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1 Introduction

A classic problem in simulation and variance reduction is to minimize the variance

of the sum of random variables X1, · · · , Xn with given marginal distributions P , i.e.

min
Xi∼P

Var(X1 + · · ·+Xn). (1)

See Fishman [9] and Hammersley and Handscomb [11] for references about this problem.

For n = 2 the solution is given by the antithetic variates X1 = F−(U) and X2 =

F−(1 − U) where F− is the inverse cdf of P and U is uniform on [0,1]. For n ≥ 3 the

problem is generally difficult to solve. In Gaffke and Rüschendorf [10] and Rüschendorf

and Uckelmann [21], their idea is to concentrate
∑n

i=1Xi at the expectation as much as

possible. Since it is obvious
∑n

i=1Xi = c is an optimal solution to (1) if such constant c

is possible. It raises a question: for which P , do there exist Xi ∼ P such that
∑n

i=1Xi

is a constant?

In this paper, we call a marginal distribution P of random variables with a con-

stant sum a complete mixable distribution. This property was studied by Gaffke and

Rüschendorf [10] in the case of uniform distributions. The case of distributions with

symmetric and unimodal density was studied for n = 3 by Knott and Smith [14], [15]

and for the general case n ≥ 2 by Rüschendorf and Uckelmann [21] using a different

method. The property was also extended to multivariate distributions by Rüschendorf

and Uckelmann [21]. In summary, they provided that the uniform distributions and

distributions with symmetric and unimodal density are completely mixable. In this

paper, we define the complete mixability with a focus on the marginal distribution, pro-

vide some nice properties of the mixability, and prove that distributions with monotone

density and moderate mean are also completely mixable.

Another main contribution of this paper is that by using the complete mixability
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we solve the convex minimization problem

min
X1,··· ,Xn∼P

Ef (X1 + · · ·+Xn) (2)

in general where f is a convex function and P is a monotone distribution, i.e. a dis-

tribution with monotone density on its support. There are many special cases of (2),

such as the variance minimization problem (1) and the minimum of expected product

minXi∼U[0,1] E(X1 · · ·Xn). Problem (2) is a lower bound problem of the Fréchet class

F(P, · · · , P ) and it is related to various topics in statistics, risk theory, copulas and

stochastic orders. We refer to Embrechts et al. [4], [5] for problems of bounds in risk

theory, Nelsen [16] for copulas, Joe [12] for Fréchet classes and Shaked and Shanthikumar

[22] for stochastic orders.

The rest of the paper is organized as follows. In Section 2 we introduce the com-

pletely mixability and prove our main theorem. In Section 3 we use the results in Section

2 to solve the minimization problem (2) for monotone distributions P . Applications of

our main results are provided in Section 4. Some open problems are presented in Section

5. In Section 6 we draw our conclusions. Details and some of the proofs are given in

Appendix.

Throughout this paper, we denote U the uniform distribution on [0,1]. In the

notation EP (f(X)) P is the distribution of X, and in the notation EQ(f(X1, · · · , Xn))

Q is the joint distribution of X1, · · · , Xn.

2 The complete mixability

2.1 Definition and basic properties

Rüschendorf and Uckelmann [21] investigated random variables with constant sums

and associated it with variance minimization problem (1). In this article, we call the
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marginal distribution of random variables with a constant sum a completely mixable

distribution, as in the following definition.

Definition 2.1. Suppose n is a positive integer. A probability distribution (probability

measure) P on R is completely mixable with index n if there exist n random

variables X1, · · · , Xn ∼ P such that X1 + · · · + Xn is a constant. The distribution of

(X1, · · · , Xn) is called an n-complete mix.

Proposition 2.1. (Basic properties of the complete mixability.)

(1) (Invariance under affine transformations) Suppose the distribution of X is com-

pletely mixable with index n, then for any constants a and b, the distribution of

aX + b is completely mixable with index n.

(2) (Center of the complete mixability) Suppose P is completely mixable with index n,

Xi ∼ P , i = 1, · · · , n and µ = 1
n(X1 + · · ·+Xn) is a constant. We say µ is a center

of P and P is centered at µ. If P follows the weak law of large numbers (WLLN),

then µ is unique. If EP (X) exists, then µ = EP (X).

(3) (Additivity 1: distribution-wise) Suppose P and Q are completely mixable with index

n and centered at the same point µ. Then for any λ ∈ [0, 1], λP + (1 − λ)Q is

completely mixable with index n and centered at µ.

(4) (Additivity 2: index-wise) Suppose P is completely mixable with index n and Q is

completely mixable with index k, then n
n+kP+ k

n+kQ is completely mixable with index

n + k. As a consequence, if P is completely mixable with index n and with index

k, then P is also completely mixable with index n + k, dn and dk for any positive

integer d.

(5) (Additivity 3: random-variable-wise) Suppose P and Q are completely mixable with

index n, X ∼ P and Y ∼ Q are independent. Then the distribution of X + Y is
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completely mixable with index n.

(6) (Completeness) Suppose distributions P and Pi are supported in a compact set S ⊂

R, Pi are completely mixable with index n, i = 1, 2, · · · and Pk
d→ P as k → ∞.

Then P is completely mixable with index n.

(7) (A necessary condition) Suppose the distribution P is completely mixable with in-

dex n, centered at µ and X ∼ P . Let a = sup{x : P(X ≤ x) = 0} and

b = sup{x : P(X ≤ x) < 1}. If one of a and b is finite, then the other one is

finite, and a+ b−a
n ≤ µ ≤ b− b−a

n .

Proof.

(1) This follows immediately from the definition.

(2) Assuming E(X1) exists, taking expectation on both sides of µ = 1
n(X1 + · · · + Xn)

gives us µ = E(X1). Now suppose P follows WLLN. We can take independent copies

of (X1, · · · , Xn), denoted by {(X1,i, · · · , Xn,i)}∞i=1, and take their average

nµ =
1

k

k∑
i=1

(X1,i + · · ·+Xn,i)

=
1

k

k∑
i=1

X1,i + · · ·+ 1

i

k∑
i=1

Xn,i

= nE(X11{|X1|≤k}) + op(1)

as k goes to infinity. Therefore E(X11{|X1|≤k})→ µ and µ is unique.

(3) Suppose X1 + · · ·+Xn = nµ, Xi ∼ P and Y1 + · · ·+ Yn = nµ, Yi ∼ Q, i = 1, · · · , n.

Let Z be a Bernoulli(λ) random variable independent of {Xi}ni=1 and {Yi}ni=1. Set

Zi = 1{Z=1}Xi + 1{Z=0}Yi, then Z1 + · · · + Zn = nµ and Zi ∼ λP + (1 − λ)Q,

i = 1, · · · , n.

(4) Suppose X1 + · · ·+Xn = nµ, Xi ∼ P , i = 1, · · · , n and Y1 + · · ·+ Yk = kν, Yj ∼ Q,

j = 1, · · · , k. Let σ be a random permutation uniformly distributed on the set of
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all (n+ k)-permutations and independent of X1, · · · , Xn, Y1, · · · , Yk. Denote

(Z1, · · · , Zn+k) = σ(X1, · · · , Xn, Y1, · · · , Yk),

then Z1 + · · ·+ Zn+k = nµ+ kν and Zi ∼ n
n+kP + k

n+kQ, i = 1, · · · , n+ k.

(5) Let Xi ∼ P , Yi ∼ Q, i = 1, · · · , n such that X1 + · · · + Xn and Y1 + · · · + Yn are

constants. Denote X = (X1, · · · , Xn),Y = (Y1, · · · , Yn) and let PX and PY be the

distributions of X and Y. Let X̂ = (X̂1, · · · , X̂n) ∼ PX and Ŷ = (Ŷ1, · · · , Ŷn) ∼ PY

be independent random vectors. Then we have X̂1 + · · ·+ X̂n and Ŷ1 + · · ·+ Ŷn are

both constants. Denoting P̂ by the distribution of X̂+Ŷ, the 1-marginal distribution

P ′ of P̂ is identical with the distribution of X + Y . Now Xi + Yi ∼ P ′, i = 1, · · · , n

and
∑n

i=1(Xi + Yi) is a constant. Hence P ′ is completely mixable with index n.

(6) First note that µ := EP (X) = limk EPk(X) since S is compact. Denote Rk an n-

complete mix with marginal distribution Pk. Since Sn is also a compact set, there

is a subsequence {Rki} such that Rki converges weakly to a distribution Q on Sn.

Obviously the 1-marginal distribution of Q is the limit of 1-marginal distributions

of Rk, namely P . (X1, · · · , Xn) ∼ Q will lead to X1 + · · ·+Xn = nµ. Therefore, Q

is an n-complete mix and P is completely mixable with index n.

(7) Let Xi ∼ P , i = 1, · · · , n, X1 + · · · + Xn = nµ and suppose a > −∞. Note that if

µ < a+ b−a
n , then X1 = nµ− (X2 + · · ·+Xn) ≤ nµ− (n−1)a < b, which contradicts

the fact that b = sup{x : P(X ≤ x) < 1}. Thus µ ≥ a + b−a
n and b < ∞. The

inequality µ ≤ b− b−a
n and the case given b <∞ can be obtained similarly.

One nice result for the complete mixability is given in Rüschendorf and Uckelmann

[21]. We cite this result in a rewritten form in the following theorem.

Theorem 2.2. (Rüschendorf and Uckelmann) Suppose the probability density func-

tion p(x) of a distribution P is symmetric and unimodal, then P is completely mixable
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with any index greater than 1.

Remark 2.1.

1. We conjecture that the center µ in Proposition 2.1(2) is always unique, i.e. for

given distribution P , the center does not depend on the way we choose the index

n or the random variables X1, · · · , Xn. However we did not come to a proof.

2. Rüschendorf and Uckelmann [21] also extended the complete mixability to multi-

variate distributions and constructed examples in some standard situations.

A few examples of completely mixable distributions are given in the following propo-

sition.

Proposition 2.3. (Examples of complete mixable distributions)

(1) P is completely mixable with index 1 if and only if P is the distribution of a constant.

(2) P is completely mixable with index 2 if and only if P is symmetric, i.e. X ∼ P and

a−X ∼ P for some constant a.

(3) Suppose r = p
q is rational, p, q ∈ N, then the binomial distribution B(n, r) is com-

pletely mixable with index q.

(4) The uniform distribution on any interval [a, b] is completely mixable with any index

greater than 1.

(5) The normal distribution and the Cauchy distribution are completely mixable with

any index greater than 1.

Proof. (1) and (2) are obvious. For (3), let S = (0, · · · , 0︸ ︷︷ ︸
q−p

, 1, · · · , 1︸ ︷︷ ︸
p

), σ be a random

permutation uniformly distributed on the set of all q-permutations, and the random

vector X = (X1, · · · , Xq) = σ(S). We can check that Xi ∼ B(1, r) for i = 1, · · · , q and
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X1 + · · ·+Xq = p is a constant. Hence B(1, r) is completely mixable with index q. The

rest part of (3) follows from Proposition 2.1(5). (4) can be found in Rüschendorf and

Uckelmann [21]. (5) is an application of Theorem 2.2.

The following theorem is the key result of this paper. It shows the complete mixa-

bility of monotone distributions on a finite interval.

Theorem 2.4. Suppose the probability density function p(x) of a distribution P is de-

creasing on [0, 1], p(x) = 0 elsewhere, and EP (X) ≥ 1
n . Then P is completely mixable

with index n.

Before approaching the proof of this theorem, we have to introduce the mass-version

of the complete mixiability and provide some necessary preliminaries.

2.2 Mass-version of the complete mixiability

In the following, a function A : Z→ R+
0 is called a mass function.

Definition 2.2. (Simply mixable mass functions, centered at 0.) Let S be a subset of Z.

A mass function B is simply mixable on S with index n if its support is contained

in S, and

(a) B(i) ∈ N0 for each i ∈ S. N0 is the set of nonnegative integers.

(b) B(S) :=
∑

j∈S B(j) = n.

(c)
∑

j∈S j ×B(j) = 0.

Definition 2.3. (Completely mixable mass functions, centered at 0.) Let S be a subset

of Z. A mass function A is completely mixable on S with index n if A =
∑∞

i=1 aiBi

for some ai ≥ 0 and Bi simply mixable on S with index n.

Remark 2.2. Suppose the support of the mass function A is contained in S. The following

facts are obvious to check:
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(1) Suppose S ⊂ T . If A is completely mixable on S with index n, then it is completely

mixable on T with index n.

(2) If A is completely mixable on S with index n, then cA is completely mixable on S

with index n for any constant c ≥ 0.

(3) If Ai is completely mixable on Si with index n, i = 1, · · · , k and A0 = A1 + · · ·+Ak,

then A0 is completely mixable on
⋃
i Si with index n.

The following lemma explains why Definition 2.3 is reasonable.

Lemma 2.5. Suppose the mass function A is supported in a subset of S and 0 < A(S) <

∞. A is completely mixable on S with index n, if and only if the corresponding discrete

probability distribution P , i.e.

P ({i}) =
A(i)

A(S)
,

is completely mixable with index n.

The proof will be given in Appendix.

2.3 A combinatorial proof of Theorem 2.4

For n = 1 or 2, the proof is trivial since no distribution satisfies the assumption

when n = 1, and only one distribution, namely the uniform distribution, satisfies the

assumption when n = 2. Hence we only need to prove the case of n ≥ 3. Since the

complete mixability is invariant under affine transformations, without losing generality

we assume the center to be 0.

Let d andN be positive integers, where d = n−1 ≥ 2, and let SdN := {−N, · · · ,−1, 0, 1, · · · , dN}

be a set of (d+ 1)N + 1 points.

Lemma 2.6. Suppose the mass function A is supported in SdN , and the pair (A,N)

satisfies

9



(i) (decreasing mass)

A(−N + 1) ≥ · · · ≥ A(0) ≥ · · · ≥ A(dN) ≥ 0, (3)

(ii) (boundary condition)

CN (A) = A(−N)− [d×A(dN)+(d− 1)×A(dN−1)+ · · ·+1×A(dN−d+1)] ≥ 0,

(4)

(iii) (zero center of mass)
dN∑

i=−N
i×A(i) = 0. (5)

Then A is completely mixable on SdN with index d+ 1.

Proof. We prove this lemma by induction over N . Our idea is to write A = Ā+
∑K

i=0 biBi

such that for each i, bi ≥ 0, Bi is a simply mixable (on SdN with index d+1 if not specified)

mass function, Ā is supported in SdN−1, and (Ā,N − 1) satisfies (i) and (ii). Note that

(iii) is automatically satisfied, since each simple mixable mass function Bi is centered at

0. First we need the following fact.

Lemma 2.7. If (3), (5) in Lemma 2.6 hold and A(−N) ≥ d+1
2d A(−N + 1), then (4)

holds.

The proof will be presented in Appendix. This lemma implies that if A(−N) ≥

A(−N + 1), (3) and (5) hold, then (4) holds. Thus, a decreasing mass function with

zero center is sufficient for Lemma 2.6.

Now suppose Lemma 2.6 holds for the case of N − 1 (here N ≥ 2).

Case 1. CN (A) = 0.

If A(−N)=0 then (4) implies that A(dN) = A(dN −1) = · · · = A(dN −d+ 1) = 0.

Thus A is supported in SdN−1 and (A,N − 1) satisfies (i), (ii) and (iii). Therefore A is

completely mixable on SdN−1 (and hence on SdN ) with index d+ 1.
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If A(−N) > 0, we construct Bi, i = 0, 1, · · · , d − 1 such that Bi(−N) = d − i,

Bi(−N + 1) = i, Bi(dN − i) = 1 and 0 otherwise. Obviously each Bi is simply mixable.

Let bi = A(dN − i) and Ā = A −∑d−1
i=0 biBi. It is straightforward to check Ā is still a

mass function and is supported in SdN−1. Clearly Ā(i) = A(i) for i = −N+2, · · · , dN−d,

and hence (i) is satisfied by (Ā,N − 1).

The rest work is to check (ii) CN−1(Ā) ≥ 0. It is just some algebraic calculation

and we leave it in Appendix. Thus Ā is completely mixable on SdN−1 with index d+ 1.

This shows A = Ā+
∑d−1

i=0 biBi is completely mixable (on SdN ).

Case 2. CN (A) > 0.

Denote M = MA = max{i : A(i) > 0}. By (i) and A(−N) > 0, it follows that

N ≤M ≤ dN . Let q and r be integers such that

(d+ 1)N = (N +M)q + r, 0 ≤ r < N +M.

Obviously q < d. For i = 0, 1, · · · ,M + N − r, Let Bi(−N) = d − q, Bi(M) = q − 1,

Bi(r − N + i) = Bi(M − i) = 1 and 0 elsewhere. It is easy to check each Bi is simply

mixable.

Let T = TA =
∑M+N−r

i=0 Bi. Then T is completely mixable, T (−N) = (d− q)(M +

N − r + 1), T (M) = (q − 1)(M + N − r + 1) + 2, T (r − N) = T (r − N + 1) = · · · =

T (M − 1) = 2 and 0 otherwise. We have

CN (T ) =


(d− q)(M +N − r + 1), M ≤ dN − d,

(d− 1)((d+ 1)N − 2r + 1)− (d− r + 1)(d− r), M > dN − d.

Thus CN (T ) > 0. Let bA = max{x : xT (M) ≤ A(M), xCN (T ) ≤ CN (A))}. For

each mass function A, we define an operator RA := A − bATA. Note that CN (RA) =

CN (A)− bACN (T ). It is straightforward to check RA is still a mass function, (RA,N)

satisfies (i), (ii), (iii) and either RA(M) = 0 or CN (RA) = 0.

If CN (RA) = 0, then RA fits into Case 1, being completely mixable and therefore

A = RA+ bATA is completely mixable.
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If CN (RA) > 0, then RA(M) = 0 and MRA ≤ M − 1. Now we consider RkA,

k = 2, 3, · · · . Since MRkA ≥ 0 for all k as long as RkA 6= 0, we have CN (RkA) = 0 for

some k. Thus RkA is completely mixable and so is A = RkA+
∑k−1

i=0 bRiATRiA.

Now it is only left to show that the lemma holds for N = 1. Let TA and MA be

defined as in Case 2. When N = 1, (iii) becomes C1(A) = 0, therefore C1(TA) = 0 since

(TA, 1) satisfies (iii). For A(−1) = 0, A = 0 on Sd1 \ {0} and the lemma is trivial. For

A(−1) > 0, let bA = A(MA)/TA(MA) and RA := A − bATA. Similar to case 2, RA is

still a mass function, (RA, 1) satisfies (i), (ii), (iii) and RA(MA) = 0. We consider RkA,

k = 2, 3, · · · and eventually MRkA = 0 for some k. Hence RkA is completely mixable

and so is A. This completes the proof.

The following lemma is an immediate consequence of Lemma 2.5, Lemma 2.6

and Lemma 2.7.

Lemma 2.8. Suppose the probability mass function of a distribution P with mean 0 is

decreasing on SdN and is 0 elsewhere, then P is completely mixable with index d+ 1.

Let SN = {−N/N, (−N + 1)/N, · · · , (dN − 1)/N, dN/N}. For each continuous

distribution P on [−1, d] with mean zero and decreasing density, let Y ∼ P . Denote P̄N

the distribution function of bNY c/N and P̂N the discrete uniform distribution on SN .

Since

− 1

N
≤
∫
yP̄N (dy) ≤ 0

and ∫
yP̂N (dy) =

d− 1

2
≥ 1

2
,

there exists λN : 0 ≤ λN < 2/N such that

∫
y((1− λN )P̄N + λN P̂N )(dy) = 0.
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Then the distributions {(1− λ)P̄N + λP̂N} are decreasing on SN , with mean zero, and

converge weakly to P as N → ∞. This argument shows that there exist Pk
d→ P and

each Pk is completely mixable with index d+1 and centered at 0. Then by Proposition

2.1(6), as the limit of completely mixable distributions, each continuous distribution P

on [−1, d] with mean 0 and decreasing density is completely mixable with index d+ 1.

Finally, by Proposition 2.1(1), each continuous distribution P on [0, 1] with mean

1
n and decreasing density is completely mixable with index n. Just note that any de-

creasing density on [0, 1] is also an decreasing density on [0, a], hence each continuous

distribution P on [0, 1] with mean a
n , a ≥ 1 and decreasing density is completely mixable

with index n. This completes the proof of Theorem 2.4.

As an corollary, we give the general version of Theorem 2.4.

Corollary 2.9. Suppose the probability density function p(x) of a distribution P is

monotone on [a, b] and p(x) = 0 elsewhere. If

• p(x) is increasing and

EP (X) ≤ b− 1

n
(b− a),

or

• p(x) is decreasing and

EP (X) ≥ a+
1

n
(b− a),

then P is completely mixable with any index greater than or equal to n.

Remark 2.3.

1. By Proposition 2.1(7), the condition in Corollary 2.9 is necessary and sufficient

for a distribution P with monotone density on [a, b] (where a and b are the infimum

and the supremum of {x : p(x) > 0}) to be completely mixable with index n.
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2. Different from Rüschendorf and Uckelmann [21], we did not construct random

variables X1, · · · , Xn ∼ P such that X1 + · · · + Xn is a constant (although we

know they exist).

3 Convex minimization problems

Given a distribution P with monotone density on its support, and a convex function

f : R→ R, the minimization problem (2)

min
X1,··· ,Xn∼P

Ef (X1 + · · ·+Xn)

is classic in variance minimization and simulation (see Rüschendorf and Uckelmann [21]

and Hammersley and Handscomb [11]).

In the following we denote G the inverse cdf of Yi ∼ P , then Yi = G(Xi) for some

Xi ∼ U, i = 1, · · · , n and (2) reads as

min
X1,··· ,Xn∼U

Ef (G(X1) + · · ·+G(Xn)) = min
C∈Cn

ECf (G(X1) + · · ·+G(Xn)) , (6)

where Cn is the set of all n-copulas (i.e., the joint-distribution of n U[0,1] random

variables. See Nelsen [16] for a detailed introduction to copulas). Note that

1. P having an increasing (decreasing) density is equivalent to G being continuous

and concave (convex). Thus both f and G have convexity in this problem and the

equivalent setting for (2) is

min
X1,··· ,Xn∼U

Ef (G(X1) + · · ·+G(Xn))

for f : R→ R being convex and G : [0, 1]→ R being concave (convex), continuous

and increasing.

2. If X ∼ P and P has decreasing density, we can simply replace X by −X (note

that f(−x) is also convex). Thus without loss of generality, in the following we

will assume P has increasing density.
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To obtain an optimal coupling for problem (6), we construct n-copulas QPn (c) (n ≥

2) for some 0 ≤ c ≤ 1/n, (X1, · · · , Xn) ∼ QPn (c) satisfying

(a) For each i = 1, · · · , n, the joint-density of X1, · · · , Xn given Xi ∈ [0, c] is uniformly

supported on line segments xj = 1− (n− 1)xi, ∀j 6= i, xi ∈ [0, c]; and

(b) G(X1) + · · ·+G(Xn) is a constant when Xi ∈ (c, 1− (n− 1)c) for any i = 1, · · · , n.

Proposition 3.1. Denote

H(x) = G(x) + (n− 1)G(1− (n− 1)x). (7)

There exists a copula QPn (c) satisfying (a) and (b) if∫ 1
n

c
H(t)dt ≤ (

1

n
− c)H(c). (8)

Proof. We first take random variables Y1, · · · , Yn ∼ U([0, c]∪ [1− (n− 1)c, 1]) such that

the joint-density of Y1, · · · , Yn is uniformly supported on each line segment yj = 1−(n−

1)yi, ∀j 6= i, yi ∈ [0, c]. By Corollary 2.9, there exist Z1, · · · , Zn ∼ U[c, 1− (n− 1)c]

such that G(Z1) + · · ·+G(Zn) is a constant since G(Zi) has an increasing density and

that (8) implies

E(G(Z1)) ≤ G(c) +
n− 1

n
[G(1− (n− 1)c)−G(c)].

Let U ∼ U be independent of (Y1, · · · , Yn, Z1, · · · , Zn) and Xi = 1{U<nc}Yi+1{U≥nc}Zi,

thenXi ∼ U for i = 1, · · · , n. Properties (a) and (b) are satisfied by the joint distribution

of X1, · · · , Xn, which shows that QPn (c) exists.

Remark 3.1.

1. Property (a) describes the joint distribution on the set
⋃n
i=1{0 ≤ xi ≤ c, 1− (n−

1)c ≤ xj ≤ 1, j 6= i}, and property (b) describes it on the set (c, 1 − (n − 1)c)n.

These two sets are disjoint and their union is [0, 1]n.
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2. The key idea of constructing QPn (c) is that when Xi is small, we let other random

variables Xj , j 6= i be large. When each of Xi, i = 1, · · · , n is of medium size, we

let G(X1) + · · ·+G(Xn) be a constant. This could be a good candidate of optimal

coupling since the variance of G(X1) + · · · + G(Xn) is largely reduced. Later we

will show that QPn (c) is optimal for the smallest possible c.

3. QPn (c) does not always exist for arbitrary c and it may not be unique while exists.

However, EQP
n (c)f(G(X1) + · · ·+G(Xn)) is determined by properties (a) and (b).

Therefore, in the following QPn (c) is just one representative in the family of copulas

satisfying (a) and (b).

4. It is easy to check that when QP2 (c) exists, it is exactly the Fréchet-Hoeffding lower

bound W2(u, v) = (u+ v − 1)+.

We denote cn the smallest c such that QPn (c) exists and let QPn := QPn (cn). Note

that cn = 0 if and only if P is completely mixable with index n. In the following we

will find cn and show the minimality of QPn . Figure 3.1 gives the support of one QP3 for

P = U. In this case, cn = 0 and P is completely mixable. Figure 3.2 gives the support

of one QP3 for P = −Expo(1) (see also Section 4.1). Note that such QP3 may not be

unique.

Proposition 3.2. The smallest possible c is given by

cn = min{c ∈ [0,
1

n
] :

∫ 1
n

c
H(t)dt ≤ (

1

n
− c)H(c)}. (9)

Proof. Suppose QPn (c) exists. By (b), when any of Xi ∈ (c, 1− (n− 1)c), G(X1) + · · ·+

G(Xn) is a constant, namely

G(X1) + · · ·+G(Xn) = E(G(X1) + · · ·+G(Xn)|c ≤ Xi ≤ 1− (n− 1)c)

=
n

1− nc

∫ 1−(n−1)c

c
G(t)dt.
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Figure 3.1: The support of one QP3 , P = U.
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Figure 3.2: The support of one QP3 , P = −Expo(1).
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Noting that the conditional distribution of G(Xi) on the set {Xi ∈ (c, 1− (n− 1)c)} is

completely mixable, by Proposition 2.1(7) its conditional mean is less than or equal

to G(c)/n+ (n− 1)G(1− (n− 1)c)/n. Thus we have a necessary condition on c,∫ 1−(n−1)c

c
G(t)dt ≤ (

1

n
− c)[G(c) + (n− 1)G(1− (n− 1)c)]. (10)

Together with (7), we obtain (8) from (10).

Note that H(x) is concave on [0, 1n ] since G(x) is concave. Hence the set of c

satisfying (10) is a closed interval [ĉn,
1
n ]. (8) becomes ĉn ≤ c ≤ 1

n and therefore cn ≥ ĉn.

By Proposition 3.1 we know QPn (ĉn) exists and thus cn = ĉn.

Now we have cn and QPn = QPn (cn). We will next show the minimality of QPn , where

the following lemma (see Theorem 3.A.5 in Shaked and Shanthikumar [22]) will be

used.

Lemma 3.3. Suppose X and Y with distribution functions F1, F2 respectively satisfy

EX = EY and for any c in [0, 1],
∫ c
0 F
−
1 (t)dt ≥

∫ c
0 F
−
2 (t)dt, where F−1 (t) = sup{x :

F1(x) < t} and F−2 (t) = sup{y : F2(y) < t}. Then for any convex function f , E(f(X)) ≤

E(f(Y )).

Theorem 3.4. Suppose P is a distribution with increasing density and G is the inverse

cdf of P , then for any convex function f ,

min
Z1,··· ,Zn∼P

Ef(Z1 + · · ·+ Zn) = EQ
P
n f (G(X1) + · · ·+G(Xn)) . (11)

Proof. Let (X1, · · · , Xn) ∼ QPn and Zi = G(Yi) where Yi ∼ U, i = 1, · · · , n. Denote

X = G(X1) + · · · + G(Xn) and Y = G(Y1) + · · · + G(Yn). Let F1 and F2 be the cdf of

X and Y respectively, F−1 (t) = sup{x : F1(x) < t} and F−2 (t) = sup{y : F2(y) < t}. We

will show that for any c ∈ [0, 1],∫ c

0
F−1 (t)dt ≥

∫ c

0
F−2 (t)dt.
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To obtain this, denote AX(u) =
⋃
i{Xi < u}, AY (u) =

⋃
i{Yi < u} and let W (u) =

P(AY (u)). Obviously u ≤ W (u) ≤ nu and W is invertible. For c ∈ [0, ncn], let u? =

W−1(c), it then follows that c ≥ u? ≥ c/n and {Yi ∈ [0, c/n]} ⊂ {Yi ∈ [0, u?]} ⊂ AY (u?).

By the definition of QPn , for each i, {Xi ∈ [0, c/n]∪ [1− (n− 1)c/n, 1]} = AX(c/n).

Note that Xi
d
= Yi ∼ U and P(AX(c/n)) = P(AY (u?)) = c, therefore

P(AY (u?) \ {Yi ∈ [0, c/n]}) = c− c/n = P(Yi ∈ [1− (n− 1)c/n, 1]).

Since G is increasing and the above two sets are equally measured, we have

E[1{Yi∈[1−(n−1)c/n,1]}G(Yi)] ≥ E[1AY (u?)\{Yi∈[0,c/n]}G(Yi)].

It follows that

E(1AX(c/n)G(Xi)) = E[(1{Xi∈[0,c/n]} + 1{Xi∈[1−(n−1)c/n,1]})G(Xi)]

= E[(1{Yi∈[0,c/n]} + 1{Yi∈[1−(n−1)c/n,1]})G(Yi)]

≥ E[(1{Yi∈[0,c/n]} + 1AY (u?)\{Yi∈[0,c/n]})G(Yi)]

= E(1AY (u?)G(Yi)).

Thus we have

E(1AX(c/n)X) ≥ E(1AY (u?)Y ). (12)

Note that H(x) is concave and differentiable. By the definition of cn, the mean of H(x)

on [cn,
1
n ] is H(cn). With H(x) being concave, we have H ′(cn) ≥ 0 and thus H(x) is

increasing on [0, cn]. Note that on the set AX(cn),

X =

n∑
i=1

1{Xi<cn}[G(Xi) + (n− 1)G(1− (n− 1)Xi)] =

n∑
i=1

1{Xi<cn}H(Xi),

and the events {Xi < cn} i = 1, · · · , n are disjoint. It follows that for t ≤ H(cn),

F1(t) = P(X ≤ t) = nP(H(X1) ≤ t). Thus for c ≤ ncn, F−1 (c) = H(c/n) and

E(1AX(c/n)X) = n

∫ c/n

0
H(t)dt =

∫ c

0
H(t/n)dt =

∫ c

0
F−1 (t)dt. (13)
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Also note that

E(1AY (u?)Y ) ≥
∫ c

0
F−2 (t)dt (14)

since P(AY (u?)) = c. It follows from (12), (13) and (14) that for any c ∈ [0, ncn],∫ c

0
F−1 (t)dt ≥

∫ c

0
F−2 (t)dt.

For c ∈ (ncn, 1], note that H1(x) :=
∫ x
0 F

−
1 (t)dt and H2(x) :=

∫ x
0 F

−
2 (t)dt are

convex functions and E(X) = E(Y ) thus H1(1) = H2(1). Furthermore we have F−1 (t)

is a constant when t ≥ cn since QPn satisfies (b). By the facts that H1(cn) ≥ H2(cn),

H1(1) = H2(1), H1 is linear over [ncn, 1] and H1, H2 are convex, we conclude∫ c

0
F−1 (t)dt ≥

∫ c

0
F−2 (t)dt

for any c ∈ [0, 1]. By Lemma 3.3 we obtain

Ef(G(Y1) + · · ·+G(Yn)) ≤ EQ
P
n f (G(X1) + · · ·+G(Xn))

and it completes the proof.

Remark 3.2.

1. In stochastic orderings, the above result is interpreted in the following way: sup-

pose Y1, · · · , Yn, Z1, · · · , Zn ∼ P and Z1, · · · , Zn have copula QPn , then

Z1 + · · ·+ Zn ≤cx Y1 + · · ·+ Yn ≤cx nY1.

Thus Z1 + · · ·+Zn is the lower bound in the convex order on the sum Y1 + · · ·+Yn

with given marginal distributions Yi ∼ P . This completes the result of bounds in

the convex order on the sum with given monotone marginal distributions. For an

overview of the stochastic orderings, see Shaked and Shanthikumar [22].

2. The optimal copula QPn solving (2) depends only on the marginal distribution P ,

but not on the convex function f .
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3. Although we are able to show the existence and minimality, we are unable to write

the function QPn explicitly.

Theorem 3.5. We have

min
Y1,··· ,Yn∼P

Ef (Y1 + · · ·+ Yn) = n

∫ cn

0
f(H(x))dx+ (1− ncn)f(H(cn)), (15)

where H(x) and cn are defined as in (7) and (9).

Proof. By Theorem 3.4,

min
Y1,··· ,Yn∼P

Ef (Y1 + · · ·+ Yn)

= EQ
P
n f (G(X1) + · · ·+G(Xn))

= nEQ
P
n [f(G(X1) + · · ·+G(Xn))1{X1∈[0,cn]}]

+EQ
P
n [f(G(X1) + · · ·+G(Xn))1{X1∈[cn,1−(n−1)cn]}]

= nEU[f(H(X1))1{X1∈[0,cn]}] + EU[f(H(cn))1{X1∈[cn,1−(n−1)cn]}]

= n

∫ cn

0
f(H(x))dx+ (1− ncn)f(H(cn)).

Corollary 3.6. If the density of P is monotone and supported in a finite interval [a, b],

then

min
X1,··· ,Xn∼P

Ef (X1 + · · ·+Xn) = f(nEP (X))

for n sufficiently large.

Proof. We have a < EP (X) < b since P is a continuous distribution. Hence there exists

N such that b − 1
n(b − a) > EP (X) for n ≥ N . By Corollary 2.9 we know P is

completely mixable with index n and centered at EP (X). Thus we have

E[f(nEP (X))] ≥ min
X1,··· ,Xn∼P

Ef (X1 + · · ·+Xn) ≥ f(nEP (X))

by Jensen’s inequality. This shows that

min
X1,··· ,Xn∼P

Ef (X1 + · · ·+Xn) = f(nEP (X))

for n sufficiently large.
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4 Applications

4.1 The minimum of E(X1X2 · · ·Xn), Xi ∼ U[0, 1]

Let us look at the problem

Λn := min
X1,··· ,Xn∼U

E(X1X2 · · ·Xn). (16)

Problem (16) has a long history. For n = 3 and X,Y, Z ∼ U, Rüschendorf [19] found

1/24 as a lower bound for E(XY Z), but apparently the bound is not sharp. Baioc-

chi [1] constructed a discretization of X, Y and Z and applied a linear programming

to approximate the minimum, which leads to a value ≈ 0.06159. Bertino [2] obtained

an upper bound ≈ 0.05481 for Λ3, by manually taking the limit of one class of dis-

cretizations of X,Y, Z. He conjectured that this upper bound was the true value of

Λ3. Recently, Nelsen and Ubeda-Flores [17] introduced the coefficients of directional

dependence, whose lower bound has not been found and equals a function of the lower

bound for E(XY Z).

This problem is a special case of problem (2). By letting P be the distribution of

log(X), X ∼ U (namely, P = −Expo(1)) and f(x) = exp(x), we can use Theorem 3.4

and Theorem 3.5 to solve (16). In fact Figure 3.2 illustrates the support of QP3 in this

problem.

Corollary 4.1. We have

Λn =EQ
P
n (X1 · · ·Xn)

=
1

(n− 1)2

(
1

n+ 1
− (1− (n− 1)cn)n +

n

n+ 1
(1− (n− 1)cn)n+1

)
+ (1− ncn)cn(1− (n− 1)cn)n−1,

(17)

where cn is the unique solution to

log(1− (n− 1)c)− log(c) = n− n2c, 0 ≤ c < 1/n. (18)
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It is an immediate application of Theorem 3.4 and Theorem 3.5, hence we omit

the proof here.

n Λn cn e−n Λne
n

1 1/2 N/A 3.6788× 10−1 1.3591

2 1/6 1/2 1.3533× 10−1 1.2315

3 5.4803× 10−2 9.4542× 10−2 4.9787× 10−2 1.1008

4 1.9098× 10−2 2.5406× 10−2 1.8316× 10−2 1.0427

5 6.8604× 10−3 7.9597× 10−3 6.7379× 10−3 1.0182

10 4.5410× 10−5 4.5589× 10−5 4.5400× 10−5 1.0002

20 2.0612× 10−9 2.0612× 10−9 2.0612× 10−9 1.0000

50 1.9287× 10−22 1.9287× 10−22 1.9287× 10−22 1.0000

100 3.7201× 10−44 3.7201× 10−44 3.7201× 10−44 1.0000

Table 4.1: Numerical values of Λn

The numerical values of Λn for different n are presented in Table 4.1. One may

suggest that Λn ∼ e−n as n goes to infinity.

Corollary 4.2. We have

Λn = e−n +
n

2
e−2n +O(n4e−3n).

See Appendix for the proof.

Remark 4.1.

1. In fact this approximating procedure can be done infinitely further. For n =

10, Λ10 − e−10 = 1.0323 × 10−8, 5e−20 = 1.0306 × 10−8. We cam see that the

approximation is already very precise.

2. Nelsen and Ubeda-Flores [17] introduced the directional dependence coefficients

ρ
(α1··· ,αn)
n , αi ∈ {−1, 1}, i = 1, · · · , n. The lower bound on ρ

(α1··· ,αn)
n can be written
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as

ρ(α1··· ,αn)
n ≥ min

X1,··· ,Xn∼U
{2nE(X1 · · ·Xn)− 1} = 2nΛn − 1,

and our Corollary 4.1 provides this value.

4.2 Bounds on the distribution of the sum of random variables

Suppose ψ : Rn → R is a measurable function. For any marginal distribution Fi,

let mψ(s) = inf{P(ψ(X1, · · · , Xn) < s) : Xi ∼ Fi, i = 1, · · · , n}. Finding mψ(s) is

related to many problems in multivariate probability and risk theory. In particular, this

problem is equivalent to the worst Value-at-Risk scenarios in risk management. We refer

to Gaffke and Rüschendorf [10], Rüschendorf [20], Embrechts, et al. [6], Embrechts and

Puccetti [7] and [8] for detailed discussions on this topic. Unfortunately, as is mentioned

in Embrechts and Puccetti [7]:

This dual optimization problem (mψ(s)) is very difficult to solve. The only explicit

results known in the literature are given in Rüschendorf (1982) ([20]) for the case of the

sum of marginals being all uniformly or binomially distributed.

By using our results in Section 2, we can solve m+(s) = inf{P(X1 + · · ·+Xn < s) :

Xi ∼ F, i = 1, · · · , n} for F satisfying a monotone property. For simplicity, we consider

F (x) on [0, 1].

Theorem 4.3. Assume the cdf F (x) has decreasing density on its support [0, 1] with

mean µ and EF (X|X ≥ t) ≥ t+ 1−t
n for any t ∈ [0, 1). Denote G the inverse of F and

ψ(t) = EF (X|X ≥ G(t)) for t ∈ [0, 1), then

m+(s) =


0 s ≤ nµ;

ψ(−1)(s/n) nµ < s < n;

1 s ≥ n.
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Proof. m+(s) = 1 for s ≥ n is trivial. By Corollary 2.9, F is completely mixable with

index n. It follows that inf{P(X1 + · · · + Xn < nµ : X1, · · · , Xn ∼ F} = 0 and hence

m+(s) = 0 for s ≤ nµ.

For nµ < s ≤ n, let X = X1 + · · ·+Xn, Xi ∼ F and consider the inequality

E(X) = E(X1{X<s}) + E(X1{X≥s})

≥ E[(X1 + · · ·+Xn)1{X<s}] + sP(X ≥ s)

≥ n

∫ P(X<s)

0
G(t)dt+ sP(X ≥ s)

= nµ− n
∫ 1

P(X<s)
G(t)dt+ sP(X ≥ s).

Thus for P(X ≥ s) > 0,

1

P(X ≥ s)

∫ 1

P(X<s)
G(t)dt ≥ s/n,

which implies ψ(P(X < s)) = EF [Y |Y > G(P(X < s))] ≥ s/n and P(X < s) ≥

ψ(−1)(s/n). Also note that P(X ≥ s) = 0 implies P(X < s) = 1 ≥ ψ(−1)(s/n). It follows

that

m+(s) ≥ ψ(−1)(s/n). (19)

Now we show the equality in (19) is attainable. Denote a = ψ(−1)(s/n) and consider

the distribution of G(V ) where V ∼ U[a, 1]. Apparently it has decreasing density with

mean

E(G(V )) =

∫ 1

a

1

1− aG(t)dt = ψ(a) ≥ G(a) +
1−G(a)

n
.

Therefore, by Corollary 2.9 the distribution of G(V ) is completely mixable and there

exist Vi ∼ U[a, 1] such that G(V1) + · · ·+G(Vn) = nψ(a) = s.

Now let Yi = G(U)1{U≤a} + G(Vi)1{U>a} where U ∼ U and U is independent of
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(V1, · · · , Vn). We can check Yi ∼ F via

P(Yi ≤ t) = P(G(U) ≤ t, U ≤ a) + P(G(Vi) ≤ t, U > a)

= P(U ≤ F (t), U ≤ a) + P(Vi ≤ F (t))P(U > a)

= P(U ≤ F (t))1{F (t)≤a} + P(U ≤ a)1{F (t)>a} + P(Vi ≤ F (t))P(U > a)

= F (t)1{F (t)≤a} + a1{F (t)>a} + (1− a)
F (t)− a

1− a 1{F (t)>a}

= F (t),

and P(Y1 + · · · + Yn < s) = P(U ≤ a) = a. This shows m+(s) ≤ a. Together with (19)

we have m+(s) = a = ψ(−1)(s/n) for nµ < s < n.

The m+(s) problem has been investigated based on the well-known duality theorem

by Rüschendorf [20] (see also Embrechts and Puccetti [7]),

mψ(s) =1− inf

{
n∑
i=1

∫
fidFi : fi are bounded measurable functions on R s.t.

n∑
i=1

fi(xi) ≥ 1[s,+∞)(ψ(x1, · · · , xn)), for all xi ∈ R, i = 1, · · · , n
}
.

In the following we give a proof based on the duality, which inserts our result in a broader

context.

Proof based on duality and mass transportation.1 m+(s) = 1 for s ≥ n is trivial and

m+(s) = 0 for s ≤ nµ follows from the complete mixability of F . Now suppose nµ <

s < n. s > 1 since µ ≥ 1/n. Theorem 4.2 in Embrechts and Puccetti [7] gives a lower

bound

m+(s) ≥ 1− n inf
r∈[0,s/n)

∫ s−(n−1)r
r (1− F (t))dt

s− nr , (20)

and since F is supported in [0,1], we have

m+(s) ≥ 1− n inf
r∈[0,s/n)

∫ 1
r (1− F (t))dt

s− nr . (21)

1We are grateful to Prof. G. Puccetti and Prof. L. Rüchendorf who provided this proof. It was

slightly modified to fit into our paper.
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For r ∈ [0, sn),

(∫ 1
r (1−F (t))dt

s−nr

)′
= 0 implies

g(r) := −F (r)(s− nr) + n

∫ 1

r
F (t)dt = 0. (22)

Suppose r = r? satisfies (22), then

F (r?) =
n
∫ 1
r? F (t)dt

s− nr?

and therefore m+(s) ≥ F (r?) by (21). Note that F (s/n) < 1 by the fact that EF (X|X ≥

t) exists for all 0 ≤ t < 1. r? always exists since g is continuous, g(0) = −s + nµ < 0

and

g(s/n) = n

∫ 1

s/n
F (t)dt > 0.

Integration by parts leads to

−F (r?)(s− nr?) + n

∫ 1

r?
F (t)dt = −sF (r?) + n

∫ 1

r?
tdF (t) = 0,

and hence

s(1− F (r?)) = nEF (X|X > r?)(1− F (r?)).

Thus s/n = ψ(F (r?)) since F (r?) < 1. Therefore m+(s) ≥ F (r?) = ψ(−1)(s/n). The

rest part is to show the equality holds, which can be done by the same argument as in

the above proof.

Remark 4.2.

1. From the proof, we can see that the bound (20) given in Embrechts and Puccetti

[7] is sharp for F in Theorem 4.3.

2. The optimal coupling corresponding to the minimum probability consists of a

completely mixable part and a residual part.

3. In Rüschendorf [20], m+(s) is found for uniform or binomial marginal distributions

F . Our proof is similar to his method. The result in Rüschendorf [20] for the

marginal U[0,1] is a special case (F (x) = x, x ∈ [0, 1]) of Theorem 4.3.
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4. The regular condition EF (X|X ≥ t) ≥ t+ 1−t
n prevents the conditional mean of X

from being too close to one side. This condition is commonly satisfied by bounded

distributions with monotone density for n not too small.

4.3 Stop-loss premiums of the total risk

Let X1, X2, · · · , Xn ≥ 0 be n individual risks with the same marginal distributions

P . Their stop-loss premium is defined as E[(X1 + · · · + Xn − t)+] where t ≥ 0 is a

constant and (·)+ = max{·, 0}. See Kaas, et al. [13] for references of this topic. An

important problem in variance reduction is to determine the minimum of the stop-loss

premium over all possible dependence structure, i.e.

min
X1,··· ,Xn∼P

E[(X1 + · · ·+Xn − t)+] = min
C∈Cn

EC [(G(U1) + · · ·+G(Un)− t)+] (23)

where G is the pseudo-inverse of the cdf of Xi ∼ P and Cn is the set of n-copulas. Our

result solves (23) for monotone distributions P . By Theorem 3.4, we have

min
X1,··· ,Xn∼P

E[(X1 + · · ·+Xn − t)+] = EQ
P
n [(G(U1) + · · ·+G(Un)− t)+]

= n

∫ cn

0
[H(u)− t]+du+ (1− ncn)[H(cn)− t]+.

We provide a numerical result to compare the stop-loss premium E[(X1 + X2 + X3 −

t)+] for 4 different cases when n = 3. Suppose P is the exponential distribution with

parameter 1 and X1, X2, X3 ∼ P .

• Case 1. X1, X2 and X3 are comonotonic (see Denneberg [3]), i.e. X1 = X2 = X3

almost surely. This case gives the maximum stop-loss premium.

• Case 2. X1, X2 and X3 are independent.

• Case 3. X1, X2 and X3 are negatively correlated with copula C(1,2,3) in Yang, et

al. [23] (i.e. the corresponding uniform random variables U1, U2 and U3 in (23)

satisfy U1 = 1− U3 and U2 is independent of U1 and U3).
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• Case 4. X1, X2 and X3 have copula QP3 . This case gives the minimum stop-loss

premium.

The result is given in Figure 4.3.
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Figure 4.3: The stop-loss premium for different dependence structures

5 Open problems

There are many unsolved problems related the complete mixability and minimiza-

tion problem (2). In the following we list some problems of interest.

1. Is the center of the complete mixability in Proposition 2.1 always unique? We

know it is unique when P follows WLLN.

Embrechts and Puccetti [8] give an example of X1, X2, X3 i.i.d. ∼ Pareto(1) (on

p.123), and the distribution function of X1 + X2 + X3 is always less than the

distribution function of 3X1. This example shows that it is possible that when

P has infinite mean, there exist X1, · · · , Xn, Y1, · · · , Yn ∼ P , and X1 + · · · +
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Xn > Y1 + · · · + Yn with probability 1. However, we still do not know whether

X1 + · · ·+Xn = µ > ν = Y1 + · · ·+ Yn is possible for constants µ and ν.

2. Theorem 2.2 and Theorem 2.4 both give sufficient conditions for the complete

mixability. Can we find a necessary and sufficient condition for the complete

mixability?

3. For an arbitrary distribution P on R, we can define

α = sup
Xi∼P, c∈R

P(X1 + · · ·+Xn = c).

α can be considered as the measure of one kind of partial mixability. Note that

α = 1 gives the complete mixability and our QPn solving (2) is actually an example

of the partial mixability.

4. We only proved the existence of QPn , but did not find any of them exactly. Simi-

larly, for a completely mixable and monotone distribution P , we did not construct

random variables X1, · · · , Xn ∼ P with a constant sum. It will be interesting to

explicitly express QPn (x1, · · · , xn) = PQP
n (X1 ≤ x1, · · · , Xn ≤ xn) and construct

random variables X1, · · · , Xn with a constant sum (like in Rüschendorf and Uck-

elmann [21]).

5. The optimal coupling QPn for problem (2) does not work in the case of solving

min
X1,··· ,Xn∼P

E[ψ(X1, ..., Xn)], (24)

for a general supermodular function ψ (see e.g. Embrechts and Puccetti [8]). As

a counter example, let ψ(x1, · · · , xn) =
∏n
i=1 xi and P = U, then (24) becomes

(16) and is solved with optimal coupling Q
−Expo(1)
n (see Section 4.1), instead of

QU
n . Problem (24) is of importance in the theory of dependent measures and is

still left to be solved. As a special case, for ψ(x1, · · · , xn) =
∏n
i=1 xi and X ∼ P
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when the distribution of log(X) admits a monotone density, (24) can be solved by

Theorem 3.4.

6 Conclusions

In this paper, we introduced the concept of the complete mixability, together with

its basic properties and showed that monotone distributions with moderate mean are

completely mixable. The minimum of Ef(X1 + · · ·+Xn) where f is a convex function

and Xi ∼ P for monotone P was obtained. Our results also resolve some existing

problems in variance reduction, bounds for the sum of random variables and individual

risk models.
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We are grateful to Christian Houdré, Liang Peng and Jingping Yang for their

kindly guidance and valuable suggestions, Vladimir Kolchinskii for his ideas which pro-

vided great help to the proof of Proposition 2.1, Roger Nelsen for initially bringing

up to the authors problem (16) which inspired this paper, Xiaoying Han and Cathy Ja-

cobson for helping with the writing. We especially thank Giovanni Puccetti and Ludger

Rüschendorf for the dual proof of Theorem 4.3 and constructive comments which have

significantly improved the organization, reference citation and details of this paper.

7 Appendix

Proof of Lemma 2.5

By Remark 2.2(2), without loss of generality we can assume A(S) = 1, i.e. A is a

probability mass function.
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⇒: Suppose the mass function A is completely mixable on S with index n. By

definition there exist {Bi}Ki=1 satisfying (a), (b) and (c) in Definition 2.2 and A =∑K
i=1 aiBi, ai ≥ 0. For each Bi, denote Si,k = {j ∈ S : Bi(j) = k}, k = 1, 2 · · · , n.

Denote a vector Vi = (j1, · · · , jn), j1 ≤ · · · ≤ jn, where in the sequence j1, · · · , jn each

number in Si,k appear k times. Let σ be a random permutation uniformly distributed

on the set of all n-permutations and let δ be a random number with P(δ = i) = nai,

i = 1, · · · ,K and independent of σ. Note that
∑K

i=1 nai =
∑K

i=1 aiBi(S) = A(S) = 1.

Now let the random vector (X1, · · · , Xn) = σ(Vδ), then X1 + · · ·+Xn = 0 and

P(Xj = i) = P((σ(Vδ))j = i)

=

K∑
l=1

P((σ(Vl))j = i)P(δ = l)

=
K∑
l=1

Bl(i)

n
× nal

= A(i).

⇐: Suppose X1 + · · ·+Xn = 0, Xi ∼ P , i = 1, · · · , n. Denote X = (X1, · · · , Xn).

Then X takes value in Sn. For each possible value ai = (ai1, · · · ain) of X, i = 1, · · · ,K,

K ≤ ∞ we construct mass functions Bi, such that Bi(m) = #{j : aij = m}. It is obvious

that each Bi satisfies (a), (b) and (c) in Definition 2.2. Let A =
∑K

i=1 P(X = ai)Bi/n,

by definition A is completely mixable on S with index n, and

A(j) =
K∑
i=1

P(X = ai)Bi(j)/n =
K∑
i=1

P(X = ai)
1

n

n∑
k=1

E(1{Xk=j}|X = ai) = P ({j}).

Thus A is the mass function corresponding to distribution P .

Proof of Lemma 2.7

(5) reads as

N ×A(−N) + · · ·+ 1×A(−1) = 1×A(1) + · · ·+ dN ×A(dN). (25)
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The left-hand side of (25) is

N ×A(−N) + · · ·+ 1×A(−1) ≤ N ×A(−N) +
(N − 1)N

2
×A(−N + 1)

≤
(
N +

N(N − 1)

2

2d

d+ 1

)
A(−N)

=
N(dN + 1)

d+ 1
×A(−N).

The right-hand side of (25) is

1×A(1) + · · ·+ dN ×A(dN)

≥ (dN − d+ 1)(dN − d+ 2)

2
×A(dN − d+ 1)

+(dN − d+ 2)×A(dN − d+ 2) + · · ·+ dN ×A(dN) (26)

≥ N(dN + 1)

d+ 1
× (1×A(dN − d+ 1) + 2×A(dN − d+ 2) + · · ·+ d×A(dN)).(27)

The last inequality is due to the fact that A(dN −d+1) ≥ · · · ≥ A(dN), the summation

of all coefficients in (26) equals that in (27) and for each i and the summation of all

coefficients from term A(dN − d + 1) to A(dN − d + i) in (25) is greater than that in

(27). Therefore we get

1×A(dN − d+ 1) + 2×A(dN − d+ 2) + · · ·+ d×A(dN) ≤ A(−N),

and thus CN (A) ≥ 0.

Proof of CN−1(Ā) ≥ 0

Note that Ā(−N + 1) = A(−N + 1)−∑d−1
i=1 iA(dN − i). Comparing the left-hand

side and right-hand side of (25), we get

N ×A(−N) +
N(N − 1)

2
×A(−N + 1)

≥ LHS of (25)

= RHS of (25)

≥ 1

2
(dN − d+ 1)(dN − d+ 2)A(dN − d+ 1) +

d∑
i=2

(dN − d+ i)A(dN − d+ i).
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Plugging CN (A) = 0 in and after simplification (here we divide both sides by N − 1,

hence N ≥ 2 is needed), the above inequality reads as

N ×A(−N + 1) ≥ 2
d−2∑
j=1

jA(dN − j) + (d2N − d2 + 3d− 2)A(dN − d+ 1).

Since A(dN − 1) ≤ A(dN − 2) ≤ · · · ≤ A(dN − d+ 1), we can calculate

A(−N + 1) ≥ 1

N

2
d−1∑
j=1

jA(dN − j) + (d2(N − 1) + d)A(dN − d+ 1)


≥ 2

N

d−1∑
j=1

jA(dN − j) +
d2(N − 1) + d

d(d− 1)

d−1∑
j=1

jA(dN − j)


≥ 2

N

(
1 +

(N − 1)d+ 1

d− 1

) d−1∑
j=1

jA(dN − j)

=
2d

d− 1

d−1∑
j=1

jA(dN − j).

This leads to

Ā(−N + 1) ≥ A(−N + 1)− d− 1

2d
A(−N + 1) ≥ d+ 1

2d
A(−N + 2) =

d+ 1

2d
Ā(−N + 2).

By Lemma 2.7 we know (Ā,N − 1) satisfies (ii).

Proof of Corollary 4.2

In the following we let Pn be the unique solution to

logP =
nP − n
n+ P − 1

, P > 1. (28)

One can show (28) has unique solution other than P = 1 by the following argument.

Let f(x) = log x−n+ n2

n+x−1 . Then f ′(x) = 1
x − n2

(n+x−1)2 , hence f ′(x) only has one root

other than x = 1. This shows f(x) = 0 has at most one root other than x = 1. Note

that f(2) < 0 and f(en) > 0, thus it has unique root other than x = 1.

Let cn = 1
Pn+n−1 (Pn = 1−(n−1)cn

cn
) and plug it in (28), we get cn is the unique

solution to (18).
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For any 0 < η < 1,

f(ηen) = log η +
n2

n+ ηen − 1
< 0

for large n, hence there is a solution to f(x) = 0 between ηen and en. Since Pn is the

solution, we know Pn ∼ en, therefore cn = 1
Pn+n−1 ∼ e

−n.

Furthermore, it follows from log(Pn/e
n) = −n2/(n+ Pn − 1) and Pn ∼ en that

Pn/e
n = 1− n2

Pn + n− 1
+

n4

2(Pn + n− 1)2
+O(

n6

(Pn + n− 1)3
)

= 1− n2

en
+
n2(Pn + n− 1− en)

en(Pn + n− 1)
+

n4

2(Pn + n− 1)2
+O(

n6

e3n
)

= 1− n2

en
+
n2(−n2 + n− 1)

e2n
+O(

n6

e3n
) +

n4

2e2n
+O(

n6

e3n
) +O(

n6

e3n
)

= 1− n2e−n +
−n4 + 2n3 − 2n2

2
e−2n +O(n6e−3n).

Consequently

cn = e−n + (
1

Pn + n− 1
− e−n)

= e−n +
en − (Pn + n− 1)

en(Pn + n− 1)

= e−n + (n2 − n+ 1)e−2n +O(n4e−3n),

and

Λn =n

∫ cn

0
x(1− (n− 1)x)n−1dx+ (1− ncn)cn(1− (n− 1)cn)n−1

=n

∫ cn

0
x(1− (n− 1)x)n−1dx+ cn[1− ((n− 1)2 + n)cn +O(n3c2n)]

=n

∫ cn

0
x(1− (n− 1)x)n−1dx+ cn − (n2 − n+ 1)c2n +O(n3c3n).

=
n

2
c2n +O(n3c3n) + cn − (n2 − n+ 1)c2n +O(n3c3n).

=e−n +
n

2
e−2n +O(n4e−3n).
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