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Abstract

The concept of complete mixability is relevant to some problems of optimal couplings

with important applications in quantitative risk management. In this paper, we prove

new properties of the set of completely mixable distributions, including a completeness

and a decomposition theorem. We also show that distributions with a concave density

and radially symmetric distributions are completely mixable.
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1. Introduction

A distribution function F is called n-completely mixable (n-CM) if there exist n random

variables X1, . . . , Xn identically distributed as F having constant sum, that is satisfying

P(X1 + · · · + Xn = nk) = 1.

If F has finite first moment µ, then k = µ. The concept of complete mixability is related to

some optimization problems in the theory of optimal couplings:

(i) Assume F have finite first moment µ. For a (strictly) convex function f : R → R, we
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have

inf{E
[
f (X1 + · · · + Xn)

]
; Xi ∼ F, 1 ≤ i ≤ n} ≥ f (nµ), (1.1)

and equality holds if (and only if) F is n-CM.

(ii) Assume F have finite first moment and let F−1 be the generalized inverse of F. Define

the function Ψ(a) = E[X|X ≥ F−1(a)], for a ∈ [0, 1] and X ∼ F. For any s ∈ R, we have

sup{P(X1 + · · · + Xn ≥ s); Xi ∼ F, 1 ≤ i ≤ n} ≤ 1 − Ψ−1(s/n), (1.2)

and the sup is attained if and only if F is n-CM on the interval (F−1(Ψ−1(s/n)), F−1(1)).

For more details on the solutions of these problems and a brief history of the concept of the

complete mixability, we refer to the recent papers Wang and Wang (2011) and Wang et al.

(2011).

Problems (1.1) and (1.2) have relevant applications in quantitative risk management, where

they are needed to assess the aggregate risk of a portfolio of losses for regulatory issues. For

more details on the motivation of these problems within quantitative risk management, we

refer to Embrechts and Puccetti (2010). Other important applications are related to the theory

of dependence measures, see Nelsen and Úbeda-Flores (2010).

In view of these applications, it would be of interest to characterize the class of completely

mixable distributions. Only partial characterizations, which we summarize in Section 2, are

known in the literature. In our paper, we give a contribution in the direction of a complete

characterization of completely mixable distributions. In Section 3, we give a completeness

and a decomposition theorem for completely mixable distributions. In Sections 4 and 5, we

prove complete mixability of two new classes of distributions, namely continuous distributions

with a concave density and radially symmetric distributions.

2. Some preliminaries on complete mixability

In this section, we give a summary of the existing results on completely mixable distri-

butions which we will use in the remainder. Throughout the paper, we identify probability

measures with the corresponding distribution functions.

Definition 2.1. A distribution function F on R is called n-completely mixable (n-CM) if there

exist n random variables X1, . . . , Xn identically distributed as F such that

P(X1 + · · · + Xn = nk) = 1, (2.1)
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for some k ∈ R. Any such k is called a center of F and any vector (X1, . . . , Xn) satisfying (2.1)

with Xi ∼ F, 1 ≤ i ≤ n, is called an n-complete mix.

If F is n-CM and has finite first moment µ, then its center is unique and equal to µ. We denote

byMn(µ) the set of all n-CM distributions with center µ, and byMn =
⋃
µ∈RMn(µ) the set of

all n-CM distributions on R. As proved in Wang and Wang (2011), the setMn(µ) is convex,

while the setMn is not. Some straightforward examples of completely mixable distributions

are given in Wang and Wang (2011).

Proposition 2.1. (Wang and Wang (2011).) The following statements hold.

(a) F is 1-CM if and only if F is the distribution of a constant.

(b) F is 2-CM if and only if F is symmetric, i.e. X ∼ F and a − X ∼ F for some constant

a ∈ R.

(c) Any linear transformation of an n-CM distribution is n-CM.

(d) The Binomial distribution B(n, p/q), p, q ∈ N, is q-CM.

(e) The uniform distribution on the interval (a, b) is n-CM for any n ≥ 2 and a < b.

(f) The Gaussian and the Cauchy distributions are n-CM for n ≥ 2.

Some other families of completely mixable distribution are described by the following theo-

rems.

Theorem 2.1. (Rüschendorf and Uckelmann (2002).) Any continuous distribution function

having a symmetric and unimodal density is n-CM, for any n ≥ 2.

Theorem 2.2. (Wang and Wang (2011).) Suppose F is a distribution function on the real

interval [a, b] having mean µ, a = sup{t : F(t) = 0} and b = inf{t : F(t) = 1}. A necessary

condition for F to be n-CM is that

a + (b − a)/n ≤ µ ≤ b − (b − a)/n. (2.2)

If F is also continuous with a monotone density on [a, b], condition (2.2) is also sufficient.

For example, according to Theorem 2.2, the Beta(α, β) distribution with parameters α, β > 0

satisfying (α − 1)(β − 1) ≤ 0 and 1
n ≤

α
α+β
≤ n−1

n is n-CM.
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3. Completeness and decomposition theorems

In this section, we show that any n-CM distribution can be obtained as the limit of a convex

combination of discrete n-CM distributions. First, we show that the sets Mn(µ) and Mn are

complete under weak convergence, that is any n-CM distributions can be seen as the the limit

of n-CM discrete distributions.

Theorem 3.1. The following statements hold for weak convergence.

(a) The limit of a sequence of n-CM distribution functions (with center µ) is n-CM (with center

µ).

(b) Any n-CM distribution function with center µ is the limit of a sequence of discrete n-CM

distribution function with center µ.

(c) A distribution function is n-CM (with center µ) if and only if it is the limit of a sequence of

discrete n-CM distribution functions (with center µ).

Proof.

(a) Denote by Fk, k ∈ N a sequence of n-CM distributions having limit F. Since Fk ∈ Mn, for

any k ∈ N it is possible to find Xk
1, . . . , X

k
n such that Xk

i ∼ Fk, 1 ≤ i ≤ n and

P(Xk
1 + · · · + Xk

n = ck) = 1, (3.1)

for some ck ∈ R. As Fk w
→ F, there also exist n random variables X1, . . . , Xn identically

distributed as F for which Xk
i

w
→ Xi, 1 ≤ i ≤ n and, therefore, such that

(Xk
1 + · · · + Xk

n)
w
→ (X1 + · · · + Xn). (3.2)

Combining (3.1) and (3.2), we find that X1 + · · · + Xn = c = lim ck holds a.s.. Since

Xi ∼ F, 1 ≤ i ≤ n, this implies that F is n-CM. If we have ck = nµ for all k ∈ N, then

c = nµ.

(b) Let X = (X1, . . . , Xn) be an n-complete mix on Rn with Xi ∼ F, 1 ≤ i ≤ n and

X1 + · · · + Xn = nµ, a.s..

As X is supported on the set S n(µ) = {x ∈ Rn :
∑n

i=1 xi = nµ} ⊂ Rn, we can find a sequence

Fk, k ∈ N of discrete distributions on S n(µ) converging weakly to the distribution of X. The
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theorem follows by noting that Fk
1, the first marginal of Fk, is n-CM since Fk is supported

on S n(µ) and the sequence Fk
1, k ∈ N converges weakly to F.

(c) This is a corollary of points (a) and (b).

Now, we prove a decomposition theorem for n-CM distributions. In the following, we call

an n-discrete uniform distribution a uniform distribution on n points, that is giving mass 1/n at

each of the n points in its support.

Lemma 3.1. An n-discrete uniform distribution is n-CM.

Proof. Let F be an n-discrete uniform distribution on the points y1, . . . , yn. Let X =

(X1, . . . , Xn) be a random vector uniformly distributed on the n! vectors

(yπ(1), . . . , yπ(n)), π ∈ Pn,

where Pn is the set of all permutations of {1, . . . , n}. In the support of X, there are exactly

(n − 1)! vectors having the value y j as i-th component. Therefore, we have

P(Xi = y j) =
(n − 1)!

n!
= 1/n, 1 ≤ i, j ≤ n.

As a consequence, X has marginal distributions identically distributed as F. Since
∑n

i=1 yπ(i) is

constant on π, X is an n-complete mix and F is n-CM.

We denote by MS
n (µ) the set of all n-discrete uniform distributions with mean µ and by

L
(
MS

n (µ)
)

be the set of all countable convex combinations of elements inMS
n (µ), that is

L
(
MS

n (µ)
)

=

 ∞∑
k=1

akFk; Fk ∈ MS
n (µ), ak ≥ 0,

∞∑
k=1

ak = 1

 .
We show that any discrete n-CM distribution can be obtained as the countable convex combi-

nation of n-discrete uniform distributions.

Theorem 3.2. The following statements hold:

(a) The countable convex combination of n-CM distribution functions with center µ is n-CM

with center µ.

(b) If F is discrete, then F ∈ Mn(µ) if and only if F ∈ L
(
MS

n (µ)
)
.
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(c) If F ∈ L
(
MS

n (µ)
)

with F =
∑

k∈N akFk, the joint distribution G of an n-complete mix with

marginals F is given by

G(x1, · · · , xn) =
∑
k∈N

ak

n!

n∏
i=1

[nFk(x[i]) − i + 1]+,

where x[i] is the i-th order statistic of {x1, · · · , xn}.

Proof.

(a) The statement for finite convex combinations follows by induction from Proposition 2.1(3)

in Wang and Wang (2011). Now let ak, k ∈ N be a sequence of nonnegative values with∑+∞
k=1 ak = 1 and Fk ∈ Mn(µ), k ∈ N be a sequence of n-CM distributions having center µ.

W.l.o.g., we can assume a1 > 0 and define the new sequence

Gk =

∑k
i=1 aiF i∑k

i=1 ai
, k ∈ N.

Any Gk is the finite convex sum of n-CM distributions, thus it is n-CM. Since Gk w
→ G =∑+∞

k=1 akFk, we have that G is n-CM by point (a) in Theorem 3.1.

(b) The inclusion L
(
MS

n (µ)
)
⊂ Mn(µ), follows from (a). Then, it is sufficient to show

Mn(µ) ⊂ L
(
MS

n (µ)
)
. Let X = (X1, . . . , Xn) be a complete mix with center µ and discrete

marginals identically distributed as F. Denoting by {x j, j ∈ A ⊂ N} the countable support

of X, we have

F(s) =
1
n

n∑
i=1

P(Xi ≤ s) =
1
n

n∑
i=1

∑
j∈A

P
(
Xi ≤ s|X = x j

)
P(X = x j)

=
∑
j∈A

P(X = x j)

1
n

n∑
i=1

P
(
Xi ≤ s|X = x j

) =
∑
j∈A

a j

1
n

n∑
i=1

1{
x j

i≤s
} ,

where x j
i denotes the i-th component of the vector x j and a j = P(X = x j), j ∈ A. Note that

the a j’s are nonnegative,
∑

j∈A a j = 1 and, for any j ∈ A, the function
∑n

i=1 1{
x j

i≤s
} is the

distribution function of a random variable uniformly distributed on {x j
1, . . . , x

j
n}. Being X

an n-complete mix, we have that
∑n

i=1 x j
i = nµ when a j > 0. As a result, F can be written

as a countable convex sum of distributions inMS
n (µ), that is F ∈ L(MS

n (µ)).

(c) First, note that G has marginals identically distributed as F since

lim
xi→+∞,i, j

R(x1, . . . , xn) =
∑
k∈N

akFk(x j) = F(x j), 1 ≤ j ≤ n.
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In order to show that G is the distribution an n-complete mix, we prove that

Gk(x1, . . . , xn) =
1
n!

n∏
i=1

[nFk(x[i]) − i + 1]+

is the distribution of an n-complete mix with center µ, for any k ∈ N.

Since Fk ∈ MS
n (µ), there exist yk

1 ≤ · · · ≤ yk
n such that

∑n
i=1 y

k
i = nµ and Fk(yk

i ) =

1/n
∑n

j=1 1{
yk

j≤y
k
i

}. Noting that

1
n!

n∏
i=1

[nFk(x[i]) − i + 1]+ =
1
n!

∑
π∈Pn

1{
yk
π(i)≤xi, 1≤i≤n

},

we have that, for any k ∈ N, Gk is uniformly distributed on the n! vectors

(yk
π(1), . . . , y

k
π(n)), π ∈ Pn, k ∈ N.

Thus, Gk is the distribution of an n-complete mix with center 1/n
∑n

i=1 y
k
i = µ, from which

it follows that also G =
∑

k∈N akGk is the distribution of an n-complete mix with center µ.

Remark 3.1. There are some points to remark about Theorem 3.2:

(i) Similarly to what done in the proof of point (b), one can show that an arbitrary n-CM

distribution with center µ can be written as an integral of n-discrete uniform distributions

with center µ.

(ii) Using the notation introduced in the proof of point (c), the distribution G can be seen

as the distribution of the random variable
∑

k∈N 1{Z=k}Gk, where Z a discrete random

variable giving mass ak to k ∈ N and independent from the Gk’s. Note, however, that

the distribution of an n-complete mix for a discrete F may not be unique.

(iii) A number of the n points of the support of an n-discrete distribution can be chosen to

be equal. The set of n-discrete uniform distributions therefore includes all distributions

giving masses (k/n), k ∈ N to at most n different points.

(iv) The convex combination of n-discrete distributions with different centers may fail to be n-

CM. For example, the Bernoulli distribution F(s) =
(
1{0≤s} + 1{1≤s}

)
/2 is the convex sum

of two 1-CM distributions but it is not 1-CM. Therefore, the assumption of a common

center cannot be dropped in all points of Theorem 3.2.
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As a corollary of Theorem 3.1 (c) and Theorem 3.2 (b), we find the main result of this

section.

Corollary 3.1. A distribution is n-CM with center µ if and only if is the limit of a sequence of

a countable convex combination of n-discrete uniform distributions with center µ.

4. Distributions with a concave density

In this section, we show that any continuous distribution with a concave density is com-

pletely mixable. Similarly to the method used in the proof of Theorem 2.4 in Wang and Wang

(2011), we will first prove complete mixability of a particular class of discrete distributions

with concave mass function.

Theorem 4.1. Suppose F is a discrete distributions on the set

S N,M = {−N,−N + 1, . . . ,−1, 0, 1, . . . ,M − 1,M}, N,M ∈ N0,

having mean µ = 0 and mass function f : S N,M → [0, 1] satisfying f (−N), f (M) > 0 and

f (i − 1) + f (i + 1) ≤ 2 f (i), −N + 1 ≤ i ≤ M − 1. (4.1)

Then, F is n-CM for any n ≥ 3.

In order to prove Theorem 4.1, we need the following lemma.

Lemma 4.1. Under the assumptions of Theorem 4.1, we have

M ≤ 2N and N ≤ 2M.

Proof. We only need to prove that M ≤ 2N, as N ≤ 2M follows by symmetry. The

condition µ = 0 implies that M = 0 if and only if N = 0, thus we can assume M,N to be both

positive. It is easy to see that (4.1) is equivalent to

A(v) ≥
(w − v)A(u) + (v − u)A(w)

w − u
, (4.2)

for all u, v, w ∈ S N,M such that u ≤ v ≤ w and u < w. For instance, the two inequalities

f (v) ≥
f (v − 1) + f (v + 1)

2
and f (v − 1) ≥

f (v − 2) + f (v)
2

imply

f (v) ≥
f (v − 2) + 2 f (v + 1)

3
.
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As particular cases of (4.2), we get

f (i) ≥
(M − i) f (0) + i f (M)

M
>

M − i
M

f (0), 0 ≤ i ≤ M, (4.3a)

f (0) ≥
M f (− j) + j f (M)

M + j
>

M
M + j

f (− j), 0 ≤ j ≤ N. (4.3b)

Since µ =
∑

i∈S N,M
i f (i) = 0, (4.3) implies that

f (0)M(M − 1)(M + 1)
6M

=
f (0)
M

M∑
i=1

i(M − i)

<

M∑
i=1

i f (i) =

N∑
j=0

j f (− j) <
f (0)
M

N∑
j=1

j(M + j) =
f (0)N(N + 1)(3M + 2N + 1)

6M
,

from which we have

M(M + 1)(M − 1) < N(N + 1)(3M + 2N + 1).

In the above equation, the right-hand side is increasing in N and equality holds when N =

(M − 1)/2. Therefore, we have N > (M − 1)/2, namely M ≤ 2N.

Proof of Theorem 4.1. . We will prove the theorem by induction over M+N, the cardinality

of the set S N,M . Note that, if M = N = 0, F is the unit mass at 0 and thus is completely

mixable for any n. Moreover, the case M + N = 1 is not allowed by the zero mean condition.

Therefore, the first step of the induction will be M+N = 2. In this case the zero mean condition

combined with (4.1) forces F to be supported on {−1, 0, 1} with masses f (−1) = f (1) = a and

f (0) = 1 − 2a with 0 < a ≤ 1/3. We can write F as

F = (3a)G + (1 − 3a)H, (4.4)

where G is the uniform distribution on {−1, 0, 1} and H is the unit mass at 0. Being a unit mass,

H is n-CM for any n ∈ N, while G satisfies the assumptions of Lemma 2.8 in Wang and Wang

(2011) with d = n − 1 and, then , is n-CM for any n ≥ 2. Equation (4.4) states that F is the

convex sum of two n-CM distributions with center µ = 0. By Theorem 3.2(a), F is n-CM, for

any n ≥ 2.

Now, we assume that the theorem holds for any distribution H satisfying the assumption of

the theorem with N + M ≤ (K − 1) points in S N,M and prove that it holds for any distribution

F with K points in S N,M , K ≥ 3. As illustrated for N + M = 2, the idea of the proof is to

decompose F as the convex sum of such an H and another n-CM distribution G.
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Let F a distribution satisfying the assumption of the theorem with N + M = K,K ≥ 3.

W.l.o.g., in what follows we assume M ≥ N (the theorem holds symmetrically for N ≤ M).

We denote by G the discrete distribution having mass function g : S N,M → [0, 1] given by

g(−N) =
(M − N + 1)
(M + N + 1)

, g(−N + 1) = · · · = g(M) =
2N

(M + N + 1)(M + N)
.

Elementary calculations show that the distribution G has first moment µ = 0 and, being M ≥ N,

that g is decreasing. From Lemma 4.1, we have that M ≤ 2N ≤ (n − 1)N for any n ≥ 3, and,

then, the distribution G satisfies the assumption of Lemma 2.8 in Wang and Wang (2011) with

d = n − 1. As a consequence, G is n-CM. Now, we define the function f̂ : S N,M → R as

f̂ = f − k1g, (4.5)

where

k1 = min
{

f (−N)
g(−N)

,
f (M)
g(M)

}
> 0.

Note that we have

f̂ (−N) = f (−N) − k1g(−N) ≥ f (−N) −
f (−N)
g(−N)

g(−N) = 0, (4.6a)

f̂ (M) = f (M) − k1g(M) ≥ f (M) −
f (M)
g(M)

g(M) = 0. (4.6b)

Since g is convex on S N,M , the function f̂ is the sum of two concave densities and, therefore,

is concave. Concavity of f̂ , combined with (4.6), implies that f̂ is also nonnegative on S N,M .

At this point, it is possible to define the discrete distribution H as the one having concave mass

function

h = f̂ /k2, (4.7)

where

k2 =
∑

i∈S N,M

f̂ (i).

Note that the distribution H has mean µ = 0 as

M∑
i=−N

ih(i) =
1
k2

 M∑
i=−N

i f (i) − k1

M∑
i=−N

ig(i)

 = 0.

Moreover, at least one of the values f̂ (−N) and f̂ (M) is equal to zero. In conclusion, H is a

distribution function on a subset of S N,M containing at most K − 1 points, having mean µ = 0
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and concave mass function h. By the induction assumption, H is n-CM. Combining (4.5)

and (4.7), we obtain that

F = k1G + k2H, with k1 + k2 = 1.

Thus, F is the convex combination of two n-CM distributions and, then, F is n-CM.

Theorem 4.2. Any continuous distribution on a bounded interval (a, b) having a concave

density is n-CM for any n ≥ 3.

Proof. The proof is analogous to the part of the proof of Theorem 2.4 in Wang and Wang

(2011) following Lemma 2.8. For any F with a concave density, we find a sequence of discrete

concave distributions that goes to F. Note that a distribution with concave density on (0, 1) is

n-CM for all n ≥ 3, hence the mean condition

1/n ≤ µ ≤ 1 − 1/n

is automatically satisfied for n ≥ 3.

According to Theorem 4.2, The Beta(α, β) distribution with parameters 1 ≤ α, β ≤ 2 is

n-completely mixable for n ≥ 3. Any triangular distribution has a concave density and hence

it is n-completely mixable for n ≥ 3.

5. Radially symmetric distributions

In this section, we show that any n-radially symmetric distribution is completely mixable.

The definition of an n-radially symmetric distribution which we give here is an extension of

the one introduced in Knott and Smith (2006).

Definition 5.1. Suppose that U is a random variable uniformly distributed on (0, 1) and let

A = (A1, . . . , An), B = (B1, . . . , Bn) be two random vectors on Rn independently distributed

from U. A random variable X and its distribution are called n−radially symmetric if

X = a +

n∑
k=1

(Ak cos(2πkU) + Bk sin(2πkU)) , (5.1)

for some constant a ∈ R.

In the above definition, the random vectors A and B can be chosen to have an arbitrary

distribution on Rn.
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Theorem 5.1. Any n-radially symmetric distribution is m-CM for any m ≥ n + 1.

Proof. Let F be the n−radially symmetric distribution of a random variable X of the form (5.1),

for some U uniformly distributed on (0, 1) and A and B distributed independently from U.

Fixed an integer m ≥ n + 1, let the m random variables X1, . . . , Xm be defined as

Xi = a +

n∑
k=1

(
Ak cos

(
2πk

(
V +

i
m

))
+ Bk sin

(
2πk

(
V +

i
m

)))
, 1 ≤ i ≤ m,

where V is random variable uniformly distributed on (0, 1) and independent from A and B.

Note that

cos
(
2πk

(
V +

i
m

))
∼ cos(2πkU) and sin

(
2πk

(
V +

i
m

))
∼ sin(2πkU),

for 1 ≤ i ≤ m and 1 ≤ k ≤ n. Therefore, the Xi’s are all identically distributed as F. To

complete the proof, we show that their sum is, a.s, the constant ma.

For 1 ≤ i ≤ m, let ξi = ei2πki/m, where i is the imaginary unit. We denote by dk = gcd(k,m)

the greatest common divisor of k and m. Since m ≥ n+1, we have that k ≤ n ≤ m−1 and, thus,

dk < m for 1 ≤ k ≤ n. When dk = 1, the m values ξ1, . . . , ξm are all the roots of the equation

ξm = 1 and, therefore,
∑m

i=1 ξi = 0. If, instead, 1 < dk < m, then the m/dk values ξ1, . . . , ξm/dk

are all the roots of the equation ξm/dk = 1 and, again, we have
∑m

i=1 ξi = dk
∑m/dk

i=1 ξi = 0. From

this, it easily follows that

m∑
i=1

(
cos

(
2πk

(
V +

i
m

))
+ i sin

(
2πk

(
V +

i
m

)))
=

m∑
i=1

ei2πk(V+i/m) = ei2πkV
m∑

i=1

ξi = 0.

The above equality implies that

k∑
i=1

cos
(
2πk

(
V +

i
m

))
=

k∑
i=1

sin
(
2πk

(
V +

i
m

))
= 0

and, therefore, that

m∑
i=1

Xi = ma +

m∑
i=1

n∑
k=1

(
Ak cos

(
2πk

(
V +

i
m

))
+ Bk sin

(
2πk

(
V +

i
m

)))
= ma +

n∑
k=1

Ak

m∑
i=1

cos
(
2πk

(
V +

i
m

))
+ Bk

m∑
i=1

sin
(
2πk

(
V +

i
m

)) = ma.

An interesting example of a radially symmetric distribution is given by the continuous random

variable X = cos(2πU), where U is uniformly distributed on (0, 1). By Theorem 5.1, the

distribution of X is n-CM for n ≥ 2. As illustrated in Figure 1, the density of X is a convex
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Figure 1: The density of the random variable X = cos(2πU).

function on the interval [−1, 1]. Therefore, Theorem 5.1 indicates that there exist continuous

n-CM distributions with a large density at both endpoints of their support. This result is new if

compared with Theorem 2.1 and Theorem 2.2, where complete mixability is stated for general

classes of monotone or unimodal symmetric densities. As the set of n-CM distributions with a

given center is convex, Theorem 5.1 is no doubt useful to construct new classes of completely

mixable distributions.

6. Final remarks and open problems

In this paper, we state three main results concerning complete mixability. First, a distribu-

tion function is n-completely mixable if and only if is the limit of a sequence of a countable

convex combination of n-discrete uniform distributions with the same center; see Corollary 3.1.

Then, in Theorem 4.2, we state that a continuous distribution function with a concave density is

n-completely mixable. Finally, in Theorem 5.1, we show that radially symmetric distributions

are n-completely mixable.

In view of the relevant applications to quantitative risk management illustrated in Section 1,

we believe that the above results would be useful to prove, for instance, the complete mixability

of unimodal asymmetric distributions. As all the conditions implying the n-complete mixabil-

ity of a distributions becomes less strict when the dimension n increases, we also conjecture

that any distribution F on a finite interval is n-completely mixable for n large enough. Finally,

we remark that the question about the uniqueness of the center of a n−CM distributions with
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infinite mean is still open.
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