈ Mn−3 as seen above.
Using (ii) we conclude that

3
n

F1 +
n − 3

n
H1 ∈ Mn. (3.3)

Let also

F2 := 1/r (U − (1 − r)F1). (3.4)

One can easily check that F2 is a well-posed, continuous dis-
tribution function, with a nondecreasing density and mean
1/2 + 1/3(1 − r)(b − a) < 2/3. Therefore, F2 ∈ Mn by (vi).
Since H2 ∈ Mn−3 as seen above, using (ii) we conclude that

3
n

F2 +
n − 3

n
H2 ∈ Mn. (3.5)

Using (3.2) and (3.4), we can decompose any F ∈ Nn(2) as

F =
3
n

U +
n − 3

n
G2

=
3
n

[(1 − r)F1 + rF2] +
n − 3

n
[(1 − r)H1 + rH2]

= (1 − r)
(

3
n

F1 +
n − 3

n
H1

)
+ r

(
3
n

F2 +
n − 3

n
H2

)
. (3.6)

It is easy to check that
(

3
n F1 + n−3

n H1

)
has the same mean µ as

F. Therefore, (3.6) implies that also
(

3
n F2 + n−3

n H2

)
has mean

µ. At this point (3.3) and (3.5) directly implies that

3
n

F1 +
n − 3

n
H1 ∈ Mn(µ) and

3
n

F2 +
n − 3

n
H2 ∈ Mn(µ).

Therefore, by (3.6), F ∈ Nn(2) is the convex combination of
distributions inMn(µ), i.e. F ∈ Mn(µ). �

Lemma 3.3. Nn(k) ⊂ Mn, k ∈ N.

Proof. We proceed by induction, thus we assume that Nn(k −
1) ⊂ Mn, with k ≥ 3. We can write any F ∈ Nn(k) as

F =
3
n

U +
n − 3

n
Gk,

with Gk ∈ Gk. Denote by ξ the mean of Gk. Let Bk be the
probability mass function of Gk and a and b be the minimal and
maximal, respectively, point in the support of Gk. Since k ≥ 3,
we have a < b and therefore it is possible to find λ ∈ (0, 1) such
that

ξ = (λa + (1 − λ)b).

Note also that, consisting the support of Gk of k ≥ 3 points, we
have that Bk(a) < λ and Bk(b) < 1 − λ. For µ, the mean of F,
we have

µ =
3

2n
+

n − 3
n

ξ =
3
2n

+
n − 3

n
(λa + (1 − λ)b).

Now, define H := (λδa + (1−λ)δb) and F1 := 3
n U + n−3

n H. Since
F1 ∈ Nn(2), by Lemma 3.2 we have that F1 ∈ Mn(µ). Now let
ζ = min{Bk(a)/λ, Bk(b)/(1 − λ)}. Then Z := Gk−ζH

1−ζ is a discrete
distribution with exactly (k − 2) (if Bk(a)/λ = Bk(b)/(1 − λ)) or
(k − 1) (otherwise) points in its support, i.e. Z ∈ Nn(k − 1) ∪
Nn(k − 2) ⊂ Mn. By the induction assumption

F2 :=
3
n

U +
n − 3

n
Z ∈ Nn(k − 1) ∪ Nn(k − 2) ⊂ Mn.

At this point, it is straightforward to check that
F = ζF1 + (1 − ζ)F2. Since both F1 and F have mean
µ, also F2 has mean µ and therefore we obtain that F ∈ Nn(k)
is the convex combination of distributions in Mn(µ), i.e.
F ∈ Mn(µ). �

We are now ready to prove the main result of this section.

Theorem 3.4. Assume n ≥ 3. Any continuous distribution
function F on a bounded interval [a, b], a < b, having a density
f satisfying

f (x) ≥
3

n(b − a)
, for all x ∈ [a, b], (3.7)

is n-CM.

Proof. Without loss of generality we take a = 0 and b = 1. Note
that any continuous distribution F on [0, 1] having a density
function f ≥ 3

n can be written as F = 3
n U + n−3

n G where G is a
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continuous distribution on [0, 1]. Let Gk(x) =
∑k

i=1 G( i
k )1{ i−1

k <

x ≤ i
k } ∈ Gk for k ∈ N. Then Gk → G weakly. Thus, F is the

limit of a sequence Fk := 3
n U + n−3

n Gk, k ∈ N, with Fk ∈ Nn(k).
Therefore the theorem follows by Lemma 3.3 and Proposition
2.3 (iii). For the general case a < b, it is sufficient to take U
as the uniform distribution in [a, b] in the definition ofNn(k) in
(3.1). �

Corollary 3.5. Any continuous distribution on [a, b] having a
strictly positive density function is n-CM for n sufficiently large.

In Section 7 below we discuss the sharpness of the sufficient
condition given in (3.7).

4. Asymptotic equivalence of worst-case VaR and ES for a
sum

Let (Ld, d ∈ N) be an infinite sequence of random variables
for which the marginal distributions are assumed to be known.
In practice, a financial institution has to deal with a inhomoge-
nous risk portfolio consisting of finite types of random vari-
ables, i.e. a finite number of different marginal distributions.
Thus, we assume that the sequence (Ld, d ∈ N) can be divided
in a finite number of m homogeneous subgroups. Given a set
of m marginal distributions F1, . . . , Fm, we assume that for any
i ∈ N we have

Li
d
= F j for some j ∈ M := {1, . . . ,m}. (4.1)

Thus, we set

A j(d) :=
{
i ≤ d : Li

d
= F j

}
and d j(d) := #A j(d).

Given a confidence level α ∈ (0, 1), we assume that each F j

is continuous with a positive and continuous density f j on the
(possibly unbounded) interval [F−1

j (α), F−1
j (1)). Note that these

assumptions cover all the continuous distributional models used
in quantitative risk management, where one has typically to
deal with unbounded loss random variables with a positive and
continuous density. In case F−1

j (1) = ∞ we will assume further
that the mean of F j is finite in order to guarantee the existence
of ESα(F j). The behaviour of the VaR metric in case the indi-
vidual random losses have infinite first moment has been stud-
ied in Puccetti and Rüschendorf (2014). Finally, we assume
that for each j = 1, . . . ,m

ESα(F j) > 0, (4.2)

i.e. a risk with distribution F j requires a capital to be reserved.
For u ∈ [F−1

j (α), F−1
j (1)), we denote by K j(u) the minimal

value of the density of F j in the interval [F−1
j (α), u], i.e.

K j(u) := inf
x∈[F−1

j (α),u]
f j(x). (4.3)

For a continuous density f j the inf in (4.3) is attained and it
is positive for any u ∈ [F−1

j (α), F−1
j (1)). Since each d j(d) is

increasing on d, we can also define

J := { j : lim
d→∞

d j(d) = ∞}, (4.4)

J := { j : lim
d→∞

d j(d) < ∞} = M \ J . (4.5)

Being m, the number of possible marginal models, a finite con-
stant, it is clear that J contains at least one index j ∈ M.

For j ∈ J , define the sequence

R j(d) := sup
{
u ∈ [F−1

j (α), F−1
j (1)) :

K j(u)
(
u − F−1

j (α)
)
≥

3
d j(d)

}
. (4.6)

Denote û = F−1
j (α) + ξ, ξ > 0. Since j ∈ J , d j(d)→ ∞ implies

that

K j(û)
(
û − F−1

j (α)
)

= K j(û)ξ >
3

d j(d)
, (4.7)

i.e. R j(d) is well defined, for d large enough. If F−1
j (1) is finite,

R j(d) is also bounded. If F−1
j (1) = ∞, we show that R j(d) < ∞

for d sufficiently large. Being f j the density of a continuous,
finite-mean distribution, we have that

∫
R u f j(u) du < ∞, imply-

ing that

lim
u→∞

K j(u)u ≤ lim
u→∞

f j(u)u = 0, lim
u→∞

K j(u) = 0.

and
lim
u→∞

K j(u)
(
u − F−1

j (α)
)

= 0.

Recalling (4.7), R j(d) turns out to be finite for d sufficiently
large with

lim
d→∞

R j(d) = F−1
j (1). (4.8)

Before proving the main result of this section, we need the
following result.

Lemma 4.1. Assume F is continuous with a continuous and
positive density on [F−1(α), F−1(1)). If F is d-CM on the inter-
val [F−1(α),R], R > F−1(α), then it is possible to find a random
vector (L∗1, . . . , L

∗
d), such that L∗i

d
= F for i = 1, . . . , d and

VaRα

(
L∗1 + · · · + L∗d

)
= dµ∗. (4.9)

where

µ∗ =
1

F(R) − α

∫ R

F−1(α)
F j(q) dq.

Proof. Let H be the distribution of the random variable(
X | X ∈ [F−1(α),R]

)
, where X d

= F. Under the assumptions
of the theorem there exist d random variables L̂i, 1 ≤ i ≤ d,
such that L̂i

d
= H and

P

 d∑
i=1

L̂i = dµ∗
 = 1.
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This implies the existence of a vector (L∗1, . . . , L
∗
d) satisfy-

ing (4.9). For instance, (L∗1, . . . , L
∗
d) can be defined as

L∗ = (X, . . . , X) 1
(
X < [F−1(α),R]

)
+ (L̂1, . . . , L̂d) 1

(
X ∈ [F−1(α),R]

)
. �

We are now ready to state the main result of this section.

Theorem 4.2. Let F1, . . . , Fm, m fixed, be a set of m marginal
distributions. Assume that each F j has finite mean and
is continuous with a continuous and positive density f j on
[F−1

j (α), F−1
j (1)). If (Ld, d ∈ N) is an infinite sequence of ran-

dom variables for which (4.1) and (4.2) holds, then

lim
d→∞

VaRα(L1 + · · · + Ld)

ESα(L1 + · · · + Ld)
= 1.

Proof. Fix a sufficiently large d ∈ N such that R j(d) in (4.6) is
well defined for all j ∈ J . For j ∈ J we have that

f j(u) ≥ K j(R j(d)) ≥
3

d j(d)(R j(d) − F−1
j (α))

,

for all u ∈ [F−1
j (α),R j(d)]. By Theorem 3.4, the distribution F j

is d j(d)-CM on the interval [F−1
j (α),R j(d)]. By Lemma 4.1 it

is then possible to find a d j-complete mix L̂
j

:=
(
L̂ j

i , i ∈ A j(d)
)
,

such that L̂ j
i

d
= F j for i ∈ A j(d) and

VaRα

 ∑
i∈A j(d)

L̂ j
i

 = d j(d)µ j(d), (4.10)

where

µ j(d) =
1

F j(R j(d)) − α

∫ R j(d)

F−1
j (α)

F−1
j (q) dq.

For j ∈ J , (4.8) implies that

lim
d→∞

µ j(d) = ESα(F j). (4.11)

Using (4.10) and (1.4) we have that

VaRα(L+
d ) ≥

∑
j∈J

VaRα

 ∑
i∈A j(d)

L̂ j
i

 + VaRα

∑
j∈J

∑
i∈A j(d)

L̂ j
i


≥

∑
j∈J

d j(d)µ j(d) + VaRα

∑
j∈J

∑
i∈A j(d)

L̂ j
i

 =: VaR∗α(L+
d ).

Thus, the following relationships hold

VaR∗α(L+
d ) ≤ VaRα(L+

d ) ≤ ESα(L+
d ).

implying that (ESα(L+
d ) > 0)

lim
d→∞

VaR∗α(L+
d )

ESα(L+
d )
≤ lim

d→∞

VaRα(L+
d )

ESα(L+
d )
≤ 1.

In order to prove the theorem it is then sufficient to show that

lim
d→∞

VaR∗α(L+
d )

ESα(L+
d )

= 1.

Since the marginals of the sequence (Ld, d ∈ N) satisfy (4.1),
for any fixed d (1.5) implies

ESα(L+
d ) =

∑
j∈J

d j(d)ESα(F j) +
∑
j∈J

d j(d)ESα(F j).

Using the equation above, we obtain that

lim
d→∞

VaR∗α(L+
d )

ESα(L+
d )

= lim
d→∞

∑
j∈J d j(d)µ j(d) + VaRα

(∑
j∈J

∑
i∈A j(d) L̂ j

i

)∑
j∈J d j(d)ESα(F j) +

∑
j∈J d j(d)ESα(F j)

= lim
d→∞

∑
j∈J d j(d)µ j(d)∑

j∈J d j(d)ESα(F j)
+

VaRα

(∑
j∈J

∑
i∈A j (d) L̂ j

i

)
∑

j∈J d j(d)ESα(F j)(
1 +

∑
j∈J d j(d)ESα(F j)∑
j∈J d j(d)ESα(F j)

) . (4.12)

Now let γ j := limd→∞ d j(d) < ∞ for j ∈ J . Recalling the
definition of the subsets J and J , given in (4.5), it is clear that

lim
d→∞

VaRα

∑
j∈J

∑
i∈A j(d)

L̂ j
i

 ≤ lim
d→∞

ESα

∑
j∈J

∑
i∈A j(d)

L̂ j
i


≤ lim

d→∞

∑
j∈J

d jESα(F j)

 ≤∑
j∈J

γ jESα(F j), (4.13)

while
lim
d→∞

∑
j∈J

d jESα(F j) = ∞. (4.14)

Using (4.11) and (4.14), we finally obtain from (4.12) that

lim
d→∞

VaR∗α(L+
d )

ESα(L+
d )

= 1. �

Remark 4.3. We remark the following points about Theo-
rem 4.2.

Optimal couplings. Even if the asymptotic result

VaRα(L+
d )

d→∞
' ESα(L+

d ) (4.15)

holds, the structure of dependence attaining VaRα(L+
d ) and

ESα(L+
d ) for a fixed d might be different. These optimal depen-

dence structure are also called optimal couplings. Following
Theorem 2.1 in Puccetti and Rüschendorf (2013), it is possible
to show that any optimal coupling for the VaR/ES can be
described only on the upper part T j := {x ≥ F−1

j (α)} of the
support of each marginal distribution F1, . . . , Fd involved. It
is well known that the optimal coupling for the ES is given
by a comonotonic dependence structure in T :=

∏d
j=1 T j.
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For more details about comonotonicity we refer for instance
to McNeil et al. (2005). In the homogeneous case when
F1 = · · · = Fd = F, optimal couplings for the VaR are
described in the papers Wang and Wang (2011); Wang et al.
(2013); Puccetti and Rüschendorf (2013). Whereas the optimal
coupling for the ES is the maximal element wrt convex order
for the Fréchet class of risk having fixed marginals on T (see
also Levy and Kroll (1978) on this), the optimal coupling for
the VaR is the minimal element wrt convex order over the same
class of joint distributions on T .

Computation of the worst-possible VaR for a sum with
given marginals. Rewriting (4.15) as

VaRα(L+
d )

d→∞
'

d∑
i=1

1
1 − α

∫ 1

α

F−1
i (q) dq, (4.16)

gives a straightforward approximation to VaRα(L+
d ) which

allows to avoid any advanced analytical and numerical tech-
niques. In Section 5 we show that (4.16) holds for relatively
small dimensions d.

Bounded marginal distributions. For m = 1 the equality
VaRα(L+

d ) = ESα(L+
d ) holds for any sufficiently large d when

the continuous distribution F1 has a continuous and positive
density over a bounded support. In this case, F1 will be d-CM
on [F−1

1 (α), F−1
1 (1)] for for d large enough. Analogously to the

proof of Lemma 4.1, it is possible to construct a random vector
(L∗1, . . . , L

∗
d) with L∗i

d
= F1 such that

P

 d∑
i=1

L∗i = dESα(F1) | ∩d
i=1 {L

∗
i ∈ [F−1

1 (α), F−1
1 (1)]}

 = 1,

implying that VaRα(L+
d ) = dESα(F1) = ESα(L+

d ). The idea
of obtaining sharp bounds for the distribution of the sum of
risks under complete mixability goes back to Theorem 2.3 and
Remark 2.4 in Puccetti and Rüschendorf (2012). However,
finding weak sufficient conditions to complete mixability
seems to be very difficult, especially in the inhomogeneous
case.

Linear combinations of the Li. Given a set of m continu-
ous and strictly increasing functions h j, j ∈ M, any result given
for the aggregate random loss L+

d can be formulated for the
aggregate position Lh

d =
∑m

j=1
∑

i∈A j(d) h j(Li) just by scaling the
corresponding marginal distributions. This includes any linear
combination of the marginal losses with a finite number of
weights.

5. Numerical verifications

In this section we compute the ratio

δα(d) :=
ESα(L+

d )

VaRα(L+
d )

for several risk portfolios (L1, . . . , Ld) of interest in quantitative
risk management and for different confidence levels α.

First, we assume that the Li’s can be divided into m = 3 ho-
mogeneous subgroups, each one consisting of k random vari-
ables, i.e. d = 3k. Within the j-subgroup, the k random vari-
ables are assumed to be identically distributed as F j, for some
given marginal distributions F1, F2, F3. Under these assump-
tions we study two portfolios of interest:

• the Pareto Portfolio, in which the marginal distributions
Fi = 1 − (1 + x)−θi are of Pareto type with tail coefficients
θi = i + 1, 1 ≤ i ≤ 3. The variance of the sum of the
components of this risk portfolio is infinite.

• the Mixed Portfolio, in which F1 = Pareto(4), F2 =

LogN(0, σ2), F3 = Exp(3/
√

2). The parameter σ2 is set
so that all the marginal components of this portfolio have
the same variance.

In Table 1 we give estimates of δα(d) for the two portfo-
lios above, for different values of k and confidence levels
α. Whereas estimates for ESα(L+

d ) are available analytically
via (1.5), in order to compute estimates for VaRα(L+

d ) we use
the Rearrangement Algorithm as described in Embrechts et al.
(2013).

As a second example, we assume m = 9 homogeneous sub-
groups of k random variables, i.e. d = 9k. We study two port-
folios of interest:

• the Pareto Portfolio, in which the marginal distributions
Fi = 1 − (1 + x)−θi are of Pareto type with tail coefficients
θi = i + 1, 1 ≤ i ≤ 9. The variance of the sum of the
components of this risk portfolio is infinite.

• the Mixed Portfolio, in which F1 = Pareto(4), F2 =

LogN(0, σ2), F3 = Exp(3/
√

2), F4 = N(0,
√

2/3), F5 =

Gamma(1/9,
√

2), F6 = Weibull(w, 1). The parameters σ2

and w are set so that all the marginal components of this
portfolios have the same variance.

In Table 2 we give estimates of δα(d) for the two portfolios
above, for different values of k and confidence levels α.

The figures in Tables 1–2 confirm the validity of the limit re-
sult given in Theorem 4.2. The convergence of the sequence
δα(d) to the limit value 1 is evident for all portfolio dimensions
and confidence levels considered. For the mixed portfolios de-
scribed above, the approximation

VaRα(L+
d ) ' ESα(L+

d ) =

d∑
i=1

1
1 − α

∫ 1

α

F−1
i (q) dq

is accurate also for the case k = 1, where one has a small num-
ber d ≤ 6 of completely inhomogeneous random variables. For
the more heavy-tailed Pareto portfolio, the convergence of the
sequence δα(d) is slower but still visible for dimensions d ≥ 10.

6. Conclusions

When the risk portfolio (L1, . . . , Ld) is inhomogeneous with
a finite number m of different finite-mean marginal models, we
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α = 99.9% k = 1 k = 5 k = 10 k = 20

Pareto portfolio 1.3821 1.0672 1.0325 1.0160
Mixed portfolio 1.0639 1.0032 1.0005 1.0000

α = 99.5% k = 1 k = 5 k = 10 k = 20

Pareto portfolio 1.3333 1.0590 1.0287 1.0142
Mixed portfolio 1.0498 1.0022 1.0004 1.0000

α = 99.0% k = 1 k = 5 k = 10 k = 20

Pareto portfolio 1.3163 1.0558 1.0272 1.0134
Mixed portfolio 1.0453 1.0018 1.0003 1.0000

α = 50.0% k = 1 k = 5 k = 10 k = 20

Pareto portfolio 1.3668 1.0528 1.0256 1.0126
Mixed portfolio 1.0495 1.0005 1.0001 1.0000

α = 20.0% k = 1 k = 5 k = 10 k = 20

Pareto portfolio 1.4488 1.0594 1.0286 1.0140
Mixed portfolio 1.0565 1.0004 1.0000 1.0000

Table 1: Estimates of δα(d) for two inhomogeneous portfolios divided into m = 3 homogeneous subgroups having Pareto or mixed marginal distributions. The total
number of random variables is d = 3k.

α = 99.9% k = 1 k = 2 k = 5 k = 10

Pareto portfolio 1.2950 1.1477 1.0565 1.0276
Mixed portfolio 1.0199 1.0051 1.0006 1.0000

α = 99.5% k = 1 k = 2 k = 5 k = 10

Pareto portfolio 1.2345 1.1180 1.0461 1.0227
Mixed portfolio 1.0149 1.0030 1.0003 1.0000

α = 99.0% k = 1 k = 2 k = 5 k = 10

Pareto portfolio 1.2122 1.1067 1.0419 1.0207
Mixed portfolio 1.0137 1.0024 1.0002 1.0000

α = 50.0% k = 1 k = 2 k = 5 k = 10

Pareto portfolio 1.1651 1.0774 1.0298 1.0147
Mixed portfolio 1.0089 1.0012 1.0000 1.0000

α = 20.0% k = 1 k = 2 k = 5 k = 10

Pareto portfolio 1.1857 1.0847 1.0322 1.0158
Mixed portfolio 1.0063 1.0008 1.0000 1.0000

Table 2: Estimates of δα(d) for two inhomogeneous portfolios divided into m = 6 homogeneous subgroups having Pareto or mixed marginal distributions. The total
number of random variables is d = 9k.
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show that the worst-possible VaR estimate VaRα(L+
d ) is equiv-

alent to the worst-possible ES estimate ESα(L+
d ), in the limit as

d → ∞. Formally we have that

lim
d→∞

VaRα(L+
d )

ESα(L+
d )

= 1.

Roughly speaking, under a conservative rule for capital re-
serving, a VaR-based reserve will be equivalent to a ES-based
one for the dimensions d typically used within quantitative
risk management. The numerical applications given in Sec-
tion 5 shows that the above limit is evident also for relatively
small dimensions d. This implies that, from a worst-case sce-
nario perspective, a possible move from the VaR to the ES
risk metric seems to be robust when the underlying mathemat-
ical models have finite expectations. Moreover, the limit result

VaRα(L+
d )

d→∞
' ESα(L+

d ) gives a straightforward approximation
to VaRα(L+

d ) which allows to avoid any advanced analytical and
numerical techniques for the computation of the worst-possible
VaR, even in the case of inhomogeneous risk portfolios.

In order to prove our main result, we use a new sufficient con-
dition for a continuous distribution to be completely mixable.
This new condition constitutes a strong theoretical achievement
of independent interest in the theory of completely mixable dis-
tributions.

It would be interesting to find sufficient conditions for the
VaR/ES asymptotic equivalence to hold also when the number
of different marginal models m is allowed to depend on d. This
would be for instance in the case of an infinite sequence of ran-
dom variables (Ld, d ∈ N) having all different marginal distribu-
tions. In general it is easy to show that for a infinite sequence of
random variables having rapidly increasing variance, the limit
result above does not hold. We will investigate this topic in
future research.

7. Appendix: on the sharpness of condition (3.7)

In this section we investigate whether the sufficient condi-
tion (3.7) in Theorem 3.4 can be weakened to

f (x) ≥
λ

n(b − a)
, (7.1)

for some positive λ < 3. Define

Nλ
n (k) :=

{
F : F =

λ

n
U +

n − λ
n

Gk, where Gk ∈ Gk

}
.

In Lemma 3.3 we showed that N3
n (k) = Nn(k) ⊂ Mn for any

integer k, and this result directly implied Theorem 3.4. It is
immediate to show that Nλ

n (k) 1Mn when λ < 2. Define

F :=
(
λ

n
U +

n − λ
n

δ0

)
∈ Nλ

n (1).

Clearly, F has mean µ = λ
2n < 1

n and does not satisfy the nec-
essary condition in (vii). Thus F < Mn for λ < 2. A similar
construction shows that Nλ

n (k) 1Mn for any integer k.

As a consequence, we need at least λ ≥ 2 in (7.1). In Exam-
ple 7.2 we show that we actually need λ ≥ 1 +

√
2. First, we

give a new necessary condition for a distribution to n-CM.

Lemma 7.1. If F is a nonnegative, n-CM distribution with fi-
nite first moment µ, then

F
(nµ

k

)
:= 1 − F

(nµ
k

)
≤

k − 1
n

, for all k = 1, . . . , n.

Proof. Since F is n-CM, there exist a n-complete mix
(X1, . . . , Xn) such that Xi

d
= F, i = 1, . . . , n, and

P(X1 + · · · + Xn = nµ) = 1.

As a consequence, at most k − 1 random variables Xi can be
strictly larger than nµ/k, i.e.

P(1{X1 > nµ/k} + · · · + 1{Xn > nµ/k} ≤ k − 1) = 1,

implying that

E
 n∑

i=1

1 {Xi > nµ/k}

 = nF
(nµ

k

)
≤ k − 1. �

Example 7.2. For λ := (1 +
√

2)(1 − ε), ε > 0 we construct a
distribution inNλ

n (2) which is not n-CM for any n ≥ 3. Assume
n ≥ 3 define the two-point distribution G2 as

G2 := (1 − m)δ0 + mδ√2/2,

where

m :=
1

n − λ

2 −
√

2
2

+
1 +
√

2
2

ε

 .
Since n−λ > 2−

√
2, it is easy to see that m ∈ (0, 1) when ε > 0

is sufficiently small.
Now let the distribution F be defined as

F :=
(
λ

n
U +

n − λ
n

G2

)
∈ Nλ

n (2).

If X d
= F, elementary calculations give

P(X ≥
√

2/2) =
1 + ε/2

n
and E[X] =

2 − ε/2

n
√

2
.

Therefore we have that

F
(

nE[X]
2

)
= F

 √2
2
−

ε

4
√

2


≥ P(X ≥

√
2/2) =

1 + ε/2
n

> 1/n,

which contradicts the necessary condition given in Lemma 7.1
for k = 2.

To conclude, we need at least λ ≥ 1 +
√

2 in (7.1). It re-
mains open the search for the largest possible λ ∈ [1 +

√
2, 3]

for which the condition (7.1) is sufficient to guarantee the n-
complete mixability of a distribution F having the continuous
function f as its density.
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