
Size proportional Venn and Euler diagrams in 2 and 3 dimensions:
vennplot(...) in R

Abstract

Venn and Euler diagram is a popular way to visualize factor data. In this artical, we will introduce a
statistic model for fitting size-proportional Venn and Euler diagram; this model is based on a loss function
we defined and continuous optimization procedure for searching minimum. An R function vennplot(...)
can provide both 2D and 3D layout.

1 Introduction
In recent years variations of Venn diagrams have seen increased use in scientific publications. For example,
Figure 1 shows the results of an online search for the phrase “Venn diagram” over all articles from 1998

Figure 1: Number of articles containing “Venn diagram” over time from the journals Genetics and Nature

to 2017 appearing in the journals Nature and Genetics (including G3: Genes, Genomes, Genetics). As
can be seen, there has been nearly a 10 fold increase since the turn of the century, particularly in genetic
applications, the use of “Venn diagram” soars from 5/4972 in 1999 to 75/3208 in 2017 (due July 18th)

1

1.1 Definition
Venn diagrams form component sets must contain all possible intersections (2m). Multiple closed curves, like
circles, ellipses, and other irregular polygons overlap with each other to depict Venn diagrams. The interior
points of the closed curve represent the elements of the set, while the exterior points represent elements
that are not in this set. Unlike Venn diagrams, Euler diagrams only contain the relevant relations [3]. In
Venn diagrams, a shaded zone or figure zero may represent non-intersection, but in Euler diagrams, the
corresponding zone is usually missing. Both Venn and Euler diagrams are used in illustrating samples in
mathematics, nature science, genetics and other areas. However, in somes cases, the Venn diagrams and
Euler diagrams are not up to the job independently and so are often stretched beyond their definitions [7].
Thus, we will not struggle the names and call it Venn and Euler diagram.

1.2 Brief description
Interest often lies in the number of genes shared by different species, or perhaps by different groups of
individuals. For example, in Figure 2, Venn and Euler diagram in (a) shows Wmel strain gene of Wolbachia
pipientis shared in a combination of four specific criteria [15], and (b) describes genes shared by five asterid
species [20]. The common features of these two graphs are that: (1) they use the same size ellipse. (2)
the number of ellipses m cuts picture into 2m disjoint areas and the size of each area does not match the
counts. Venn and Euler diagrams in (c) and (d) both include six data sets: in (c), irregular polygons are
drawn to illustrate six woody species. Although it contains all the disjoint intersections, the visualization of
interacting characteristics is absent (13 and 4872 share the same area; the total size of “Poplar” is the largest,
however, the total area of it is the third smallest); in (d), diagram is depicted by differently shaped triangles.
Compared with (c), the ability of cutting area is worse and the sharp corner makes the visualization less
aesthetic.

Good diagrams clarify. Very good diagrams force the ideas upon the viewer. The best diagrams com-
pellingly embody the ideas themselves [7]. If we look at Venn and Euler diagrams (e) and (f), both of
them convey the size of intersections by visualization. In (e), It is clear that majority “Sub-high level” gene
ontologies share with the “High level” ones; only the half of “High level” genes partake with the “Sub” ones.
In (f), based on the diagram, we can tell location and interest are the two main factors affacting friendships
and age just impact a little part (13% in total)

An informal survey of 112 Venn and Euler diagrams published in articles of journal Nature and Genetics
in the past two years, here are some common features: (1) close to half of them (49/112) use size-proportional
characteristics; (2) over two thirds of them (75/112) make Venn and Euler diagram circles and the number of
circles is two or three; (3) In these 75 aritcles using circles, 39 of them contain the property of size-proportion;
(4) the rest 37 articles without making Venn diagram circles, 24 of them has more than four closed curves.
In other words, when the numeber of sets is smaller than four, almost all of them(75/88) make circular Venn
and Euler diagrams. Figure 3 shows pie charts of these four cases. Hence, we can deduce that the majority
of scientists prefer to make Venn and Euler diagram circles. But as the number of sets increases, in existing
softwares, the automatical fit may not be good enough. Thus, scientists have to choose ellipse or irregular
polygons to illustrate the interacting relationships. In this article, we will add a restriction to force our Venn
and Euler diagrams to be size-proportional, circles when 2D and balls when 3D.

1.3 Perceptual laws
In a series of experiments, Cleveland and McGill [8–10] investigated the quality of a variety of different
encodings for magnitude. On account of the visual perception theory, area and volume both give high
accurancy in graphical perception experiments. Here, we need to be more cautious, in Stevens’ power
law [21], a person’s perceived magnitude of a stimulus of magnitude varies by different perceived scales (like
length, area and volume). For example, consider visually comparing two areas (volumes) of size p and q.

2

(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) Showing the number of wMel genes fitting these four components. [15]. (b) Genes sharing by
five asterid species (coffee, ash, morkey flower, tomato, bladderwort) [20]. (c) Venn diagram of gene sharing
by six woody species (pine, grape, ash, poplar, coffee, amborella) [20]. (d) Showing the number of genes
shared between isolates from investigative patients [5]. (e) Illustrating the overlapping of gene ontology
between the highland and subhighland lineages [25]. (f) Explaining the friendships through locations, ages
and interests. (data source: www.livejournal.com) [14].

3

Figure 3:

According to Stevens’ law, the ratio of the areas will be perceived to beÅ
p

q

ã$
instead of p/q, where 0.6 ≤ $ ≤ 0.9 if area and 0.5 ≤ $ ≤ 0.8 if volume. Hence, when we make circles size
proportional to counts, we need to give some tolerance to our eyes.

2 Related Work
Currently, there are two main branches to the drawing of Venn and Euler diagram. One approach is more
close to the defination of Venn diagram: m closed curves divide the whole picture into 2m pieces and
then yielding figure to each disjoint part. The counts do not need to be necessarily proportional to the
area, like package vennDiagram(...) [6] and venn(...) in R. The other approach is more close to the
defination of Euler diagram: a statistical model is built to produce area proportional circular Venn and
Euler diagrams for one or more sets and some critical values are created to evaluate the goodness of fit, like
package venneuler(...) [24] in R and venn.js(...) [11] in JavaScript.

4

2.1 R package venneuler(...)

In Wilkinson’s paper [24], a statistical loss function and a minimization procedure are first invented to
estimate the Venn and Euler area-proportional model. The goodness of his fit is evaluated by a critical value
of null hypothesis test, stress. We will show more details of his work in the following sections.

Besides, he also compares his work venneuler(...) to VennMaster(...) and Chow/Rodgers algorithm.
In his comparison, venneuler(...) has several adventages: (1) the quality of fit stress, is better than the
other two. (2) VennMaster(...) program relies on the random seeds and the solutions give no indication,
which makes it not trustworthy; Chow/Rodgers algorithm is limited to 3-ring generalized Venn and Euler
diagrams, so superset problems cannot be handled.

2.2 Javascript venn.js(...)

Ben Frederickson introduces a new model to minimize a sum of squared errors function comparing the actual
intersection sizes to the desired sizes. His algorithm positions the sets by optimizing the distances bewteen
circles, instead of the intersection areas directly. We will discuss this work further in the following sections.

In his blog [11], he compares his work venn.js(...) with venneuler(...). A few tests are built
and venneuler(...) doesn’t perform all that well. One of the reasons he gives is that “venneuler(...)
frequently gets a solution that is close to being correct, it rarely gets a solution that is close enough for this
test to say it succeeded” [1].

2.3 Modified model
In this article, we will start with review of the previous work, venneuler(...) and venn.js(...), and
then modify and create a new algorithm including groups detection, a loss function, continuous optimization
process and groups combination; meanwhile, the layout is not restricted into two dimension, 3D version is
also available. At last, we will make a comparison between vennplot(...) with venneuler(...) and
venn.js(...).

3 Notation
• p ∈ {2, 3} is the dimensionality of the Venn and Euler representation

• sets

– m sets S1, S2, . . . , Sm

– intersections Sij···k = Si ∩ Sj ∩ · · · ∩ Sk
– for any set S, s = size(S) denotes its cardinality if countable, and otherwise its measure (in some

sense)

• venn diagram balls

– a ball B is defined by its centre c and its radius ρ (e.g. balls are circles when p = 2 and spheres
when p = 3)

– m balls B1, . . . , Bm

– ball intersections are denoted Bij···k = Bi ∩Bj ∩ · · · ∩Bk
– for any ball, or part of a ball, B, b = size(B) denotes its area when p = 2 or its volume when
p = 3

– ball Bi is centred at ci ∈ Rp having radius ρi and origin
∑m
i=1 ci = 0

– C = [c1, . . . , cm]
T is the m × p matrix of ball centres where p ∈ {2, 3} is the dimension of the

display; the point configuration of the centres

5

• disjoint operator disjoint(· · ·): for any collection P = {P1, P2, . . . , Pm} for some N ≥ m

disjoint(P) = P ? = {P ?1 , P ?2 , . . . , P ?N}

where ∀ i

1. P ?i ⊂ Pi
2. P ?i ∩ P ?j = ∅ for i 6= j

3. P1 ∪ P2 ∪ · · · ∪ Pk = P ?1 ∪ P ?2 ∪ · · · ∪ P ?N
• point configurations and distance

– G = [gij] = CCT is the Gram matrix

– g = diag(G) = (g11, g22, . . . , gmm)
T

– D = [d2ij] is the matrix of squared distances dij = ||ci − cj || for some distance measure dij or
norm ||·||
Given a matrix of squared Euclidean distances D, a point configuration C can be determined
from the relationship [18]

G =
1

2

(
1mgT −D + g1Tm

)
= −1

2
(I−H)D(I−H)

Where H = 1
n1m1Tm, 1m = [1, 1, . . . , 1]

T with length m and I is the m × m indentity matrix.
Letting G = UΛUT be the eigen-decomposition of the Gram matrix, we take C = UΛ

1
2 as the

initial point configuration

4 Choosing distance

4.1 Jaccard index
The Jaccard index, also known as intersection over union, is used for comparing the distance over sample
sets and can be defined as follows [13]:

• let sij = size(Si ∩ Sj) and si = size(Si) ∀i

dij = 1− size(Si ∩ Sj)
size(Si ∪ Sj)

= 1− sij
si + sj − sij

4.2 Geometry distance
Consider the case of two balls Bi and Bj of radius ρi and ρj with i 6= j:

1. let s = size(S1 ∪ S2 ∪ · · · ∪ Sm)

2. let bi = size(Bi) = si
s , bij = size(Bi ∩Bj) =

sij
s , and ρi be the radius of a ball at this size

• for p = 2, ρi =
»

bi
π

• for p = 3, ρi = (3bi
4π)

1
3

3. If Bi ∩Bj = ∅, then dij ≥ ρi + ρj and we choose to set dij = ρi + ρj

4. If Bi ⊂ Bj , then dij ≤ ρj − ρi and we choose to set dij = ρj − ρi

6

5. If Bi ∩Bj 6= ∅, Bi 6⊂ Bj , Bj 6⊂ Bi, use Bi ∩Bj to determine the dij

(a) for p = 2, distances are determined as in Figure 4,

Figure 4: Dimension p = 2

Oi and Oj are the centres of the two circles and dij is the distance between the two centres. A
and B are the points of intersection. AB ⊥ OiOj at point C. θi and θj are two angles of the
triangle AOiOj . Thus, dij can be found by:

dij = |OiA| cos(θi) + |OjA| cos(θj)

The remaining task is to find θi and θj . Firstly, |AC| = |OiA| sin(θi) = |OjA| × sin(θj). Sec-
ondly, area bij can be separated by line AB into two parts Area(ÃBleft) and Area(ÃBright);
Area(ÃBleft) equals to area of arc OjÃB minus triangle OjAB and Area(ÃBright) equals to
area of arc OiÃB minus triangle OiAB, where |OiA| = |OiB| = ρi, |OjA| = |OjB| = ρj . Hence,
θi and θj can be found by the following equations:

0 = θiρ
2
i − ρ2i sin(θi) cos(θi) + θjρ

2
j − ρ2j sin(θj) cos(θj)− bij

0 = ρi sin(θi)− ρj sin(θj)

(b) p = 3

7

Figure 5: Dimension p = 3

It is very similar with p = 2. In Figure 5, Oi and Oj are the centres of these two spheres. A and
B are the points of intersection and line AB is the diameter of the intersect plane, so AB ⊥ OiOj
at point C. θi and θj are two angles of the triangle AOiOj . Thus, dij can be found by:

dij = |OiA| cos(θi) + |OjA| cos(θj)

The remaining task is to find θi and θj . Firstly, |AC| = |OiA| sin(θi) = |OjA| sin(θj). Secondly,
volume bij can be separated by the plane, with centre C and radius |AC| (|BC|), into two parts
SphereCapleft and SphereCapright:

SphereCapleft =
π(|OjA|−|OjC|)

6 (3 |AC|2 + (|OjA| − |OjC|)2)

SphereCapright = π(|OiA|−|OiC|)
6 (3 |AC|2 + (|OiA| − |OiC|)2)

where |OiA| = |OiB| = ρi, |OjA| = |OjB| = ρj , |AC| = |BC| = ρi sin(θi), |OiC| = ρi cos(θi) and
|OjC| = ρj cos(θj); SphereCapleft and SphereCapright can be expressed as:

SphereCapleft =
π(ρj−ρj cos(θj))

6 (3ρj sin(θj)
2 + (ρj − ρj cos(θj))

2)

SphereCapright = π(ρi−ρi cos(θi))
6 (3ρi sin(θi)

2 + (ρi − ρi cos(θi))
2)

Then, we can add them up to get bij ; after simplifying, θi and θj can be found by the following
equations:

0 = π
3 ρ

3
i (1− cos(θi))2(2 + cos(θi))

+ π
3 ρ

3
j (1− cos(θj))2(2 + cos(θj)) − bij

0 = ρisin(θi)− ρjsin(θj)

Use Newton-Raphson to solve for θ̂i, θ̂j , and hence dij . In conclusion, dij is a function of ρi, ρj , sij
and can be showed as dij = d(ρi, ρj , sij):

4.3 Something
1. Let P(S) denote the power set excluding the null set

P(S) = {S1, . . . , Sm, S12, . . . , S12···m}

8

and P(S)? = disjoint(P(S)). Denote by s? the vector containing the sizes of N sets of P(S)?, where
N ≤ 2m − 1.
Similarly, define P(B), P(B)?, and b? for the corresponding balls.

2. let H(S) = P(S) \ S = {S1, . . .SN } be the higher order intersection set (the order is larger than 1)
with size N , where N = N −m and:

• H(S) ∪ S = P(S)

• H(S) ∩ S = ∅

5 Computing areas
Following Wilkinson [24], imagine there are m 100 × 100 bit-squares, one for each ball. In any square, a bit
is 1 if the ball for that square covers it, and is zero if it does not. Location of the Venn and Euler diagram is
the pixel-wise logical disjunction of all m squares, pixels in each disjoint region of the diagram are identified
by a unique pattern of the m bits for that location.

6 Wilkinson’s model

6.1 Defining the model
For any configuration, the vector of sizes for the disjoint balls will be b?. If fit perfectly, this should be
proportional to the corresponding sizes of the disjoint sets. The extent that this is not the case is captured
by fitting the linear model

b? = βs? + r

to the given b? and s? with r as a residual vector. The least squares fitted value for β is β̂ = (s?Ts?)−1s?Tb?

and the estimated residual sum of squares

RSS = r̂Tr̂ = (b? − β̂s?)
T

(b? − β̂s?)

TSS = b?Tb?

We can use stress(b?) as a measure of the quality of the fit, where:

stress(b?) =
RSS

TSS
=

(b? − b̂?)
T

(b? − b̂?)

b?Tb?

6.2 Minimizing stress
The remaining task is to find a b? which corresponds to the minimum stress. Here, b? is a function of C
and we can take derivative of ci to get:

∂stress(b?)

∂ci
=
∂stress(b?)

∂b?
∂b?

∂ci

First, let us start with ∂stress(b?)
∂b? :

∂stress(b?)
∂b? = 2(b?−b̂?)b?Tb?−2b?[(b?−b̂?)

T
(b?−b̂?)]

(b?Tb?)2

= 2̂rb?Tb?−2b?r̂T r̂
(b?Tb?)2

= 2 r̂
b?Tb? − 2 b?

(b?Tb?)2
r̂T r̂.

9

Now the second term above r̂Tr̂ is of higher order than is r̂ and can be written as O(r̂). Hence,

∂stress(b?)

∂b?
≈ 2

b?Tb?
r̂ +O(r̂)

Second, find ∂b?

∂ci
:

ci and cj are the centres of Bi and Bj . Thus, Jaccard distance can be expressed as:

||ci − cj || = 1− b?TIij

b?T1N

where, Iij is a length N vector, i, j ∈ {u1, u2, . . . , u`} and the kth element Iij(k) is an indicator function

Iij(k) =

 1 if s?k = s?u1u2···u`
and i, j ∈ {u1, u2, . . . , u`}

0 otherwise

that is one whenever the kth set s?k is the intersection set s?u1u2···u`
and I and j identify any two sets that

define the intersection. Also, 1N = [1, 1, . . . , 1]
T denotes the N -dimensional one vector.

Differentiating both sides with respect to ci yields

ci − cj
||ci − cj ||

= − ∂

∂ci

Ç
b?TIij

b?T1N

å
After simplifying:

∂b?T

∂ci

Ä
(b?T1N)Iij − (b?TIij)1N

ä
= −(b?T1)2

(ci − cj)

||ci − cj ||
Somehow Wilkinson gets

∂stress(b?)

∂ci
∝ r̂(ci − cj)

and so gets a descent step on each iteration for Bi to be (approximately) proportional to :

∂stress(b?)
∂ci

≈
∑N
k=1

∑m
j 6=i(ci − cj)r̂kIij(k) =

∑m
j 6=i(ci − cj)r̂

TIij

ci+1 = ci − α∂stress(b
?)

∂ci

where α is 0.01; then, with this local approximate gradient, he computes stress four times (up, down, left,
right) for each ball centre by taking small steps 0.01. The gradient direction goes with the lowest stress
values for ci.

7 An alternative loss function
For any configuration of centre locations C = [c1, . . . , cm]

T we define a loss function

L(C) =
m∑
i=1

`(ci)

where for each i

`(ci) =
m∑
j=1

l(ci, cj).

10

We could then update the configuration from its initial position by minimizing a suitably defined loss. Ben
Frederickson [11] suggested that the following loss function:

l(ci, cj) =

0 when Si ∩ Sj = ∅ and (ci − cj)
T

(ci − cj) ≥ d2ij

0 when Si ⊂ Sj or Sj ⊂ Si and (ci − cj)
T

(ci − cj) ≤ d2ij

((ci − cj)
T

(ci − cj)− d2ij)2 otherwise

where the distances dij are fixed at their initial values, however determined from the sets Si and Sj (e.g.
Jacaard distance). This loss places a great deal of importance on the pairwise intersection between sets Si
and Sj and between balls Bi and Bj . For example, when Si ∩ Sj = ∅ then, arguably, the balls should not
intersect so placing them farther apart than the distance dij incurs no loss on the pairwise intersections.
Similarly, if one of Si or Sj is a subset of the other, then ideally the corresponding ball, Bi or Bj , should be
entirely inside the other. Once a distance dij has been determined by the intersection of the two sets (one is
a subset of the other) the relative area of the intersection is preserved whatever the position of the centres
provided they are no farther away from each other than dij – farther away and there is no guarantee that
both the area and the subset relation are preserved.

Here we choose to minimize this loss using the geometric distances for p = 2 and p = 3 as defined earlier.
Our objective is to choose a configuration which minimizes this loss. To that end, we differentiate the

loss with respect to ci and solve. The derivative of l(ci, cj) function with respect to ci is

∂l(ci, cj)

∂ci
=

0 when Si ∩ Sj = ∅ and (ci − cj)
T

(ci − cj) ≥ d2ij

0 when Si ⊂ Sj or Sj ⊂ Si and (ci − cj)
T

(ci − cj) ≤ d2ij

4((ci − cj)
T

(ci − cj)− d2ij)(ci − cj) otherwise

Thus,
∂`(ci)

∂ci
=
∑
j

∂l(ci, cj)

∂ci

This can be used in a nonlinear conjugate gradient method [19] to find a minimum L(C) as follows.

1. Initialization:

the initial configuration

C(0) ← [c
(0)
1 , . . . , c(0)m]

T

from the eigen decomposition of the gram matrix, the initial loss

L(C(0))←
m∑
i=1

`(c0i)

and the iteration count
n← 0

2. Outer loop over n:

(a) Inner loop: for i = 1, . . . ,m

11

i. Determine the conjugate direction c
(n)
i :

c
(n)
i ←

−∂`(c

(n)
i

)

∂c
(n)
i

+ ω(n)c
(n−1)
i n ≥ 1

−∂`(c
(0)
i

)

∂c
(0)
i

n = 0

where

ω
(n)
PR ←

∂`(c
(n)
i

)

∂c
(n)
i

T Å
∂`(c

(n)
i

)

∂c
(n)
i

− ∂`(c
(n−1)
i

)

∂c
(n−1)
i

ã
∂`(c

(n−1)
i

)

∂c
(n−1)
i

T
∂`(c

(n−1)
i

)

∂c
(n−1)
i

is the Polak-Ribiere choice [17] and

ω(n) ← max
Ä
0, ω

(n)
PR

ä
where ω(n) is a popular choice [19].

ii. Perform a line search for
α(n) ← arg min

α
`(c

(n)
i + αc(n))

via Newton’s method.
iii. Update the position ci:

c
(n+1)
i ← c

(n)
i + α(n)c(n)

iv. end inner loop

(b) Update outer loop:
n← n+ 1

L(C(n))←
m∑
i=1

`(c
(n)
i)

(c) Outer loop ends when
∣∣L(C(n))− L(C(n−1))

∣∣ < ε.

3. Return point configuration C← C(n)

8 Our model

8.1 Case one
Let us start with data set S = {S1, S2, S3} and the power set P(S) = {S1, S2, S3, S1 ∩ S2, S1 ∩ S3, S2 ∩
S3, S1 ∩ S2 ∩ S3}, exluding ∅.

8.1.1 Distance matrix and Initial location

Based on the point configuration (central gram matrix) and geometry distance [dij], we can find the initial
location C(0).

12

8.1.2 Model redefinition

When Si ∩ Sj = ∅, it does not matter how long the distance is between these two centres as long as it is
larger than ρi + ρj ; when Si ⊂ Sj or Sj ⊂ Si, it does not matter how short the distance is as long as it is
shorter than |ρi − ρj |; beside these two cases, we can shrink or expand our layout a little bit to weight the
order larger than two intersections, as shown in Figure 6.

Figure 6: shrink or expand

Hence, our model can be defined as:

L(C, λ) =
m∑
i=1

`(ci, λ)

For each i

`(ci) =
m∑
j=1

l(ci, cj , λ).

l(ci, cj , λ) =

0 when Si ∩ Sj = ∅ and (ci − cj)
T

(ci − cj) ≥ d2ij

0 when Si ⊂ Sj or Sj ⊂ Si and (ci − cj)
T

(ci − cj) ≤ d2ij

(λ(ci − cj)
T

(ci − cj)− d2ij)2 otherwise

The derivative of l(ci, cj , λ) function on ci:

∂l(ci, cj , λ)

∂ci
=

0 when Si ∩ Sj = ∅ and (ci − cj)
T

(ci − cj) ≥ d2ij

0 when Si ⊂ Sj or Sj ⊂ Si and (ci − cj)
T

(ci − cj) ≤ d2ij

4λ(λ(ci − cj)
T

(ci − cj)− d2ij)(ci − cj) otherwise

Thus,
∂`(ci, λ)

∂ci
=
∑
j

∂l(ci, cj , λ)

∂ci

13

where λ ∈ R. Use nonlinear conjugate gradient method to find the minimum L(C, λ). In this way, we can
shrink or extend our layout and get the centres C (C is determined by λ).

To determine an appropriate value of λ, following Wilkinson et al, we introduce a stress(λ) function
based on the quality of the fit of the areas. For any configuration, given λ, the vector of sizes for the disjoint
balls will be b?λ. If fit perfectly, this should be proportional to the corresponding sizes of the disjoint sets.
The extent that this is not the case is captured by fitting the linear model

b?λ = βs? + r

what’s more, we can give different weights to each disjoint balls so that the quality of fit on higher
intersections can be captured. Hence, the linear model can be defined as:

b?λW
1
2 = βs?W

1
2 + rW

1
2

where W = diag(w1, w2, ..., wN) be aN×N (in this exampleN = 7) diagonal matrix. To the given b?λ, W

and s? with r as a residual vector. The weighted least squares fitted value for β is β̂ = (s?TWs?)−1s?TWb?λ
and the estimated residual sum of squares

RSS(β, λ) = r̂TWr̂ = (b?λ − β̂s?)
T
W(b?λ − β̂s?)

TSS = b?λ
Tb?λ

We can use stress(λ) as a measure of the quality of the fit, where:

stress(λ) =
RSS(β, λ)

TSS

and
stress = arg min

λ
stress(λ)

Here suggests two algorithms to find cnetre C and corresponding stress

1. Initialization:
the initial point configuration

C(0) ← [c
(0)
1 , . . . , c(0)m]

T

the initial λ
λ(1) ← 1

and the initial count
n← 1

2. Fixing λ(n) and computing stress(λ(n))

• Minimizing L(C;λ(n)) and get C(n)

C(n) ← arg min
C

L(C;λ(n))

• Compute each area b?
λ(n) and find β̂(n)

β̂(n) ← arg min
β

RSS(β;λ(n))

β̂(n) can be solved as (s?TWs?)−1s?TWb?
λ(n)

14

• Finding stress(λ(n))

stress(λ(n))← RSS(β̂(n), λ(n))

b?Tλ(n)Wb?
λ(n)

3. Two algorithms for finding C and stress:
Set

λ
(n)
+ ← λ(n) + ∆

λ
(n)
− ← λ(n) −∆

where ∆ ∈ <+, a small step size. Fixing λ(n)+ and λ(n)− to compute stress(λ(n)+) and stress(λ(n)−).

• Nelder Mead Algorithm [16] :

(a) Loop over n:
i. Previous preparation:

the initial λ(n) vector
λ(n) ← [λ(n), λ

(n)
+ , λ

(n)
−]

the corresponding stress(n)

stress(n) ← [stress(λ(n)), stress(λ
(n)
+), stress(λ

(n)
−)]

and assuming:
stress(λ1) ≤ stress(λ2) ≤ stress(λ3)

where, λi ∈ λ(n), stress(λi) ∈ stress(n) and i = {1, 2, 3}. λ0 can be computed as:

λ0 ←
λ1 + λ2

2

λr is:
λr ← 2λ0 − λ3

ii. Update Loop
i). the λ:
– if(stress(λ1) ≤ stress(λr) < stress(λ2)) then do reflection

λ(n+1) ← [λ1, λ2, λr]

– else if(stress(λr) < stress(λ1)) then do expansion

λe ← 2λr − λ0

and get corresponding stress(λe)
∗ if (stress(λe) < stress(λr)) then

λ(n+1) ← [λ1, λ2, λe]

∗ else
λ(n+1) ← [λ1, λ2, λr]

– else if(stress(λr) ≥ stress(λ2)) then do contraction:

λc ←
λ0 + λ3

2

15

∗ if(stress(λc) ≤ stress(λ3)) then

λ(n+1) ← [λ1, λ2, λc]

ii). the count:
n← n+ 1

iii. Shrink λ:
With λ(n), we can get corresponding stress(n), and assuming:

stress(λ1) ≤ stress(λ2) ≤ stress(λ3)

where, λi ∈ λ(n), stress(λi) ∈ stress(n) and i = {1, 2, 3}.
Shrink λj , where j = {2, 3}

λj ←
λj + λ1

2

iv. Loop ends when ∣∣∣max(λ(n))−min(λ(n))
∣∣∣ ≤ ε

or ∣∣∣max(stress(n))−min(stress(n))
∣∣∣ ≤ ε

v. stress = min(stress(n))

• Line Search [4] :

– Direction search
∗ if(min(stress(λ+), stress(λ−), stress(λ(n))) = stress(λ(n)))

Return C← C(n)

∗ else
(a) if (min(stress(λ+), stress(λ−), stress(λ(n))) = stress(λ+)) which means shrinkage can

decrease stress. Thus,

λ(n) ← λ+ and stress(λ(n))← stress(λ+)

i. update λ
λ(n+1) ← λ(n) + ∆

ii. update count n
n← n+ 1

iii. Fixing λ(n) and compute stress(λ(n))
iv. Repeat i to iii until stress(λ(n−1)) ≤ stress(λ(n))
v. Return C← C(n−1) and stress = stress(λ(n−1))

(b) else which means expansion can decrease stress. Thus,

λ(n) ← λ−

And λ can be updated as follows:

λ(n+1) ← λ(n) −∆

The rest procedure is similar with (a). ii to v.

4. Return C and stress

16

8.2 Case two
In this case, some two way intersections are missing. Due to this situation, we cannot exactly determine the
geometric distances [dij]. Thus, we need to estimate the [dij] (if missing), then to fit the model and get the
centre C corresponding to the minimum stress.

8.2.1 Distance matrix and Initial location

For exmaple, the data set S = {S1, S2, S3, S4} and the power set P(S) = {S1, S2, S3, S4, S1 ∩ S2, S1 ∩ S2 ∩
S3 ∩ S4}. We have:

s1234 ≤ ŝ123, ŝ134 ≤ ŝ13 ≤ min(s1, s3) (1)

s1234 ≤ ŝ124, ŝ134 ≤ ŝ14 ≤ min(s1, s4) (2)

s1234 ≤ ŝ123, ŝ234 ≤ ŝ23 ≤ min(s2, s3) (3)

s1234 ≤ ŝ124, ŝ234 ≤ ŝ24 ≤ min(s2, s4) (4)

s1234 ≤ ŝ134, ŝ234 ≤ ŝ34 ≤ min(s3, s4) (5)

For the inequation (1), we have ŝ123 = µ1s1234, ŝ134 = µ2s1234 and ŝ13 = µ3ŝ123 = µ4ŝ134. Thus, ŝ13 =
µ3µ1s1234 = µ4µ2s1234 ≤ min(s1, s3) and the constraints for (1):

µ1µ3 = µ2µ4

µ1µ3 ≤ min(s1,s3)
s1234

µ2µ4 ≤ min(s1,s3)
s1234

µi ≥ 1 i = {1, 2, 3, 4}

Since we have five inequations, four missing order three intersections (ŝ123, ŝ124, ŝ134, ŝ234), five missing order
two intersections (ŝ12, ŝ13, ŝ14, ŝ23, ŝ24). Thus, we need nine parameters {µ1, µ2, . . . , µ9}. For simplicity, we
choose to set µ = µ1 = µ2 = . . . = µ9. In this way, we can shorten nine parameters to just one and we have:

ŝ13 = ŝ14 = ŝ23 = ŝ24 = ŝ34 = µ2s1234

where 1 ≤ µ ≤
√

min(s1,s2,s3,s4)
s1234

. Since dij is a function of ρi, ρj , sij (if order two intersection exists) and

ρi, ρj , ŝij (if order two intersection missing), and we can use [d̂ij] to represent geometic distance matrix,
where [d̂ij] is determined by µ.

17

Figure 7: Missing order two intersections

In Figure 7, the red dots are the intersections we have and the black ones are the missing intersections.
We want to estimate the black dots part so that we can fit the red dots part as well as possible.

8.2.2 Model redefinition

The model is the same with before but replace [dij] to [d̂ij]. Hence, we add parameter µ in our model.

L(C, λ;µ) =
m∑
i=1

`(ci, λ;µ) =
m∑
i=1

m∑
j=1

l(ci, cj , λ;µ)

Minimize L(C, λ;µ) to get centre C and compute each area b?C. Then, weighted RSS and stress can be
expressed as:

RSS(β, λ;µ) = (b?λ − βs?)
T
W(b?λ − βs?)

stress(λ;µ) =
RSS(β, λ;µ)

b?λ
TWb?λ

Here, we have two parameters µ and λ. We will start with parameter µ, then λ, because it is meaningless
to shrink or expand with a poor geomatric distance.

Due to µ ≥ 1, here suggests a possible algorithm for finding a good centre C:

1. Initialization:
the initial point configuration

C(0) ← [c
(0)
1 , . . . , c(0)m]

T

the initial µ
µ(1) ← 1 and µ(1) ⇒ [d̂

(1)
ij]

the initial λ
λ(1) ← 1

and the initial count
n← 1

18

2. Two algorithms for finding C:

• Nelder Mead Algorithm [16] :

(a) Set
µ
(n)
+ ← µ(n) + ∆

µ
(n)
++ ← λ(n) + 2∆

and µ can be defined as:
µ(n) ← [µ(n), µ

(n)
+ , µ

(n)
++]

Thus we can get corresponding estimated distance matrix. Fixing λ(1), stress is:

stress(n) = [stress(λ(1);µ(n)), stress(λ(1);µ
(n)
+), stress(λ(1);µ

(n)
++)]

(b) The rest procedure is similar with before: do Loop, but replace λ(n) to µ(n) and fix λ(1)

(c) Return

µ =

∑
(µ(n))

3

and corresponding distance [d̂ij]

• Line Search [4] :

– Loop over n:
(a) Fixing λ(1) and µ(n)

C(n) ← arg min
C

L(C;λ(1), µ(n))

(b) Compute area b?
λ(1),µ(n) and

β̂(n) ← arg min
β

RSS(β;λ(1), µ(n))

get corresponding

stress(λ(1);µ(n))← RSS(β̂(n), λ(1), µ(n))

b?Tλ(1),µ(n)Wb?
λ(1),µ(n)

(c) Update Loop
µ(n+1) ← µ(n) + ∆

n← n+ 1

(d) Loop ends when stress(λ(1);µ(n−1)) ≤ stress(λ(1);µ(n))

– Return µ← µ(n−1) and get corresponding [d̂ij]← [d̂
(n−1)
ij]

3. Fixing [d̂ij] and shrinking or expanding λ, the same as Case 1, to find the minimum stress, then return
C.

8.3 In general
If any two way intersections are missing, such as Si∩Sj , but there are some higher than two way intersection
sets {S1 ∩ S2 ∩ · · · ∩ SM , S1 ∩ S2 ∩ · · · ∩ SL, . . .} ⊆ Si ∩ Sj and S1 ∩ S2 ∩ · · · ∩ SM = max({S1 ∩ S2 ∩ · · · ∩
SM , S1 ∩ S2 ∩ · · · ∩ SL, . . .}). Based on the generation we mentioned before, we can use S1 ∩ S2 ∩ · · · ∩ SM
to get Si ∩ Sj

ŝij = s12···M × µM−2

19

9 Undirected connected components
In graph theory, undirected connected components [12] is subgraph that any two nodes can be connected by
undirected paths.

9.1 Notation
• Undirected connected components G = {V,E}, where V is a set whose elements are called nodes and

E is the undirected edges connecting nodes. In power set P(S), any order k intersections, where k ≥ 2,
can be treated as

(
k
2

)
edges ; such as S1 ∩ S2 ∩ S3 implies S1, S2 and S3 must be connected thus

E = {S1 ∩ S2 ∩ S3} and V = {S1, S2, S3}

• Assuming we have η Gs, let Gi = {V1,E1}, . . . , {Vη,Eη}, where 1 ≤ η ≤ m. In each Vi, any two sets
can be connected by edges Ei.

1. – V1 ∪V2 ∪ . . . ∪Vη = {S1, S2, . . . , Sm}
– E1 ∪E2 ∪ . . . ∪Eη = H(S)

2. – Vi ∩Vj = ∅
– Ei ∩Ej = ∅

where i 6= j

The fewer disks we fit, the lower rank distance matrix we have. What’s more, we can avoid some unnecessary
overlay if we find Gs at the beginning. Hence, we can fit our model as below:

1. Detect G = {G1,G2, . . . ,Gη}

2. Use Ei to detect which case Gi belongs to (whether distance matrix can be exactly determined), then
fit with corresponding model.

3. Layout G with reasonable distance (not too far or too close)

9.2 G detection
Given data set S = {S1, S2, ..., Sm}, a size N higher order set H(S) and a size N power set P(S) (excluding
∅). We can use the following algorithm to detect G. Before we start, let us introduce some functions which
can help us better understand this algorithm:

• separate function: input is a high order intersection; output is each unit. e.g. separate(S1 ∩S2 ∩S3) =
{S1, S2, S3}

• unique function: returns a vector but with duplicate elements removed. e.g. unique(S1, S2, S3, S1) =
{S1, S2, S3}

• any function: give a set of logical vectors, is at least one of the values true. e.g. z = {A,B,C},
Z = {A,D,E}, then any(z ∈ Z) = TRUE; z = {A,B,C}, Z = {D,E}, then any(z ∈ Z) = FALSE;
z = {TRUE,FALSE}, then any(z = TRUE) = TRUE.

• which function: give the true indices of a logical object. e.g. z = {TRUE,FALSE, TRUE};which(z =
TRUE) = {1, 3}

• length function: get the length of vectors. e.g. z = {TRUE,FALSE, TRUE}; length(z) = 3.

The following procedure can help us find the Gs

1. if N = 2m −m− 1 then
η = 1; V1 = S and E1 = H(S)

20

2. else if N = 1 then
Where H(S) = {S1}, assume S1 is the order k intersection, thus seperate(S1) is a k size set and
η = m − k + 1. S \ separate(S1) = {γ1, γ2, . . . , γm−k}. Hence Vi = γi, Ei = ∅, where 1 ≤ i ≤ m − k
and Vη = seperate(S1), Eη = S1.

3. else

(a) H(S) = {S1,S2, . . .SN }
(b) Outer loop: i = 1, . . . ,N :

i. Boolean1 = {bool1, . . . , boolN } and boolu = FALSE, where 1 ≤ u ≤ N ;
ii. Inner loop: for j = i, . . . ,N :

• boolj = any(separate(Si) ∈ separate(Sj))
iii. A = which(Boolean1 = TRUE); length(A) = a and A = {A1, . . . , Aa}
iv. Vi = unique(spearate(SA1), . . . , spearate(SAa)) and Ei = {SA1 , . . . ,SAa}
v. if i > 1 then

Boolean(2) = {bool1, . . . , booli−1} and boolu = FALSE, where 1 ≤ u ≤ i− 1

A. Inner loop: for j = 1, . . . , i− 1:
• boolj = any(Vj ∈ Vi)

B. τ = which(Boolean(2) = TRUE); length(τ) = 0 or 1
C. if(length(τ) = 1) then
• Vτ = unique(Vτ ,Vi) and Eτ = unique(Eτ ,Ei)

• Vi = Ei = ∅
(c) Get rid of all the emptysets and reduce N to ν, where 1 ≤ ν ≤ N . ∀ i, Vi 6= ∅ and Ei 6= ∅,

where 1 ≤ i ≤ ν
(d) if(V1 ∪ . . . ∪Vν = S) then

• ν = η

else

• S \ (V1 ∪ . . . ∪Vν) = {γ1, . . . γη−ν}
• Vν+j = γj and Eν+j = ∅, where 1 ≤ j ≤ η − ν

4. Gi = {Vi,Ei}, where 1 ≤ i ≤ η and return G = {G1, . . . ,Gη}

9.3 Case detection
We need to define a new function order :

• order : give the order of an intersection. e.g. order(S1 ∩ S2 ∩ S3) = 3

For each Gi = {Vi,Ei}, where 1 ≤ i ≤ η and Ei = {e1, . . . , eκ}, ej means edges (intersections) belonging to
undirected connected component Gi, where 1 ≤ j ≤ κ:

1. Notation

• L = which(order(Ei) = 2) and length(L) = l

• length(Ei) = κ

2. if(l = κ) then Gi belongs to Case 1

3. else

• L = {L1, . . . , Ll}, where 1 ≤ L1 ≤ Ll ≤ κ

21

• O2 = {eL1 , . . . , eLl
}

• T = which(order(Ei) > 2) and length(T) = t

– t+ l = κ

• T = {T1, . . . , Tt}
• Or = {eT1 , . . . , eTt}

– O2 ∪ Or = Ei

(a) Outer Loop: j = 1, . . . , t

i. Assuming eTj is the order k intersection, where order(eTj) = O > 2 and it implies
(
O
2

)
edges.

Set q =
(
O
2

)
and Q is an order two intersections list which eTj

connotes.

Q = {Q1, . . . , Qq}

ii. Boolean = {bool1, . . . , boolq} and boolu = FALSE, where 1 ≤ u ≤ Q
iii. Inner Loop: u = 1, . . . q

• boolu = any(Qu ∈ O2)

iv. If (any(Boolean = FALSE)) then
• Gi belongs to Case 2
• break Outer Loop

else Gi to be determined

(b) If Gi still to be determined then
Gi belongs to Case 1

9.4 G layout
G = {G1, . . . ,Gη} and Gi = {Vi,Ei}. Vi is the size mi data set and Bi is the corresponding balls with
radiuses Ri. Hence, Ri is a size mi × 1 vector. After Case Detection, fit the model one by one and get
Y = [C1, . . . ,Cη]

T. Thus Ci is a mi × p matrix and p = 2 or 3.

η∑
i=1

mi = m

The following procedures can help us to lay out Ci together but with reasonable distances.

1. Initialization:

• Put C1 in a rectangle box, which can load all these balls.

• if (η = 1) return Ci

else go to next Outer Loop

2. Outer Loop: i = 2, . . . , η

(a) Randomly select one point x in this box. Then pick one coordinate (row) cj in Ci (with its radius
ρj), where 1 ≤ j ≤ mi. This coordinate cj must have either the largest (x or y or z) or smallest
(x or y or z).

22

Figure 8: The choice of cj and x

In Figure 8, the imaginary line is a rectangular box and x is the point we randomly generate. cj
we choose is the centre ball E, which has the largest x (smallest y).

(b) Translate Ci to C′i:
C′i = Ci + 1mi

x− 1mi
cj

where 1mi
= [1, 1, . . . , 1]

T with size mi

• All the distances {d1x, d2x, ..., dmix} between x and Ci−1 are larger than Ri−1 + 1Tmi−1
ρj ,

where 1mi−1
= [1, 1, . . . , 1]

T with size mi−1.
• At least one of distances {d1x, d2x, ..., dmix} is smaller than Ri−1 + 1Tmi−1

ρj + 1Tmi−1
δ, where

δ ∈ <+

If any of these conditions does not match, then go back to first step of Outer Loop and get another
random point x.

Figure 9: Translation cj

(c) Rotate C′i until Ci−1 and C′i are totally separated.
i. Define a mi−1 ×mi matrix D

D =
∑p
k=1

(
Ci−1ek1

T
mi
− 1mi−1

eTkC
T
i

)
◦
(
Ci−1ek1

T
mi
− 1mi−1

eTkC
T
i

)
−
(
Ri−11

T
mi

+ 1mi−1
RT
i

)
◦
(
Ri−11

T
mi

+ 1mi−1
RT
i

)
where ek is a p-dimension standard basis, ek = [0, . . . , 1, . . . , 0]

T only the k th element is 1.

23

ii. if (all elements in D are equale or larger than 0)
Return C′i

Figure 10: Translation

In Figure 10, not all elements in D are equale or larger than 0. Hence, we need to do
rotation [23].

iii. else
• Inner Loop: θ = π

18 ,
2π
18 , . . . , 2π

• – C′i ← C′i ×R
∗ for p = 2

R =

ï
cos(θ) − sin(θ)
sin(θ) cos(θ)

ò
∗ for p =3

R =

1 0 0
0 cos(θ1) − sin(θ1)
0 sin(θ1) cos(θ1)

 cos(θ2) 0 sin(θ2)
0 1 0

− sin(θ1) 0 cos(θ2)

cos(θ3) − sin(θ3) 0

sin(θ3) cos(θ3) 0
0 0 1

θ1, θ2 and θ3 are not necessarily equal. For simplify, we can set θ1 = θ2 = θ3 = θ

– Caculate D
– if (all elements in D are equale or larger than 0) then break the Inner Loop and return

C′i
else θ ← θ + π

18 and repeat the Inner Loop
• If θ = 2π and D still doesn’t meet the conditions, then go back to random point selection

and pick a new x

24

Figure 11: Rotation

(d) Ci = [CT
i−1,C

′
i
T

]
T

(e) i← i+ 1

3. Return Ci

10 Examples
Figure 12 is an example of factor data on human encountering with great white sharks and data is collected
by Doctor Pierre-Jerome Bergeron [2]. In this example, it shows the relationship among nationality, time
and fatality. Here, we need to notice that the supplementary sets of “AM”, “Australia and USA”, “Fatality”
are “PM”, “others”, “Survive”, respectively. So, any disjoint parts are either fall into sets or supplementary
sets. The stress of this example is 0.06922327.

Figure 13 gives some two way intersections missing data set

vennplot(c(A = 803, B = 304, C = 1015, D = 1100, E = 1005, f = 967, H = 3020,

C&D = 1000, B&C = 248, A&B&C = 185, A&D&E = 327, C&D&f&H = 846))

25

Figure 12: sharks data frame

Figure 13: artifical data sets with some two way intersections missing

In this example, some two way intersections missing, like {A&B,A&C,A&D, . . .}, however, we can use
parameters µ to generate and optimize λ with stress 0.08181548.
Figure 14 gives a comparison between 2D version and 3D version.

26

Figure 14:

In this example, stress is 8.75× 10−5 in 2D and 0.0036 in 3D

11 Comparison with other Venn and Euler Algorithms
In this section, we want to compare vennplot(...) with other popular approaches to the circular area-
proportional Venn and Euler algorithms.

11.1 venneuler

Here, we generate three to eight disjoint data sets 100 times. In each generation, values in each disjoint set
are independently and randomly generated from uniform distribution, with a lower bound of 0 and a upper
bound of 100. Then, we calculate and compare stess of venneuler(...) and vennplot(scalemethod =
“NelderMead”). Figure 15 shows the comparison.

Figure 15: Comparison

27

We can find the stress of vennplot(scalemethod = “NelderMead”) is much lower in each number data
sets. And we need to notice, this generation is based on one group (undirected connected component). If
the data sets have one more groups, the performance of venneuler(...) may be worse. Figure 16 shows a
fifteen circles venn and euler diagram with input data sets

vennplot(c(A = 80, B = 50, C = 100, D = 100, E = 100, A&C = 30, A&D = 30,

B&E = 30, A&E = 40, f = 50, g = 60, h = 40, g&f = 20, B&h = 10,

i = 100, j = 40, k = 50, l = 100, k&l = 20,m = 30, l&m = 20, o = 50, p = 60, o&p = 30))

Figure 16: left one is vennplot(scalemethod = “NelderMead”) and right one is venneuler(...)

The stress is 0.001463784 in vennplot(...) and 0.3641411 in venneuler(...).

11.2 venn.js

venn.js(...) is created by JavaScript [1, 11]. Since JavaScript is a dynamic and interpreted client-side
programming language, often used to make webpages interactive and provide online programs [22]. It is hard
to extract coordinates and radii to compute stress. Thus, we can start with his algorighm and recode in R.
Figure 17 shows the comparison between venn.JS(...) and vennplot(scalemethod = “NelderMead”).

28

Figure 17: Comparison

We can find the stress of vennplot(scalemethod = “NelderMead”) is slightly lower in each number
data sets. However, if multiple groups are given, the adventage of vennplot(scalemethod = “NelderMead”)
will be obvious.

References
[1] Comparison with venneuler, 2015.

[2] sharkattackinfo.com, 2017.

[3] M. E. Baron. A Note on the Historical Development of Logic Diagrams: Leibniz, Euler and Venn. The
Mathematical Gazette, 1969.

[4] M. J. Box, D. Davies, and W. H. Swann. Non-linear optimization techniques. 1969.

[5] A. L. Byrd, C. Deming, S. K. B. Cassidy, O. J. Harrison, W.-I. Ng, S. Conlan, N. C. S. Program,
Y. Belkaid, J. A. Segre, and H. H. Kong. Staphylococcus aureus and Staphylococcus epidermidis strain
diversity underlying pediatric atopic dermatitis. Science, 2017.

[6] H. Chen and P. C. Boutros. Venndiagram: a package for the generation of highly-customizable Venn
and Euler diagrams in R. BMC Bioinformatics, 2011.

[7] W. Cherry and R. Oldford. Picturing Probability: the poverty of venn diagrams, the richness of
Eikosograms. 2003.

[8] W. S. Cleveland and R. McGill. Graphical Perception: Theory, Experimentation, and Application to
the Development of Graphical Methods . American Statistical Association, 1984.

[9] W. S. Cleveland and R. McGill. Graphical Perception and Graphical Methods for Analyzing Scientific
Data. Science, 1985.

[10] W. S. Cleveland and R. McGill. Graphical Perception : The Visual Decoding of Quantitative Information
on Graphical Displays of Data . Royal Statistical Society, 1987.

[11] B. Frederickson. A better algorithm for area proportional Venn and Euler diagrams. 2015.

[12] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipulation. Communications
of the ACM, 1973.

29

[13] P. Jaccard. Distribution de la Flore Alpine dans le Bassin des Dranses et dans quelques regions voisines.
Bulletin de la Socieete vaudoise des sciences naturelles, 1901.

[14] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. Structure and evolution of blogspace. Structure
and evolution of blogspace, 2004.

[15] D. P. LePage, J. A. Metcalf, S. R. Bordenstein, J. On, J. I. Perlmutter, J. D. Shropshire, E. M. Layton,
L. J. Funkhouser-Jones, J. F. Beckmann, and S. R. Bordenstein. Prophage WO genes recapitulate and
enhance Wolbachia-induced cytoplasmic incompatibility. Nature, 2017.

[16] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 1969.

[17] E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées. Mathematical
Modelling and Numerical Analysis, 1969.

[18] A. Rahman and W. Oldford. Euclidean distance matrix completion and point configurations from the
minimal spanning tree. 2016.

[19] J. R. Shewchuk. Technical report. An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain, 1994.

[20] E. S. A. Sollars, A. L. Harper, L. J. Kelly, C. M. Sambles, R. H. Ramirez-Gonzalez, D. Swarbreck,
G. Kaithakottil, E. D. Cooper, C. Uauy, L. Havlickova, G. Worswick, D. J. Studholme, J. Zohren, D. L.
Salmon, B. J. Clavijo, Y. Li, Z. He, A. Fellgett, L. V. McKinney, L. R. Nielsen, G. C. Douglas, E. D.
Kjaer, J. A. Downie, and D. Boshier. Genome sequence and genetic diversity of European ash trees.
Nature, 2016.

[21] S. Stevens. On the psychophysical law. Psychological Review, 1957.

[22] Wikipedia. Javascript.

[23] Wikipedia. Rotation.

[24] L. Wilkinson. Exact and approximate area-proportional circular Venn and Euler diagrams. IEEE Trans
Vis Comput Graph, 2012.

[25] D. Zhang, M. Yu, P. Hu, S. Peng, Y. Liu, W. Li, C. Wang, S. He, W. Zhai, Q. Xu, and L. Chen. Genetic
Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai - Tibetan Plateau. Genetics,
2017.

30

